minigrid.py 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. import math
  2. import hashlib
  3. import string
  4. import gym
  5. from enum import IntEnum
  6. import numpy as np
  7. from gym import error, spaces, utils
  8. from .rendering import *
  9. # Size in pixels of a tile in the full-scale human view
  10. TILE_PIXELS = 32
  11. # Map of color names to RGB values
  12. COLORS = {
  13. 'red': np.array([255, 0, 0]),
  14. 'green': np.array([0, 255, 0]),
  15. 'blue': np.array([0, 0, 255]),
  16. 'purple': np.array([112, 39, 195]),
  17. 'yellow': np.array([255, 255, 0]),
  18. 'grey': np.array([100, 100, 100])
  19. }
  20. COLOR_NAMES = sorted(list(COLORS.keys()))
  21. # Used to map colors to integers
  22. COLOR_TO_IDX = {
  23. 'red': 0,
  24. 'green': 1,
  25. 'blue': 2,
  26. 'purple': 3,
  27. 'yellow': 4,
  28. 'grey': 5
  29. }
  30. IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
  31. # Map of object type to integers
  32. OBJECT_TO_IDX = {
  33. 'unseen': 0,
  34. 'empty': 1,
  35. 'wall': 2,
  36. 'floor': 3,
  37. 'door': 4,
  38. 'key': 5,
  39. 'ball': 6,
  40. 'box': 7,
  41. 'goal': 8,
  42. 'lava': 9,
  43. 'agent': 10,
  44. }
  45. IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
  46. # Map of state names to integers
  47. STATE_TO_IDX = {
  48. 'open': 0,
  49. 'closed': 1,
  50. 'locked': 2,
  51. }
  52. # Map of agent direction indices to vectors
  53. DIR_TO_VEC = [
  54. # Pointing right (positive X)
  55. np.array((1, 0)),
  56. # Down (positive Y)
  57. np.array((0, 1)),
  58. # Pointing left (negative X)
  59. np.array((-1, 0)),
  60. # Up (negative Y)
  61. np.array((0, -1)),
  62. ]
  63. class WorldObj:
  64. """
  65. Base class for grid world objects
  66. """
  67. def __init__(self, type, color):
  68. assert type in OBJECT_TO_IDX, type
  69. assert color in COLOR_TO_IDX, color
  70. self.type = type
  71. self.color = color
  72. self.contains = None
  73. # Initial position of the object
  74. self.init_pos = None
  75. # Current position of the object
  76. self.cur_pos = None
  77. def can_overlap(self):
  78. """Can the agent overlap with this?"""
  79. return False
  80. def can_pickup(self):
  81. """Can the agent pick this up?"""
  82. return False
  83. def can_contain(self):
  84. """Can this contain another object?"""
  85. return False
  86. def see_behind(self):
  87. """Can the agent see behind this object?"""
  88. return True
  89. def toggle(self, env, pos):
  90. """Method to trigger/toggle an action this object performs"""
  91. return False
  92. def encode(self):
  93. """Encode the a description of this object as a 3-tuple of integers"""
  94. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], 0)
  95. @staticmethod
  96. def decode(type_idx, color_idx, state):
  97. """Create an object from a 3-tuple state description"""
  98. obj_type = IDX_TO_OBJECT[type_idx]
  99. color = IDX_TO_COLOR[color_idx]
  100. if obj_type == 'empty' or obj_type == 'unseen':
  101. return None
  102. # State, 0: open, 1: closed, 2: locked
  103. is_open = state == 0
  104. is_locked = state == 2
  105. if obj_type == 'wall':
  106. v = Wall(color)
  107. elif obj_type == 'floor':
  108. v = Floor(color)
  109. elif obj_type == 'ball':
  110. v = Ball(color)
  111. elif obj_type == 'key':
  112. v = Key(color)
  113. elif obj_type == 'box':
  114. v = Box(color)
  115. elif obj_type == 'door':
  116. v = Door(color, is_open, is_locked)
  117. elif obj_type == 'goal':
  118. v = Goal()
  119. elif obj_type == 'lava':
  120. v = Lava()
  121. else:
  122. assert False, "unknown object type in decode '%s'" % obj_type
  123. return v
  124. def render(self, r):
  125. """Draw this object with the given renderer"""
  126. raise NotImplementedError
  127. class Goal(WorldObj):
  128. def __init__(self):
  129. super().__init__('goal', 'green')
  130. def can_overlap(self):
  131. return True
  132. def render(self, img):
  133. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  134. class Floor(WorldObj):
  135. """
  136. Colored floor tile the agent can walk over
  137. """
  138. def __init__(self, color='blue'):
  139. super().__init__('floor', color)
  140. def can_overlap(self):
  141. return True
  142. def render(self, img):
  143. # Give the floor a pale color
  144. color = COLORS[self.color] / 2
  145. fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)
  146. class Lava(WorldObj):
  147. def __init__(self):
  148. super().__init__('lava', 'red')
  149. def can_overlap(self):
  150. return True
  151. def render(self, img):
  152. c = (255, 128, 0)
  153. # Background color
  154. fill_coords(img, point_in_rect(0, 1, 0, 1), c)
  155. # Little waves
  156. for i in range(3):
  157. ylo = 0.3 + 0.2 * i
  158. yhi = 0.4 + 0.2 * i
  159. fill_coords(img, point_in_line(
  160. 0.1, ylo, 0.3, yhi, r=0.03), (0, 0, 0))
  161. fill_coords(img, point_in_line(
  162. 0.3, yhi, 0.5, ylo, r=0.03), (0, 0, 0))
  163. fill_coords(img, point_in_line(
  164. 0.5, ylo, 0.7, yhi, r=0.03), (0, 0, 0))
  165. fill_coords(img, point_in_line(
  166. 0.7, yhi, 0.9, ylo, r=0.03), (0, 0, 0))
  167. class Wall(WorldObj):
  168. def __init__(self, color='grey'):
  169. super().__init__('wall', color)
  170. def see_behind(self):
  171. return False
  172. def render(self, img):
  173. fill_coords(img, point_in_rect(0, 1, 0, 1), COLORS[self.color])
  174. class Door(WorldObj):
  175. def __init__(self, color, is_open=False, is_locked=False):
  176. super().__init__('door', color)
  177. self.is_open = is_open
  178. self.is_locked = is_locked
  179. def can_overlap(self):
  180. """The agent can only walk over this cell when the door is open"""
  181. return self.is_open
  182. def see_behind(self):
  183. return self.is_open
  184. def toggle(self, env, pos):
  185. # If the player has the right key to open the door
  186. if self.is_locked:
  187. if isinstance(env.carrying, Key) and env.carrying.color == self.color:
  188. self.is_locked = False
  189. self.is_open = True
  190. return True
  191. return False
  192. self.is_open = not self.is_open
  193. return True
  194. def encode(self):
  195. """Encode the a description of this object as a 3-tuple of integers"""
  196. # State, 0: open, 1: closed, 2: locked
  197. if self.is_open:
  198. state = 0
  199. elif self.is_locked:
  200. state = 2
  201. elif not self.is_open:
  202. state = 1
  203. return (OBJECT_TO_IDX[self.type], COLOR_TO_IDX[self.color], state)
  204. def render(self, img):
  205. c = COLORS[self.color]
  206. if self.is_open:
  207. fill_coords(img, point_in_rect(0.88, 1.00, 0.00, 1.00), c)
  208. fill_coords(img, point_in_rect(0.92, 0.96, 0.04, 0.96), (0, 0, 0))
  209. return
  210. # Door frame and door
  211. if self.is_locked:
  212. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  213. fill_coords(img, point_in_rect(
  214. 0.06, 0.94, 0.06, 0.94), 0.45 * np.array(c))
  215. # Draw key slot
  216. fill_coords(img, point_in_rect(0.52, 0.75, 0.50, 0.56), c)
  217. else:
  218. fill_coords(img, point_in_rect(0.00, 1.00, 0.00, 1.00), c)
  219. fill_coords(img, point_in_rect(0.04, 0.96, 0.04, 0.96), (0, 0, 0))
  220. fill_coords(img, point_in_rect(0.08, 0.92, 0.08, 0.92), c)
  221. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), (0, 0, 0))
  222. # Draw door handle
  223. fill_coords(img, point_in_circle(cx=0.75, cy=0.50, r=0.08), c)
  224. class Key(WorldObj):
  225. def __init__(self, color='blue'):
  226. super(Key, self).__init__('key', color)
  227. def can_pickup(self):
  228. return True
  229. def render(self, img):
  230. c = COLORS[self.color]
  231. # Vertical quad
  232. fill_coords(img, point_in_rect(0.50, 0.63, 0.31, 0.88), c)
  233. # Teeth
  234. fill_coords(img, point_in_rect(0.38, 0.50, 0.59, 0.66), c)
  235. fill_coords(img, point_in_rect(0.38, 0.50, 0.81, 0.88), c)
  236. # Ring
  237. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.190), c)
  238. fill_coords(img, point_in_circle(cx=0.56, cy=0.28, r=0.064), (0, 0, 0))
  239. class Ball(WorldObj):
  240. def __init__(self, color='blue'):
  241. super(Ball, self).__init__('ball', color)
  242. def can_pickup(self):
  243. return True
  244. def render(self, img):
  245. fill_coords(img, point_in_circle(0.5, 0.5, 0.31), COLORS[self.color])
  246. class Box(WorldObj):
  247. def __init__(self, color, contains=None):
  248. super(Box, self).__init__('box', color)
  249. self.contains = contains
  250. def can_pickup(self):
  251. return True
  252. def render(self, img):
  253. c = COLORS[self.color]
  254. # Outline
  255. fill_coords(img, point_in_rect(0.12, 0.88, 0.12, 0.88), c)
  256. fill_coords(img, point_in_rect(0.18, 0.82, 0.18, 0.82), (0, 0, 0))
  257. # Horizontal slit
  258. fill_coords(img, point_in_rect(0.16, 0.84, 0.47, 0.53), c)
  259. def toggle(self, env, pos):
  260. # Replace the box by its contents
  261. env.grid.set(*pos, self.contains)
  262. return True
  263. class Grid:
  264. """
  265. Represent a grid and operations on it
  266. """
  267. # Static cache of pre-renderer tiles
  268. tile_cache = {}
  269. def __init__(self, width, height):
  270. assert width >= 3
  271. assert height >= 3
  272. self.width = width
  273. self.height = height
  274. self.grid = [None] * width * height
  275. def __contains__(self, key):
  276. if isinstance(key, WorldObj):
  277. for e in self.grid:
  278. if e is key:
  279. return True
  280. elif isinstance(key, tuple):
  281. for e in self.grid:
  282. if e is None:
  283. continue
  284. if (e.color, e.type) == key:
  285. return True
  286. if key[0] is None and key[1] == e.type:
  287. return True
  288. return False
  289. def __eq__(self, other):
  290. grid1 = self.encode()
  291. grid2 = other.encode()
  292. return np.array_equal(grid2, grid1)
  293. def __ne__(self, other):
  294. return not self == other
  295. def copy(self):
  296. from copy import deepcopy
  297. return deepcopy(self)
  298. def set(self, i, j, v):
  299. assert i >= 0 and i < self.width
  300. assert j >= 0 and j < self.height
  301. self.grid[j * self.width + i] = v
  302. def get(self, i, j):
  303. assert i >= 0 and i < self.width
  304. assert j >= 0 and j < self.height
  305. return self.grid[j * self.width + i]
  306. def horz_wall(self, x, y, length=None, obj_type=Wall):
  307. if length is None:
  308. length = self.width - x
  309. for i in range(0, length):
  310. self.set(x + i, y, obj_type())
  311. def vert_wall(self, x, y, length=None, obj_type=Wall):
  312. if length is None:
  313. length = self.height - y
  314. for j in range(0, length):
  315. self.set(x, y + j, obj_type())
  316. def wall_rect(self, x, y, w, h):
  317. self.horz_wall(x, y, w)
  318. self.horz_wall(x, y+h-1, w)
  319. self.vert_wall(x, y, h)
  320. self.vert_wall(x+w-1, y, h)
  321. def rotate_left(self):
  322. """
  323. Rotate the grid to the left (counter-clockwise)
  324. """
  325. grid = Grid(self.height, self.width)
  326. for i in range(self.width):
  327. for j in range(self.height):
  328. v = self.get(i, j)
  329. grid.set(j, grid.height - 1 - i, v)
  330. return grid
  331. def slice(self, topX, topY, width, height):
  332. """
  333. Get a subset of the grid
  334. """
  335. grid = Grid(width, height)
  336. for j in range(0, height):
  337. for i in range(0, width):
  338. x = topX + i
  339. y = topY + j
  340. if x >= 0 and x < self.width and \
  341. y >= 0 and y < self.height:
  342. v = self.get(x, y)
  343. else:
  344. v = Wall()
  345. grid.set(i, j, v)
  346. return grid
  347. @classmethod
  348. def render_tile(
  349. cls,
  350. obj,
  351. agent_dir=None,
  352. highlight=False,
  353. tile_size=TILE_PIXELS,
  354. subdivs=3
  355. ):
  356. """
  357. Render a tile and cache the result
  358. """
  359. # Hash map lookup key for the cache
  360. key = (agent_dir, highlight, tile_size)
  361. key = obj.encode() + key if obj else key
  362. if key in cls.tile_cache:
  363. return cls.tile_cache[key]
  364. img = np.zeros(shape=(tile_size * subdivs,
  365. tile_size * subdivs, 3), dtype=np.uint8)
  366. # Draw the grid lines (top and left edges)
  367. fill_coords(img, point_in_rect(0, 0.031, 0, 1), (100, 100, 100))
  368. fill_coords(img, point_in_rect(0, 1, 0, 0.031), (100, 100, 100))
  369. if obj != None:
  370. obj.render(img)
  371. # Overlay the agent on top
  372. if agent_dir is not None:
  373. tri_fn = point_in_triangle(
  374. (0.12, 0.19),
  375. (0.87, 0.50),
  376. (0.12, 0.81),
  377. )
  378. # Rotate the agent based on its direction
  379. tri_fn = rotate_fn(tri_fn, cx=0.5, cy=0.5,
  380. theta=0.5*math.pi*agent_dir)
  381. fill_coords(img, tri_fn, (255, 0, 0))
  382. # Highlight the cell if needed
  383. if highlight:
  384. highlight_img(img)
  385. # Downsample the image to perform supersampling/anti-aliasing
  386. img = downsample(img, subdivs)
  387. # Cache the rendered tile
  388. cls.tile_cache[key] = img
  389. return img
  390. def render(
  391. self,
  392. tile_size,
  393. agent_pos=None,
  394. agent_dir=None,
  395. highlight_mask=None
  396. ):
  397. """
  398. Render this grid at a given scale
  399. :param r: target renderer object
  400. :param tile_size: tile size in pixels
  401. """
  402. if highlight_mask is None:
  403. highlight_mask = np.zeros(
  404. shape=(self.width, self.height), dtype=bool)
  405. # Compute the total grid size
  406. width_px = self.width * tile_size
  407. height_px = self.height * tile_size
  408. img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8)
  409. # Render the grid
  410. for j in range(0, self.height):
  411. for i in range(0, self.width):
  412. cell = self.get(i, j)
  413. agent_here = np.array_equal(agent_pos, (i, j))
  414. tile_img = Grid.render_tile(
  415. cell,
  416. agent_dir=agent_dir if agent_here else None,
  417. highlight=highlight_mask[i, j],
  418. tile_size=tile_size
  419. )
  420. ymin = j * tile_size
  421. ymax = (j+1) * tile_size
  422. xmin = i * tile_size
  423. xmax = (i+1) * tile_size
  424. img[ymin:ymax, xmin:xmax, :] = tile_img
  425. return img
  426. def encode(self, vis_mask=None):
  427. """
  428. Produce a compact numpy encoding of the grid
  429. """
  430. if vis_mask is None:
  431. vis_mask = np.ones((self.width, self.height), dtype=bool)
  432. array = np.zeros((self.width, self.height, 3), dtype='uint8')
  433. for i in range(self.width):
  434. for j in range(self.height):
  435. if vis_mask[i, j]:
  436. v = self.get(i, j)
  437. if v is None:
  438. array[i, j, 0] = OBJECT_TO_IDX['empty']
  439. array[i, j, 1] = 0
  440. array[i, j, 2] = 0
  441. else:
  442. array[i, j, :] = v.encode()
  443. return array
  444. @staticmethod
  445. def decode(array):
  446. """
  447. Decode an array grid encoding back into a grid
  448. """
  449. width, height, channels = array.shape
  450. assert channels == 3
  451. vis_mask = np.ones(shape=(width, height), dtype=bool)
  452. grid = Grid(width, height)
  453. for i in range(width):
  454. for j in range(height):
  455. type_idx, color_idx, state = array[i, j]
  456. v = WorldObj.decode(type_idx, color_idx, state)
  457. grid.set(i, j, v)
  458. vis_mask[i, j] = (type_idx != OBJECT_TO_IDX['unseen'])
  459. return grid, vis_mask
  460. def process_vis(grid, agent_pos):
  461. mask = np.zeros(shape=(grid.width, grid.height), dtype=bool)
  462. mask[agent_pos[0], agent_pos[1]] = True
  463. for j in reversed(range(0, grid.height)):
  464. for i in range(0, grid.width-1):
  465. if not mask[i, j]:
  466. continue
  467. cell = grid.get(i, j)
  468. if cell and not cell.see_behind():
  469. continue
  470. mask[i+1, j] = True
  471. if j > 0:
  472. mask[i+1, j-1] = True
  473. mask[i, j-1] = True
  474. for i in reversed(range(1, grid.width)):
  475. if not mask[i, j]:
  476. continue
  477. cell = grid.get(i, j)
  478. if cell and not cell.see_behind():
  479. continue
  480. mask[i-1, j] = True
  481. if j > 0:
  482. mask[i-1, j-1] = True
  483. mask[i, j-1] = True
  484. for j in range(0, grid.height):
  485. for i in range(0, grid.width):
  486. if not mask[i, j]:
  487. grid.set(i, j, None)
  488. return mask
  489. class MiniGridEnv(gym.Env):
  490. """
  491. 2D grid world game environment
  492. """
  493. metadata = {
  494. # Deprecated: use 'render_modes' instead
  495. 'render.modes': ['human', 'rgb_array'],
  496. 'video.frames_per_second': 10, # Deprecated: use 'render_fps' instead
  497. 'render_modes': ['human', 'rgb_array'],
  498. 'render_fps': 10
  499. }
  500. # Enumeration of possible actions
  501. class Actions(IntEnum):
  502. # Turn left, turn right, move forward
  503. left = 0
  504. right = 1
  505. forward = 2
  506. # Pick up an object
  507. pickup = 3
  508. # Drop an object
  509. drop = 4
  510. # Toggle/activate an object
  511. toggle = 5
  512. # Done completing task
  513. done = 6
  514. def __init__(
  515. self,
  516. grid_size=None,
  517. width=None,
  518. height=None,
  519. max_steps=100,
  520. see_through_walls=False,
  521. agent_view_size=7,
  522. render_mode=None
  523. ):
  524. # Can't set both grid_size and width/height
  525. if grid_size:
  526. assert width == None and height == None
  527. width = grid_size
  528. height = grid_size
  529. # Action enumeration for this environment
  530. self.actions = MiniGridEnv.Actions
  531. # Actions are discrete integer values
  532. self.action_space = spaces.Discrete(len(self.actions))
  533. # Number of cells (width and height) in the agent view
  534. assert agent_view_size % 2 == 1
  535. assert agent_view_size >= 3
  536. self.agent_view_size = agent_view_size
  537. # Observations are dictionaries containing an
  538. # encoding of the grid and a textual 'mission' string
  539. self.observation_space = spaces.Box(
  540. low=0,
  541. high=255,
  542. shape=(self.agent_view_size, self.agent_view_size, 3),
  543. dtype='uint8'
  544. )
  545. self.observation_space = spaces.Dict({
  546. 'image': self.observation_space,
  547. 'direction': spaces.Discrete(4),
  548. 'mission': spaces.Text(max_length=200,
  549. charset=string.ascii_letters + string.digits + ' .,!-'
  550. )
  551. })
  552. # render mode
  553. self.render_mode = render_mode
  554. # Range of possible rewards
  555. self.reward_range = (0, 1)
  556. # Window to use for human rendering mode
  557. self.window = None
  558. # Environment configuration
  559. self.width = width
  560. self.height = height
  561. self.max_steps = max_steps
  562. self.see_through_walls = see_through_walls
  563. # Current position and direction of the agent
  564. self.agent_pos = None
  565. self.agent_dir = None
  566. # Initialize the state
  567. self.reset()
  568. def reset(self, *, seed=None, return_info=False, options=None):
  569. super().reset(seed=seed)
  570. # Current position and direction of the agent
  571. self.agent_pos = None
  572. self.agent_dir = None
  573. # Generate a new random grid at the start of each episode
  574. self._gen_grid(self.width, self.height)
  575. # These fields should be defined by _gen_grid
  576. assert self.agent_pos is not None
  577. assert self.agent_dir is not None
  578. # Check that the agent doesn't overlap with an object
  579. start_cell = self.grid.get(*self.agent_pos)
  580. assert start_cell is None or start_cell.can_overlap()
  581. # Item picked up, being carried, initially nothing
  582. self.carrying = None
  583. # Step count since episode start
  584. self.step_count = 0
  585. # Return first observation
  586. obs = self.gen_obs()
  587. return obs
  588. def hash(self, size=16):
  589. """Compute a hash that uniquely identifies the current state of the environment.
  590. :param size: Size of the hashing
  591. """
  592. sample_hash = hashlib.sha256()
  593. to_encode = [self.grid.encode().tolist(), self.agent_pos,
  594. self.agent_dir]
  595. for item in to_encode:
  596. sample_hash.update(str(item).encode('utf8'))
  597. return sample_hash.hexdigest()[:size]
  598. @property
  599. def steps_remaining(self):
  600. return self.max_steps - self.step_count
  601. def __str__(self):
  602. """
  603. Produce a pretty string of the environment's grid along with the agent.
  604. A grid cell is represented by 2-character string, the first one for
  605. the object and the second one for the color.
  606. """
  607. # Map of object types to short string
  608. OBJECT_TO_STR = {
  609. 'wall': 'W',
  610. 'floor': 'F',
  611. 'door': 'D',
  612. 'key': 'K',
  613. 'ball': 'A',
  614. 'box': 'B',
  615. 'goal': 'G',
  616. 'lava': 'V',
  617. }
  618. # Short string for opened door
  619. OPENDED_DOOR_IDS = '_'
  620. # Map agent's direction to short string
  621. AGENT_DIR_TO_STR = {
  622. 0: '>',
  623. 1: 'V',
  624. 2: '<',
  625. 3: '^'
  626. }
  627. str = ''
  628. for j in range(self.grid.height):
  629. for i in range(self.grid.width):
  630. if i == self.agent_pos[0] and j == self.agent_pos[1]:
  631. str += 2 * AGENT_DIR_TO_STR[self.agent_dir]
  632. continue
  633. c = self.grid.get(i, j)
  634. if c == None:
  635. str += ' '
  636. continue
  637. if c.type == 'door':
  638. if c.is_open:
  639. str += '__'
  640. elif c.is_locked:
  641. str += 'L' + c.color[0].upper()
  642. else:
  643. str += 'D' + c.color[0].upper()
  644. continue
  645. str += OBJECT_TO_STR[c.type] + c.color[0].upper()
  646. if j < self.grid.height - 1:
  647. str += '\n'
  648. return str
  649. def _gen_grid(self, width, height):
  650. assert False, "_gen_grid needs to be implemented by each environment"
  651. def _reward(self):
  652. """
  653. Compute the reward to be given upon success
  654. """
  655. return 1 - 0.9 * (self.step_count / self.max_steps)
  656. def _rand_int(self, low, high):
  657. """
  658. Generate random integer in [low,high[
  659. """
  660. return self.np_random.integers(low, high)
  661. def _rand_float(self, low, high):
  662. """
  663. Generate random float in [low,high[
  664. """
  665. return self.np_random.uniform(low, high)
  666. def _rand_bool(self):
  667. """
  668. Generate random boolean value
  669. """
  670. return (self.np_random.integers(0, 2) == 0)
  671. def _rand_elem(self, iterable):
  672. """
  673. Pick a random element in a list
  674. """
  675. lst = list(iterable)
  676. idx = self._rand_int(0, len(lst))
  677. return lst[idx]
  678. def _rand_subset(self, iterable, num_elems):
  679. """
  680. Sample a random subset of distinct elements of a list
  681. """
  682. lst = list(iterable)
  683. assert num_elems <= len(lst)
  684. out = []
  685. while len(out) < num_elems:
  686. elem = self._rand_elem(lst)
  687. lst.remove(elem)
  688. out.append(elem)
  689. return out
  690. def _rand_color(self):
  691. """
  692. Generate a random color name (string)
  693. """
  694. return self._rand_elem(COLOR_NAMES)
  695. def _rand_pos(self, xLow, xHigh, yLow, yHigh):
  696. """
  697. Generate a random (x,y) position tuple
  698. """
  699. return (
  700. self.np_random.integers(xLow, xHigh),
  701. self.np_random.integers(yLow, yHigh)
  702. )
  703. def place_obj(self,
  704. obj,
  705. top=None,
  706. size=None,
  707. reject_fn=None,
  708. max_tries=math.inf
  709. ):
  710. """
  711. Place an object at an empty position in the grid
  712. :param top: top-left position of the rectangle where to place
  713. :param size: size of the rectangle where to place
  714. :param reject_fn: function to filter out potential positions
  715. """
  716. if top is None:
  717. top = (0, 0)
  718. else:
  719. top = (max(top[0], 0), max(top[1], 0))
  720. if size is None:
  721. size = (self.grid.width, self.grid.height)
  722. num_tries = 0
  723. while True:
  724. # This is to handle with rare cases where rejection sampling
  725. # gets stuck in an infinite loop
  726. if num_tries > max_tries:
  727. raise RecursionError('rejection sampling failed in place_obj')
  728. num_tries += 1
  729. pos = np.array((
  730. self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
  731. self._rand_int(top[1], min(top[1] + size[1], self.grid.height))
  732. ))
  733. # Don't place the object on top of another object
  734. if self.grid.get(*pos) != None:
  735. continue
  736. # Don't place the object where the agent is
  737. if np.array_equal(pos, self.agent_pos):
  738. continue
  739. # Check if there is a filtering criterion
  740. if reject_fn and reject_fn(self, pos):
  741. continue
  742. break
  743. self.grid.set(*pos, obj)
  744. if obj is not None:
  745. obj.init_pos = pos
  746. obj.cur_pos = pos
  747. return pos
  748. def put_obj(self, obj, i, j):
  749. """
  750. Put an object at a specific position in the grid
  751. """
  752. self.grid.set(i, j, obj)
  753. obj.init_pos = (i, j)
  754. obj.cur_pos = (i, j)
  755. def place_agent(
  756. self,
  757. top=None,
  758. size=None,
  759. rand_dir=True,
  760. max_tries=math.inf
  761. ):
  762. """
  763. Set the agent's starting point at an empty position in the grid
  764. """
  765. self.agent_pos = None
  766. pos = self.place_obj(None, top, size, max_tries=max_tries)
  767. self.agent_pos = pos
  768. if rand_dir:
  769. self.agent_dir = self._rand_int(0, 4)
  770. return pos
  771. @property
  772. def dir_vec(self):
  773. """
  774. Get the direction vector for the agent, pointing in the direction
  775. of forward movement.
  776. """
  777. assert self.agent_dir >= 0 and self.agent_dir < 4
  778. return DIR_TO_VEC[self.agent_dir]
  779. @property
  780. def right_vec(self):
  781. """
  782. Get the vector pointing to the right of the agent.
  783. """
  784. dx, dy = self.dir_vec
  785. return np.array((-dy, dx))
  786. @property
  787. def front_pos(self):
  788. """
  789. Get the position of the cell that is right in front of the agent
  790. """
  791. return self.agent_pos + self.dir_vec
  792. def get_view_coords(self, i, j):
  793. """
  794. Translate and rotate absolute grid coordinates (i, j) into the
  795. agent's partially observable view (sub-grid). Note that the resulting
  796. coordinates may be negative or outside of the agent's view size.
  797. """
  798. ax, ay = self.agent_pos
  799. dx, dy = self.dir_vec
  800. rx, ry = self.right_vec
  801. # Compute the absolute coordinates of the top-left view corner
  802. sz = self.agent_view_size
  803. hs = self.agent_view_size // 2
  804. tx = ax + (dx * (sz-1)) - (rx * hs)
  805. ty = ay + (dy * (sz-1)) - (ry * hs)
  806. lx = i - tx
  807. ly = j - ty
  808. # Project the coordinates of the object relative to the top-left
  809. # corner onto the agent's own coordinate system
  810. vx = (rx*lx + ry*ly)
  811. vy = -(dx*lx + dy*ly)
  812. return vx, vy
  813. def get_view_exts(self, agent_view_size=None):
  814. """
  815. Get the extents of the square set of tiles visible to the agent
  816. Note: the bottom extent indices are not included in the set
  817. if agent_view_size is None, use self.agent_view_size
  818. """
  819. agent_view_size = agent_view_size or self.agent_view_size
  820. # Facing right
  821. if self.agent_dir == 0:
  822. topX = self.agent_pos[0]
  823. topY = self.agent_pos[1] - agent_view_size // 2
  824. # Facing down
  825. elif self.agent_dir == 1:
  826. topX = self.agent_pos[0] - agent_view_size // 2
  827. topY = self.agent_pos[1]
  828. # Facing left
  829. elif self.agent_dir == 2:
  830. topX = self.agent_pos[0] - agent_view_size + 1
  831. topY = self.agent_pos[1] - agent_view_size // 2
  832. # Facing up
  833. elif self.agent_dir == 3:
  834. topX = self.agent_pos[0] - agent_view_size // 2
  835. topY = self.agent_pos[1] - agent_view_size + 1
  836. else:
  837. assert False, "invalid agent direction"
  838. botX = topX + agent_view_size
  839. botY = topY + agent_view_size
  840. return (topX, topY, botX, botY)
  841. def relative_coords(self, x, y):
  842. """
  843. Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
  844. """
  845. vx, vy = self.get_view_coords(x, y)
  846. if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
  847. return None
  848. return vx, vy
  849. def in_view(self, x, y):
  850. """
  851. check if a grid position is visible to the agent
  852. """
  853. return self.relative_coords(x, y) is not None
  854. def agent_sees(self, x, y):
  855. """
  856. Check if a non-empty grid position is visible to the agent
  857. """
  858. coordinates = self.relative_coords(x, y)
  859. if coordinates is None:
  860. return False
  861. vx, vy = coordinates
  862. obs = self.gen_obs()
  863. obs_grid, _ = Grid.decode(obs['image'])
  864. obs_cell = obs_grid.get(vx, vy)
  865. world_cell = self.grid.get(x, y)
  866. return obs_cell is not None and obs_cell.type == world_cell.type
  867. def step(self, action):
  868. self.step_count += 1
  869. reward = 0
  870. done = False
  871. # Get the position in front of the agent
  872. fwd_pos = self.front_pos
  873. # Get the contents of the cell in front of the agent
  874. fwd_cell = self.grid.get(*fwd_pos)
  875. # Rotate left
  876. if action == self.actions.left:
  877. self.agent_dir -= 1
  878. if self.agent_dir < 0:
  879. self.agent_dir += 4
  880. # Rotate right
  881. elif action == self.actions.right:
  882. self.agent_dir = (self.agent_dir + 1) % 4
  883. # Move forward
  884. elif action == self.actions.forward:
  885. if fwd_cell == None or fwd_cell.can_overlap():
  886. self.agent_pos = fwd_pos
  887. if fwd_cell != None and fwd_cell.type == 'goal':
  888. done = True
  889. reward = self._reward()
  890. if fwd_cell != None and fwd_cell.type == 'lava':
  891. done = True
  892. # Pick up an object
  893. elif action == self.actions.pickup:
  894. if fwd_cell and fwd_cell.can_pickup():
  895. if self.carrying is None:
  896. self.carrying = fwd_cell
  897. self.carrying.cur_pos = np.array([-1, -1])
  898. self.grid.set(*fwd_pos, None)
  899. # Drop an object
  900. elif action == self.actions.drop:
  901. if not fwd_cell and self.carrying:
  902. self.grid.set(*fwd_pos, self.carrying)
  903. self.carrying.cur_pos = fwd_pos
  904. self.carrying = None
  905. # Toggle/activate an object
  906. elif action == self.actions.toggle:
  907. if fwd_cell:
  908. fwd_cell.toggle(self, fwd_pos)
  909. # Done action (not used by default)
  910. elif action == self.actions.done:
  911. pass
  912. else:
  913. assert False, "unknown action"
  914. if self.step_count >= self.max_steps:
  915. done = True
  916. obs = self.gen_obs()
  917. return obs, reward, done, {}
  918. def gen_obs_grid(self, agent_view_size=None):
  919. """
  920. Generate the sub-grid observed by the agent.
  921. This method also outputs a visibility mask telling us which grid
  922. cells the agent can actually see.
  923. if agent_view_size is None, self.agent_view_size is used
  924. """
  925. topX, topY, botX, botY = self.get_view_exts(agent_view_size)
  926. agent_view_size = agent_view_size or self.agent_view_size
  927. grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
  928. for i in range(self.agent_dir + 1):
  929. grid = grid.rotate_left()
  930. # Process occluders and visibility
  931. # Note that this incurs some performance cost
  932. if not self.see_through_walls:
  933. vis_mask = grid.process_vis(agent_pos=(
  934. agent_view_size // 2, agent_view_size - 1))
  935. else:
  936. vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
  937. # Make it so the agent sees what it's carrying
  938. # We do this by placing the carried object at the agent's position
  939. # in the agent's partially observable view
  940. agent_pos = grid.width // 2, grid.height - 1
  941. if self.carrying:
  942. grid.set(*agent_pos, self.carrying)
  943. else:
  944. grid.set(*agent_pos, None)
  945. return grid, vis_mask
  946. def gen_obs(self):
  947. """
  948. Generate the agent's view (partially observable, low-resolution encoding)
  949. """
  950. grid, vis_mask = self.gen_obs_grid()
  951. # Encode the partially observable view into a numpy array
  952. image = grid.encode(vis_mask)
  953. assert hasattr(
  954. self, 'mission'), "environments must define a textual mission string"
  955. # Observations are dictionaries containing:
  956. # - an image (partially observable view of the environment)
  957. # - the agent's direction/orientation (acting as a compass)
  958. # - a textual mission string (instructions for the agent)
  959. obs = {
  960. 'image': image,
  961. 'direction': self.agent_dir,
  962. 'mission': self.mission
  963. }
  964. return obs
  965. def get_obs_render(self, obs, tile_size=TILE_PIXELS//2):
  966. """
  967. Render an agent observation for visualization
  968. """
  969. grid, vis_mask = Grid.decode(obs)
  970. # Render the whole grid
  971. img = grid.render(
  972. tile_size,
  973. agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
  974. agent_dir=3,
  975. highlight_mask=vis_mask
  976. )
  977. return img
  978. def render(self, mode='human', close=False, highlight=True, tile_size=TILE_PIXELS):
  979. """
  980. Render the whole-grid human view
  981. """
  982. if self.render_mode is not None:
  983. mode = self.render_mode
  984. if close:
  985. if self.window:
  986. self.window.close()
  987. return
  988. if mode == 'human' and not self.window:
  989. import gym_minigrid.window
  990. self.window = gym_minigrid.window.Window('gym_minigrid')
  991. self.window.show(block=False)
  992. # Compute which cells are visible to the agent
  993. _, vis_mask = self.gen_obs_grid()
  994. # Compute the world coordinates of the bottom-left corner
  995. # of the agent's view area
  996. f_vec = self.dir_vec
  997. r_vec = self.right_vec
  998. top_left = self.agent_pos + f_vec * \
  999. (self.agent_view_size-1) - r_vec * (self.agent_view_size // 2)
  1000. # Mask of which cells to highlight
  1001. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  1002. # For each cell in the visibility mask
  1003. for vis_j in range(0, self.agent_view_size):
  1004. for vis_i in range(0, self.agent_view_size):
  1005. # If this cell is not visible, don't highlight it
  1006. if not vis_mask[vis_i, vis_j]:
  1007. continue
  1008. # Compute the world coordinates of this cell
  1009. abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
  1010. if abs_i < 0 or abs_i >= self.width:
  1011. continue
  1012. if abs_j < 0 or abs_j >= self.height:
  1013. continue
  1014. # Mark this cell to be highlighted
  1015. highlight_mask[abs_i, abs_j] = True
  1016. # Render the whole grid
  1017. img = self.grid.render(
  1018. tile_size,
  1019. self.agent_pos,
  1020. self.agent_dir,
  1021. highlight_mask=highlight_mask if highlight else None
  1022. )
  1023. if mode == 'human':
  1024. self.window.set_caption(self.mission)
  1025. self.window.show_img(img)
  1026. return img
  1027. def close(self):
  1028. if self.window:
  1029. self.window.close()
  1030. return