minigrid_env.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736
  1. from __future__ import annotations
  2. import hashlib
  3. import math
  4. from abc import abstractmethod
  5. from typing import Iterable, TypeVar
  6. import gymnasium as gym
  7. import numpy as np
  8. from gymnasium import spaces
  9. from minigrid.core.actions import Actions
  10. from minigrid.core.constants import COLOR_NAMES, DIR_TO_VEC, TILE_PIXELS
  11. from minigrid.core.grid import Grid
  12. from minigrid.core.mission import MissionSpace
  13. from minigrid.core.world_object import Point, WorldObj
  14. from minigrid.utils.window import Window
  15. T = TypeVar("T")
  16. class MiniGridEnv(gym.Env):
  17. """
  18. 2D grid world game environment
  19. """
  20. metadata = {
  21. "render_modes": ["human", "rgb_array"],
  22. "render_fps": 10,
  23. }
  24. def __init__(
  25. self,
  26. mission_space: MissionSpace,
  27. grid_size: int | None = None,
  28. width: int | None = None,
  29. height: int | None = None,
  30. max_steps: int = 100,
  31. see_through_walls: bool = False,
  32. agent_view_size: int = 7,
  33. render_mode: str | None = None,
  34. highlight: bool = True,
  35. tile_size: int = TILE_PIXELS,
  36. agent_pov: bool = False,
  37. ):
  38. # Initialize mission
  39. self.mission = mission_space.sample()
  40. # Can't set both grid_size and width/height
  41. if grid_size:
  42. assert width is None and height is None
  43. width = grid_size
  44. height = grid_size
  45. assert width is not None and height is not None
  46. # Action enumeration for this environment
  47. self.actions = Actions
  48. # Actions are discrete integer values
  49. self.action_space = spaces.Discrete(len(self.actions))
  50. # Number of cells (width and height) in the agent view
  51. assert agent_view_size % 2 == 1
  52. assert agent_view_size >= 3
  53. self.agent_view_size = agent_view_size
  54. # Observations are dictionaries containing an
  55. # encoding of the grid and a textual 'mission' string
  56. image_observation_space = spaces.Box(
  57. low=0,
  58. high=255,
  59. shape=(self.agent_view_size, self.agent_view_size, 3),
  60. dtype="uint8",
  61. )
  62. self.observation_space = spaces.Dict(
  63. {
  64. "image": image_observation_space,
  65. "direction": spaces.Discrete(4),
  66. "mission": mission_space,
  67. }
  68. )
  69. # Range of possible rewards
  70. self.reward_range = (0, 1)
  71. self.window: Window = None
  72. # Environment configuration
  73. self.width = width
  74. self.height = height
  75. assert isinstance(
  76. max_steps, int
  77. ), f"The argument max_steps must be an integer, got: {type(max_steps)}"
  78. self.max_steps = max_steps
  79. self.see_through_walls = see_through_walls
  80. # Current position and direction of the agent
  81. self.agent_pos: np.ndarray | tuple[int, int] = None
  82. self.agent_dir: int = None
  83. # Current grid and mission and carrying
  84. self.grid = Grid(width, height)
  85. self.carrying = None
  86. # Rendering attributes
  87. self.render_mode = render_mode
  88. self.highlight = highlight
  89. self.tile_size = tile_size
  90. self.agent_pov = agent_pov
  91. def reset(self, *, seed=None, options=None):
  92. super().reset(seed=seed)
  93. # Reinitialize episode-specific variables
  94. self.agent_pos = (-1, -1)
  95. self.agent_dir = -1
  96. # Generate a new random grid at the start of each episode
  97. self._gen_grid(self.width, self.height)
  98. # These fields should be defined by _gen_grid
  99. assert (
  100. self.agent_pos >= (0, 0)
  101. if isinstance(self.agent_pos, tuple)
  102. else all(self.agent_pos >= 0) and self.agent_dir >= 0
  103. )
  104. # Check that the agent doesn't overlap with an object
  105. start_cell = self.grid.get(*self.agent_pos)
  106. assert start_cell is None or start_cell.can_overlap()
  107. # Item picked up, being carried, initially nothing
  108. self.carrying = None
  109. # Step count since episode start
  110. self.step_count = 0
  111. if self.render_mode == "human":
  112. self.render()
  113. # Return first observation
  114. obs = self.gen_obs()
  115. return obs, {}
  116. def hash(self, size=16):
  117. """Compute a hash that uniquely identifies the current state of the environment.
  118. :param size: Size of the hashing
  119. """
  120. sample_hash = hashlib.sha256()
  121. to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir]
  122. for item in to_encode:
  123. sample_hash.update(str(item).encode("utf8"))
  124. return sample_hash.hexdigest()[:size]
  125. @property
  126. def steps_remaining(self):
  127. return self.max_steps - self.step_count
  128. def __str__(self):
  129. """
  130. Produce a pretty string of the environment's grid along with the agent.
  131. A grid cell is represented by 2-character string, the first one for
  132. the object and the second one for the color.
  133. """
  134. # Map of object types to short string
  135. OBJECT_TO_STR = {
  136. "wall": "W",
  137. "floor": "F",
  138. "door": "D",
  139. "key": "K",
  140. "ball": "A",
  141. "box": "B",
  142. "goal": "G",
  143. "lava": "V",
  144. }
  145. # Map agent's direction to short string
  146. AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
  147. str = ""
  148. for j in range(self.grid.height):
  149. for i in range(self.grid.width):
  150. if i == self.agent_pos[0] and j == self.agent_pos[1]:
  151. str += 2 * AGENT_DIR_TO_STR[self.agent_dir]
  152. continue
  153. c = self.grid.get(i, j)
  154. if c is None:
  155. str += " "
  156. continue
  157. if c.type == "door":
  158. if c.is_open:
  159. str += "__"
  160. elif c.is_locked:
  161. str += "L" + c.color[0].upper()
  162. else:
  163. str += "D" + c.color[0].upper()
  164. continue
  165. str += OBJECT_TO_STR[c.type] + c.color[0].upper()
  166. if j < self.grid.height - 1:
  167. str += "\n"
  168. return str
  169. @abstractmethod
  170. def _gen_grid(self, width, height):
  171. pass
  172. def _reward(self) -> float:
  173. """
  174. Compute the reward to be given upon success
  175. """
  176. return 1 - 0.9 * (self.step_count / self.max_steps)
  177. def _rand_int(self, low: int, high: int) -> int:
  178. """
  179. Generate random integer in [low,high[
  180. """
  181. return self.np_random.integers(low, high)
  182. def _rand_float(self, low: float, high: float) -> float:
  183. """
  184. Generate random float in [low,high[
  185. """
  186. return self.np_random.uniform(low, high)
  187. def _rand_bool(self) -> bool:
  188. """
  189. Generate random boolean value
  190. """
  191. return self.np_random.integers(0, 2) == 0
  192. def _rand_elem(self, iterable: Iterable[T]) -> T:
  193. """
  194. Pick a random element in a list
  195. """
  196. lst = list(iterable)
  197. idx = self._rand_int(0, len(lst))
  198. return lst[idx]
  199. def _rand_subset(self, iterable: Iterable[T], num_elems: int) -> list[T]:
  200. """
  201. Sample a random subset of distinct elements of a list
  202. """
  203. lst = list(iterable)
  204. assert num_elems <= len(lst)
  205. out: list[T] = []
  206. while len(out) < num_elems:
  207. elem = self._rand_elem(lst)
  208. lst.remove(elem)
  209. out.append(elem)
  210. return out
  211. def _rand_color(self) -> str:
  212. """
  213. Generate a random color name (string)
  214. """
  215. return self._rand_elem(COLOR_NAMES)
  216. def _rand_pos(
  217. self, x_low: int, x_high: int, y_low: int, y_high: int
  218. ) -> tuple[int, int]:
  219. """
  220. Generate a random (x,y) position tuple
  221. """
  222. return (
  223. self.np_random.integers(x_low, x_high),
  224. self.np_random.integers(y_low, y_high),
  225. )
  226. def place_obj(
  227. self,
  228. obj: WorldObj | None,
  229. top: Point = None,
  230. size: tuple[int, int] = None,
  231. reject_fn=None,
  232. max_tries=math.inf,
  233. ):
  234. """
  235. Place an object at an empty position in the grid
  236. :param top: top-left position of the rectangle where to place
  237. :param size: size of the rectangle where to place
  238. :param reject_fn: function to filter out potential positions
  239. """
  240. if top is None:
  241. top = (0, 0)
  242. else:
  243. top = (max(top[0], 0), max(top[1], 0))
  244. if size is None:
  245. size = (self.grid.width, self.grid.height)
  246. num_tries = 0
  247. while True:
  248. # This is to handle with rare cases where rejection sampling
  249. # gets stuck in an infinite loop
  250. if num_tries > max_tries:
  251. raise RecursionError("rejection sampling failed in place_obj")
  252. num_tries += 1
  253. pos = (
  254. self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
  255. self._rand_int(top[1], min(top[1] + size[1], self.grid.height)),
  256. )
  257. # Don't place the object on top of another object
  258. if self.grid.get(*pos) is not None:
  259. continue
  260. # Don't place the object where the agent is
  261. if np.array_equal(pos, self.agent_pos):
  262. continue
  263. # Check if there is a filtering criterion
  264. if reject_fn and reject_fn(self, pos):
  265. continue
  266. break
  267. self.grid.set(pos[0], pos[1], obj)
  268. if obj is not None:
  269. obj.init_pos = pos
  270. obj.cur_pos = pos
  271. return pos
  272. def put_obj(self, obj: WorldObj, i: int, j: int):
  273. """
  274. Put an object at a specific position in the grid
  275. """
  276. self.grid.set(i, j, obj)
  277. obj.init_pos = (i, j)
  278. obj.cur_pos = (i, j)
  279. def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf):
  280. """
  281. Set the agent's starting point at an empty position in the grid
  282. """
  283. self.agent_pos = (-1, -1)
  284. pos = self.place_obj(None, top, size, max_tries=max_tries)
  285. self.agent_pos = pos
  286. if rand_dir:
  287. self.agent_dir = self._rand_int(0, 4)
  288. return pos
  289. @property
  290. def dir_vec(self):
  291. """
  292. Get the direction vector for the agent, pointing in the direction
  293. of forward movement.
  294. """
  295. assert (
  296. self.agent_dir >= 0 and self.agent_dir < 4
  297. ), f"Invalid agent_dir: {self.agent_dir} is not within range(0, 4)"
  298. return DIR_TO_VEC[self.agent_dir]
  299. @property
  300. def right_vec(self):
  301. """
  302. Get the vector pointing to the right of the agent.
  303. """
  304. dx, dy = self.dir_vec
  305. return np.array((-dy, dx))
  306. @property
  307. def front_pos(self):
  308. """
  309. Get the position of the cell that is right in front of the agent
  310. """
  311. return self.agent_pos + self.dir_vec
  312. def get_view_coords(self, i, j):
  313. """
  314. Translate and rotate absolute grid coordinates (i, j) into the
  315. agent's partially observable view (sub-grid). Note that the resulting
  316. coordinates may be negative or outside of the agent's view size.
  317. """
  318. ax, ay = self.agent_pos
  319. dx, dy = self.dir_vec
  320. rx, ry = self.right_vec
  321. # Compute the absolute coordinates of the top-left view corner
  322. sz = self.agent_view_size
  323. hs = self.agent_view_size // 2
  324. tx = ax + (dx * (sz - 1)) - (rx * hs)
  325. ty = ay + (dy * (sz - 1)) - (ry * hs)
  326. lx = i - tx
  327. ly = j - ty
  328. # Project the coordinates of the object relative to the top-left
  329. # corner onto the agent's own coordinate system
  330. vx = rx * lx + ry * ly
  331. vy = -(dx * lx + dy * ly)
  332. return vx, vy
  333. def get_view_exts(self, agent_view_size=None):
  334. """
  335. Get the extents of the square set of tiles visible to the agent
  336. Note: the bottom extent indices are not included in the set
  337. if agent_view_size is None, use self.agent_view_size
  338. """
  339. agent_view_size = agent_view_size or self.agent_view_size
  340. # Facing right
  341. if self.agent_dir == 0:
  342. topX = self.agent_pos[0]
  343. topY = self.agent_pos[1] - agent_view_size // 2
  344. # Facing down
  345. elif self.agent_dir == 1:
  346. topX = self.agent_pos[0] - agent_view_size // 2
  347. topY = self.agent_pos[1]
  348. # Facing left
  349. elif self.agent_dir == 2:
  350. topX = self.agent_pos[0] - agent_view_size + 1
  351. topY = self.agent_pos[1] - agent_view_size // 2
  352. # Facing up
  353. elif self.agent_dir == 3:
  354. topX = self.agent_pos[0] - agent_view_size // 2
  355. topY = self.agent_pos[1] - agent_view_size + 1
  356. else:
  357. assert False, "invalid agent direction"
  358. botX = topX + agent_view_size
  359. botY = topY + agent_view_size
  360. return (topX, topY, botX, botY)
  361. def relative_coords(self, x, y):
  362. """
  363. Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
  364. """
  365. vx, vy = self.get_view_coords(x, y)
  366. if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
  367. return None
  368. return vx, vy
  369. def in_view(self, x, y):
  370. """
  371. check if a grid position is visible to the agent
  372. """
  373. return self.relative_coords(x, y) is not None
  374. def agent_sees(self, x, y):
  375. """
  376. Check if a non-empty grid position is visible to the agent
  377. """
  378. coordinates = self.relative_coords(x, y)
  379. if coordinates is None:
  380. return False
  381. vx, vy = coordinates
  382. obs = self.gen_obs()
  383. obs_grid, _ = Grid.decode(obs["image"])
  384. obs_cell = obs_grid.get(vx, vy)
  385. world_cell = self.grid.get(x, y)
  386. assert world_cell is not None
  387. return obs_cell is not None and obs_cell.type == world_cell.type
  388. def step(self, action):
  389. self.step_count += 1
  390. reward = 0
  391. terminated = False
  392. truncated = False
  393. # Get the position in front of the agent
  394. fwd_pos = self.front_pos
  395. # Get the contents of the cell in front of the agent
  396. fwd_cell = self.grid.get(*fwd_pos)
  397. # Rotate left
  398. if action == self.actions.left:
  399. self.agent_dir -= 1
  400. if self.agent_dir < 0:
  401. self.agent_dir += 4
  402. # Rotate right
  403. elif action == self.actions.right:
  404. self.agent_dir = (self.agent_dir + 1) % 4
  405. # Move forward
  406. elif action == self.actions.forward:
  407. if fwd_cell is None or fwd_cell.can_overlap():
  408. self.agent_pos = tuple(fwd_pos)
  409. if fwd_cell is not None and fwd_cell.type == "goal":
  410. terminated = True
  411. reward = self._reward()
  412. if fwd_cell is not None and fwd_cell.type == "lava":
  413. terminated = True
  414. # Pick up an object
  415. elif action == self.actions.pickup:
  416. if fwd_cell and fwd_cell.can_pickup():
  417. if self.carrying is None:
  418. self.carrying = fwd_cell
  419. self.carrying.cur_pos = np.array([-1, -1])
  420. self.grid.set(fwd_pos[0], fwd_pos[1], None)
  421. # Drop an object
  422. elif action == self.actions.drop:
  423. if not fwd_cell and self.carrying:
  424. self.grid.set(fwd_pos[0], fwd_pos[1], self.carrying)
  425. self.carrying.cur_pos = fwd_pos
  426. self.carrying = None
  427. # Toggle/activate an object
  428. elif action == self.actions.toggle:
  429. if fwd_cell:
  430. fwd_cell.toggle(self, fwd_pos)
  431. # Done action (not used by default)
  432. elif action == self.actions.done:
  433. pass
  434. else:
  435. raise ValueError(f"Unknown action: {action}")
  436. if self.step_count >= self.max_steps:
  437. truncated = True
  438. if self.render_mode == "human":
  439. self.render()
  440. obs = self.gen_obs()
  441. return obs, reward, terminated, truncated, {}
  442. def gen_obs_grid(self, agent_view_size=None):
  443. """
  444. Generate the sub-grid observed by the agent.
  445. This method also outputs a visibility mask telling us which grid
  446. cells the agent can actually see.
  447. if agent_view_size is None, self.agent_view_size is used
  448. """
  449. topX, topY, botX, botY = self.get_view_exts(agent_view_size)
  450. agent_view_size = agent_view_size or self.agent_view_size
  451. grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
  452. for i in range(self.agent_dir + 1):
  453. grid = grid.rotate_left()
  454. # Process occluders and visibility
  455. # Note that this incurs some performance cost
  456. if not self.see_through_walls:
  457. vis_mask = grid.process_vis(
  458. agent_pos=(agent_view_size // 2, agent_view_size - 1)
  459. )
  460. else:
  461. vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
  462. # Make it so the agent sees what it's carrying
  463. # We do this by placing the carried object at the agent's position
  464. # in the agent's partially observable view
  465. agent_pos = grid.width // 2, grid.height - 1
  466. if self.carrying:
  467. grid.set(*agent_pos, self.carrying)
  468. else:
  469. grid.set(*agent_pos, None)
  470. return grid, vis_mask
  471. def gen_obs(self):
  472. """
  473. Generate the agent's view (partially observable, low-resolution encoding)
  474. """
  475. grid, vis_mask = self.gen_obs_grid()
  476. # Encode the partially observable view into a numpy array
  477. image = grid.encode(vis_mask)
  478. # Observations are dictionaries containing:
  479. # - an image (partially observable view of the environment)
  480. # - the agent's direction/orientation (acting as a compass)
  481. # - a textual mission string (instructions for the agent)
  482. obs = {"image": image, "direction": self.agent_dir, "mission": self.mission}
  483. return obs
  484. def get_pov_render(self, tile_size):
  485. """
  486. Render an agent's POV observation for visualization
  487. """
  488. grid, vis_mask = self.gen_obs_grid()
  489. # Render the whole grid
  490. img = grid.render(
  491. tile_size,
  492. agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
  493. agent_dir=3,
  494. highlight_mask=vis_mask,
  495. )
  496. return img
  497. def get_full_render(self, highlight, tile_size):
  498. """
  499. Render a non-paratial observation for visualization
  500. """
  501. # Compute which cells are visible to the agent
  502. _, vis_mask = self.gen_obs_grid()
  503. # Compute the world coordinates of the bottom-left corner
  504. # of the agent's view area
  505. f_vec = self.dir_vec
  506. r_vec = self.right_vec
  507. top_left = (
  508. self.agent_pos
  509. + f_vec * (self.agent_view_size - 1)
  510. - r_vec * (self.agent_view_size // 2)
  511. )
  512. # Mask of which cells to highlight
  513. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  514. # For each cell in the visibility mask
  515. for vis_j in range(0, self.agent_view_size):
  516. for vis_i in range(0, self.agent_view_size):
  517. # If this cell is not visible, don't highlight it
  518. if not vis_mask[vis_i, vis_j]:
  519. continue
  520. # Compute the world coordinates of this cell
  521. abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
  522. if abs_i < 0 or abs_i >= self.width:
  523. continue
  524. if abs_j < 0 or abs_j >= self.height:
  525. continue
  526. # Mark this cell to be highlighted
  527. highlight_mask[abs_i, abs_j] = True
  528. # Render the whole grid
  529. img = self.grid.render(
  530. tile_size,
  531. self.agent_pos,
  532. self.agent_dir,
  533. highlight_mask=highlight_mask if highlight else None,
  534. )
  535. return img
  536. def get_frame(
  537. self,
  538. highlight: bool = True,
  539. tile_size: int = TILE_PIXELS,
  540. agent_pov: bool = False,
  541. ):
  542. """Returns an RGB image corresponding to the whole environment or the agent's point of view.
  543. Args:
  544. highlight (bool): If true, the agent's field of view or point of view is highlighted with a lighter gray color.
  545. tile_size (int): How many pixels will form a tile from the NxM grid.
  546. agent_pov (bool): If true, the rendered frame will only contain the point of view of the agent.
  547. Returns:
  548. frame (np.ndarray): A frame of type numpy.ndarray with shape (x, y, 3) representing RGB values for the x-by-y pixel image.
  549. """
  550. if agent_pov:
  551. return self.get_pov_render(tile_size)
  552. else:
  553. return self.get_full_render(highlight, tile_size)
  554. def render(self):
  555. img = self.get_frame(self.highlight, self.tile_size, self.agent_pov)
  556. if self.render_mode == "human":
  557. if self.window is None:
  558. self.window = Window("minigrid")
  559. self.window.show(block=False)
  560. self.window.set_caption(self.mission)
  561. self.window.show_img(img)
  562. elif self.render_mode == "rgb_array":
  563. return img
  564. def close(self):
  565. if self.window:
  566. self.window.close()