empty.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. from gym_minigrid.minigrid import *
  2. from gym_minigrid.register import register
  3. class EmptyEnv(MiniGridEnv):
  4. """
  5. Empty grid environment, no obstacles, sparse reward
  6. """
  7. def __init__(
  8. self,
  9. size=8,
  10. agent_start_pos=(1,1),
  11. agent_start_dir=0,
  12. **kwargs
  13. ):
  14. self.agent_start_pos = agent_start_pos
  15. self.agent_start_dir = agent_start_dir
  16. super().__init__(
  17. grid_size=size,
  18. max_steps=4*size*size,
  19. # Set this to True for maximum speed
  20. see_through_walls=True,
  21. **kwargs
  22. )
  23. def _gen_grid(self, width, height):
  24. # Create an empty grid
  25. self.grid = Grid(width, height)
  26. # Generate the surrounding walls
  27. self.grid.wall_rect(0, 0, width, height)
  28. # Place a goal square in the bottom-right corner
  29. self.put_obj(Goal(), width - 2, height - 2)
  30. # Place the agent
  31. if self.agent_start_pos is not None:
  32. self.agent_pos = self.agent_start_pos
  33. self.agent_dir = self.agent_start_dir
  34. else:
  35. self.place_agent()
  36. self.mission = "get to the green goal square"
  37. class EmptyEnv5x5(EmptyEnv):
  38. def __init__(self, **kwargs):
  39. super().__init__(size=5, **kwargs)
  40. class EmptyRandomEnv5x5(EmptyEnv):
  41. def __init__(self, **kwargs):
  42. super().__init__(size=5, agent_start_pos=None, **kwargs)
  43. class EmptyEnv6x6(EmptyEnv):
  44. def __init__(self, **kwargs):
  45. super().__init__(size=6, **kwargs)
  46. class EmptyRandomEnv6x6(EmptyEnv):
  47. def __init__(self, **kwargs):
  48. super().__init__(size=6, agent_start_pos=None, **kwargs)
  49. class EmptyEnv16x16(EmptyEnv):
  50. def __init__(self, **kwargs):
  51. super().__init__(size=16, **kwargs)
  52. class EmptyEnvWithExtraObs(EmptyEnv5x5):
  53. """
  54. Custom environment with an extra observation
  55. """
  56. def __init__(self, **kwargs) -> None:
  57. super().__init__(**kwargs)
  58. self.observation_space['size'] = spaces.Box(
  59. low=0,
  60. high=1000, #gym does not like np.iinfo(np.uint).max,
  61. shape=(2,),
  62. dtype=np.uint
  63. )
  64. def reset(self, **kwargs):
  65. obs = super().reset(**kwargs)
  66. obs['size'] = np.array([self.width, self.height], dtype=np.uint)
  67. return obs
  68. def step(self, action):
  69. obs, reward, done, info = super().step(action)
  70. obs['size'] = np.array([self.width, self.height], dtype=np.uint)
  71. return obs, reward, done, info
  72. register(
  73. id='MiniGrid-Empty-5x5-v0',
  74. entry_point='gym_minigrid.envs:EmptyEnv5x5'
  75. )
  76. register(
  77. id='MiniGrid-Empty-Random-5x5-v0',
  78. entry_point='gym_minigrid.envs:EmptyRandomEnv5x5'
  79. )
  80. register(
  81. id='MiniGrid-Empty-6x6-v0',
  82. entry_point='gym_minigrid.envs:EmptyEnv6x6'
  83. )
  84. register(
  85. id='MiniGrid-Empty-Random-6x6-v0',
  86. entry_point='gym_minigrid.envs:EmptyRandomEnv6x6'
  87. )
  88. register(
  89. id='MiniGrid-Empty-8x8-v0',
  90. entry_point='gym_minigrid.envs:EmptyEnv'
  91. )
  92. register(
  93. id='MiniGrid-Empty-16x16-v0',
  94. entry_point='gym_minigrid.envs:EmptyEnv16x16'
  95. )
  96. register(
  97. id='MiniGrid-EmptyWithExtraObs-v0',
  98. entry_point='gym_minigrid.envs:EmptyEnvWithExtraObs',
  99. )