123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- from gym_minigrid.minigrid import *
- from gym_minigrid.register import register
- class EmptyEnv(MiniGridEnv):
- """
- Empty grid environment, no obstacles, sparse reward
- """
- def __init__(
- self,
- size=8,
- agent_start_pos=(1,1),
- agent_start_dir=0,
- **kwargs
- ):
- self.agent_start_pos = agent_start_pos
- self.agent_start_dir = agent_start_dir
- super().__init__(
- grid_size=size,
- max_steps=4*size*size,
- # Set this to True for maximum speed
- see_through_walls=True,
- **kwargs
- )
- def _gen_grid(self, width, height):
- # Create an empty grid
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.wall_rect(0, 0, width, height)
- # Place a goal square in the bottom-right corner
- self.put_obj(Goal(), width - 2, height - 2)
- # Place the agent
- if self.agent_start_pos is not None:
- self.agent_pos = self.agent_start_pos
- self.agent_dir = self.agent_start_dir
- else:
- self.place_agent()
- self.mission = "get to the green goal square"
- class EmptyEnv5x5(EmptyEnv):
- def __init__(self, **kwargs):
- super().__init__(size=5, **kwargs)
- class EmptyRandomEnv5x5(EmptyEnv):
- def __init__(self, **kwargs):
- super().__init__(size=5, agent_start_pos=None, **kwargs)
- class EmptyEnv6x6(EmptyEnv):
- def __init__(self, **kwargs):
- super().__init__(size=6, **kwargs)
- class EmptyRandomEnv6x6(EmptyEnv):
- def __init__(self, **kwargs):
- super().__init__(size=6, agent_start_pos=None, **kwargs)
- class EmptyEnv16x16(EmptyEnv):
- def __init__(self, **kwargs):
- super().__init__(size=16, **kwargs)
- class EmptyEnvWithExtraObs(EmptyEnv5x5):
- """
- Custom environment with an extra observation
- """
- def __init__(self, **kwargs) -> None:
- super().__init__(**kwargs)
- self.observation_space['size'] = spaces.Box(
- low=0,
- high=1000, #gym does not like np.iinfo(np.uint).max,
- shape=(2,),
- dtype=np.uint
- )
- def reset(self, **kwargs):
- obs = super().reset(**kwargs)
- obs['size'] = np.array([self.width, self.height], dtype=np.uint)
- return obs
- def step(self, action):
- obs, reward, done, info = super().step(action)
- obs['size'] = np.array([self.width, self.height], dtype=np.uint)
- return obs, reward, done, info
- register(
- id='MiniGrid-Empty-5x5-v0',
- entry_point='gym_minigrid.envs:EmptyEnv5x5'
- )
- register(
- id='MiniGrid-Empty-Random-5x5-v0',
- entry_point='gym_minigrid.envs:EmptyRandomEnv5x5'
- )
- register(
- id='MiniGrid-Empty-6x6-v0',
- entry_point='gym_minigrid.envs:EmptyEnv6x6'
- )
- register(
- id='MiniGrid-Empty-Random-6x6-v0',
- entry_point='gym_minigrid.envs:EmptyRandomEnv6x6'
- )
- register(
- id='MiniGrid-Empty-8x8-v0',
- entry_point='gym_minigrid.envs:EmptyEnv'
- )
- register(
- id='MiniGrid-Empty-16x16-v0',
- entry_point='gym_minigrid.envs:EmptyEnv16x16'
- )
- register(
- id='MiniGrid-EmptyWithExtraObs-v0',
- entry_point='gym_minigrid.envs:EmptyEnvWithExtraObs',
- )
|