minigrid.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. import math
  2. import gym
  3. from enum import IntEnum
  4. import numpy as np
  5. from gym import error, spaces, utils
  6. from gym.utils import seeding
  7. from gym_minigrid.rendering import *
  8. # Size in pixels of a cell in the full-scale human view
  9. CELL_PIXELS = 32
  10. # Number of cells (width and height) in the agent view
  11. AGENT_VIEW_SIZE = 7
  12. # Size of the array given as an observation to the agent
  13. OBS_ARRAY_SIZE = (AGENT_VIEW_SIZE, AGENT_VIEW_SIZE, 3)
  14. # Map of color names to RGB values
  15. COLORS = {
  16. 'red' : (255, 0, 0),
  17. 'green' : (0, 255, 0),
  18. 'blue' : (0, 0, 255),
  19. 'purple': (112, 39, 195),
  20. 'yellow': (255, 255, 0),
  21. 'grey' : (100, 100, 100)
  22. }
  23. COLOR_NAMES = list(COLORS.keys())
  24. # Used to map colors to integers
  25. COLOR_TO_IDX = {
  26. 'red' : 0,
  27. 'green' : 1,
  28. 'blue' : 2,
  29. 'purple': 3,
  30. 'yellow': 4,
  31. 'grey' : 5
  32. }
  33. IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
  34. # Map of object type to integers
  35. OBJECT_TO_IDX = {
  36. 'empty' : 0,
  37. 'wall' : 1,
  38. 'door' : 2,
  39. 'locked_door' : 3,
  40. 'key' : 4,
  41. 'ball' : 5,
  42. 'box' : 6,
  43. 'goal' : 7
  44. }
  45. IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
  46. class WorldObj:
  47. """
  48. Base class for grid world objects
  49. """
  50. def __init__(self, type, color):
  51. assert type in OBJECT_TO_IDX, type
  52. assert color in COLOR_TO_IDX, color
  53. self.type = type
  54. self.color = color
  55. self.contains = None
  56. def canOverlap(self):
  57. """Can the agent overlap with this?"""
  58. return False
  59. def canPickup(self):
  60. """Can the agent pick this up?"""
  61. return False
  62. def canContain(self):
  63. """Can this contain another object?"""
  64. return False
  65. def toggle(self, env, pos):
  66. """Method to trigger/toggle an action this object performs"""
  67. return False
  68. def render(self, r):
  69. assert False
  70. def _setColor(self, r):
  71. c = COLORS[self.color]
  72. r.setLineColor(c[0], c[1], c[2])
  73. r.setColor(c[0], c[1], c[2])
  74. class Goal(WorldObj):
  75. def __init__(self):
  76. super(Goal, self).__init__('goal', 'green')
  77. def render(self, r):
  78. self._setColor(r)
  79. r.drawPolygon([
  80. (0 , CELL_PIXELS),
  81. (CELL_PIXELS, CELL_PIXELS),
  82. (CELL_PIXELS, 0),
  83. (0 , 0)
  84. ])
  85. class Wall(WorldObj):
  86. def __init__(self, color='grey'):
  87. super(Wall, self).__init__('wall', color)
  88. def render(self, r):
  89. self._setColor(r)
  90. r.drawPolygon([
  91. (0 , CELL_PIXELS),
  92. (CELL_PIXELS, CELL_PIXELS),
  93. (CELL_PIXELS, 0),
  94. (0 , 0)
  95. ])
  96. class Door(WorldObj):
  97. def __init__(self, color, isOpen=False):
  98. super(Door, self).__init__('door', color)
  99. self.isOpen = isOpen
  100. def render(self, r):
  101. c = COLORS[self.color]
  102. r.setLineColor(c[0], c[1], c[2])
  103. r.setColor(0, 0, 0)
  104. if self.isOpen:
  105. r.drawPolygon([
  106. (CELL_PIXELS-2, CELL_PIXELS),
  107. (CELL_PIXELS , CELL_PIXELS),
  108. (CELL_PIXELS , 0),
  109. (CELL_PIXELS-2, 0)
  110. ])
  111. return
  112. r.drawPolygon([
  113. (0 , CELL_PIXELS),
  114. (CELL_PIXELS, CELL_PIXELS),
  115. (CELL_PIXELS, 0),
  116. (0 , 0)
  117. ])
  118. r.drawPolygon([
  119. (2 , CELL_PIXELS-2),
  120. (CELL_PIXELS-2, CELL_PIXELS-2),
  121. (CELL_PIXELS-2, 2),
  122. (2 , 2)
  123. ])
  124. r.drawCircle(CELL_PIXELS * 0.75, CELL_PIXELS * 0.5, 2)
  125. def toggle(self, env, pos):
  126. if not self.isOpen:
  127. self.isOpen = True
  128. return True
  129. return False
  130. def canOverlap(self):
  131. """The agent can only walk over this cell when the door is open"""
  132. return self.isOpen
  133. class LockedDoor(WorldObj):
  134. def __init__(self, color, isOpen=False):
  135. super(LockedDoor, self).__init__('locked_door', color)
  136. self.isOpen = isOpen
  137. def render(self, r):
  138. c = COLORS[self.color]
  139. r.setLineColor(c[0], c[1], c[2])
  140. r.setColor(c[0], c[1], c[2], 50)
  141. if self.isOpen:
  142. r.drawPolygon([
  143. (CELL_PIXELS-2, CELL_PIXELS),
  144. (CELL_PIXELS , CELL_PIXELS),
  145. (CELL_PIXELS , 0),
  146. (CELL_PIXELS-2, 0)
  147. ])
  148. return
  149. r.drawPolygon([
  150. (0 , CELL_PIXELS),
  151. (CELL_PIXELS, CELL_PIXELS),
  152. (CELL_PIXELS, 0),
  153. (0 , 0)
  154. ])
  155. r.drawPolygon([
  156. (2 , CELL_PIXELS-2),
  157. (CELL_PIXELS-2, CELL_PIXELS-2),
  158. (CELL_PIXELS-2, 2),
  159. (2 , 2)
  160. ])
  161. r.drawLine(
  162. CELL_PIXELS * 0.55,
  163. CELL_PIXELS * 0.5,
  164. CELL_PIXELS * 0.75,
  165. CELL_PIXELS * 0.5
  166. )
  167. def toggle(self, env, pos):
  168. # If the player has the right key to open the door
  169. if isinstance(env.carrying, Key) and env.carrying.color == self.color:
  170. self.isOpen = True
  171. # The key has been used, remove it from the agent
  172. env.carrying = None
  173. return True
  174. return False
  175. def canOverlap(self):
  176. """The agent can only walk over this cell when the door is open"""
  177. return self.isOpen
  178. class Key(WorldObj):
  179. def __init__(self, color='blue'):
  180. super(Key, self).__init__('key', color)
  181. def canPickup(self):
  182. return True
  183. def render(self, r):
  184. self._setColor(r)
  185. # Vertical quad
  186. r.drawPolygon([
  187. (16, 10),
  188. (20, 10),
  189. (20, 28),
  190. (16, 28)
  191. ])
  192. # Teeth
  193. r.drawPolygon([
  194. (12, 19),
  195. (16, 19),
  196. (16, 21),
  197. (12, 21)
  198. ])
  199. r.drawPolygon([
  200. (12, 26),
  201. (16, 26),
  202. (16, 28),
  203. (12, 28)
  204. ])
  205. r.drawCircle(18, 9, 6)
  206. r.setLineColor(0, 0, 0)
  207. r.setColor(0, 0, 0)
  208. r.drawCircle(18, 9, 2)
  209. class Ball(WorldObj):
  210. def __init__(self, color='blue'):
  211. super(Ball, self).__init__('ball', color)
  212. def canPickup(self):
  213. return True
  214. def render(self, r):
  215. self._setColor(r)
  216. r.drawCircle(CELL_PIXELS * 0.5, CELL_PIXELS * 0.5, 10)
  217. class Box(WorldObj):
  218. def __init__(self, color, contains=None):
  219. super(Box, self).__init__('box', color)
  220. self.contains = contains
  221. def render(self, r):
  222. c = COLORS[self.color]
  223. r.setLineColor(c[0], c[1], c[2])
  224. r.setColor(0, 0, 0)
  225. r.setLineWidth(2)
  226. r.drawPolygon([
  227. (4 , CELL_PIXELS-4),
  228. (CELL_PIXELS-4, CELL_PIXELS-4),
  229. (CELL_PIXELS-4, 4),
  230. (4 , 4)
  231. ])
  232. r.drawLine(
  233. 4,
  234. CELL_PIXELS / 2,
  235. CELL_PIXELS - 4,
  236. CELL_PIXELS / 2
  237. )
  238. r.setLineWidth(1)
  239. def toggle(self, env, pos):
  240. # Replace the box by its contents
  241. env.grid.set(*pos, self.contains)
  242. return True
  243. class Grid:
  244. """
  245. Represent a grid and operations on it
  246. """
  247. def __init__(self, width, height):
  248. assert width >= 4
  249. assert height >= 4
  250. self.width = width
  251. self.height = height
  252. self.grid = [None] * width * height
  253. def __contains__(self, key):
  254. if isinstance(key, WorldObj):
  255. for e in self.grid:
  256. if e is key:
  257. return True
  258. elif isinstance(key, tuple):
  259. for e in self.grid:
  260. if e is None:
  261. continue
  262. if (e.color, e.type) == key:
  263. return True
  264. return False
  265. def copy(self):
  266. from copy import deepcopy
  267. return deepcopy(self)
  268. def set(self, i, j, v):
  269. assert i >= 0 and i < self.width
  270. assert j >= 0 and j < self.height
  271. self.grid[j * self.width + i] = v
  272. def get(self, i, j):
  273. assert i >= 0 and i < self.width
  274. assert j >= 0 and j < self.height
  275. return self.grid[j * self.width + i]
  276. def rotateLeft(self):
  277. """
  278. Rotate the grid to the left (counter-clockwise)
  279. """
  280. grid = Grid(self.width, self.height)
  281. for j in range(0, self.height):
  282. for i in range(0, self.width):
  283. v = self.get(self.width - 1 - j, i)
  284. grid.set(i, j, v)
  285. return grid
  286. def slice(self, topX, topY, width, height):
  287. """
  288. Get a subset of the grid
  289. """
  290. grid = Grid(width, height)
  291. for j in range(0, height):
  292. for i in range(0, width):
  293. x = topX + i
  294. y = topY + j
  295. if x >= 0 and x < self.width and \
  296. y >= 0 and y < self.height:
  297. v = self.get(x, y)
  298. else:
  299. v = Wall()
  300. grid.set(i, j, v)
  301. return grid
  302. def render(self, r, tileSize):
  303. """
  304. Render this grid at a given scale
  305. :param r: target renderer object
  306. :param tileSize: tile size in pixels
  307. """
  308. assert r.width == self.width * tileSize
  309. assert r.height == self.height * tileSize
  310. # Total grid size at native scale
  311. widthPx = self.width * CELL_PIXELS
  312. heightPx = self.height * CELL_PIXELS
  313. # Draw background (out-of-world) tiles the same colors as walls
  314. # so the agent understands these areas are not reachable
  315. c = COLORS['grey']
  316. r.setLineColor(c[0], c[1], c[2])
  317. r.setColor(c[0], c[1], c[2])
  318. r.drawPolygon([
  319. (0 , heightPx),
  320. (widthPx, heightPx),
  321. (widthPx, 0),
  322. (0 , 0)
  323. ])
  324. r.push()
  325. # Internally, we draw at the "large" full-grid resolution, but we
  326. # use the renderer to scale back to the desired size
  327. r.scale(tileSize / CELL_PIXELS, tileSize / CELL_PIXELS)
  328. # Draw the background of the in-world cells black
  329. r.fillRect(
  330. 0,
  331. 0,
  332. widthPx,
  333. heightPx,
  334. 0, 0, 0
  335. )
  336. # Draw grid lines
  337. r.setLineColor(100, 100, 100)
  338. for rowIdx in range(0, self.height):
  339. y = CELL_PIXELS * rowIdx
  340. r.drawLine(0, y, widthPx, y)
  341. for colIdx in range(0, self.width):
  342. x = CELL_PIXELS * colIdx
  343. r.drawLine(x, 0, x, heightPx)
  344. # Render the grid
  345. for j in range(0, self.height):
  346. for i in range(0, self.width):
  347. cell = self.get(i, j)
  348. if cell == None:
  349. continue
  350. r.push()
  351. r.translate(i * CELL_PIXELS, j * CELL_PIXELS)
  352. cell.render(r)
  353. r.pop()
  354. r.pop()
  355. def encode(self):
  356. """
  357. Produce a compact numpy encoding of the grid
  358. """
  359. codeSize = self.width * self.height * 3
  360. array = np.zeros(shape=(self.width, self.height, 3), dtype='uint8')
  361. for j in range(0, self.height):
  362. for i in range(0, self.width):
  363. v = self.get(i, j)
  364. if v == None:
  365. continue
  366. array[i, j, 0] = OBJECT_TO_IDX[v.type]
  367. array[i, j, 1] = COLOR_TO_IDX[v.color]
  368. if hasattr(v, 'isOpen') and v.isOpen:
  369. array[i, j, 2] = 1
  370. return array
  371. def decode(array):
  372. """
  373. Decode an array grid encoding back into a grid
  374. """
  375. width = array.shape[0]
  376. height = array.shape[1]
  377. assert array.shape[2] == 3
  378. grid = Grid(width, height)
  379. for j in range(0, height):
  380. for i in range(0, width):
  381. typeIdx = array[i, j, 0]
  382. colorIdx = array[i, j, 1]
  383. openIdx = array[i, j, 2]
  384. if typeIdx == 0:
  385. continue
  386. objType = IDX_TO_OBJECT[typeIdx]
  387. color = IDX_TO_COLOR[colorIdx]
  388. isOpen = True if openIdx == 1 else 0
  389. if objType == 'wall':
  390. v = Wall(color)
  391. elif objType == 'ball':
  392. v = Ball(color)
  393. elif objType == 'key':
  394. v = Key(color)
  395. elif objType == 'box':
  396. v = Box(color)
  397. elif objType == 'door':
  398. v = Door(color, isOpen)
  399. elif objType == 'locked_door':
  400. v = LockedDoor(color, isOpen)
  401. elif objType == 'goal':
  402. v = Goal()
  403. else:
  404. assert False, "unknown obj type in decode '%s'" % objType
  405. grid.set(i, j, v)
  406. return grid
  407. class MiniGridEnv(gym.Env):
  408. """
  409. 2D grid world game environment
  410. """
  411. metadata = {
  412. 'render.modes': ['human', 'rgb_array', 'pixmap'],
  413. 'video.frames_per_second' : 10
  414. }
  415. # Enumeration of possible actions
  416. class Actions(IntEnum):
  417. left = 0
  418. right = 1
  419. forward = 2
  420. # Toggle/pick up/activate object
  421. toggle = 3
  422. # Wait/stay put/do nothing
  423. wait = 4
  424. def __init__(self, gridSize=16, maxSteps=100):
  425. # Action enumeration for this environment
  426. self.actions = MiniGridEnv.Actions
  427. # Actions are discrete integer values
  428. self.action_space = spaces.Discrete(len(self.actions))
  429. # The observations are RGB images
  430. self.observation_space = spaces.Box(
  431. low=0,
  432. high=255,
  433. shape=OBS_ARRAY_SIZE,
  434. dtype='uint8'
  435. )
  436. # Range of possible rewards
  437. self.reward_range = (-1, 1000)
  438. # Renderer object used to render the whole grid (full-scale)
  439. self.gridRender = None
  440. # Renderer used to render observations (small-scale agent view)
  441. self.obsRender = None
  442. # Environment configuration
  443. self.gridSize = gridSize
  444. self.maxSteps = maxSteps
  445. self.startPos = (1, 1)
  446. self.startDir = 0
  447. # Initialize the state
  448. self.seed()
  449. self.reset()
  450. def _genGrid(self, width, height):
  451. assert False, "_genGrid needs to be implemented by each environment"
  452. def reset(self):
  453. # Generate a new random grid at the start of each episode
  454. # To keep the same grid for each episode, call env.seed() with
  455. # the same seed before calling env.reset()
  456. self.grid = self._genGrid(self.gridSize, self.gridSize)
  457. # Place the agent in the starting position and direction
  458. self.agentPos = self.startPos
  459. self.agentDir = self.startDir
  460. # Item picked up, being carried, initially nothing
  461. self.carrying = None
  462. # Step count since episode start
  463. self.stepCount = 0
  464. # Return first observation
  465. obs = self._genObs()
  466. return obs
  467. def seed(self, seed=1337):
  468. # Seed the random number generator
  469. self.np_random, _ = seeding.np_random(seed)
  470. return [seed]
  471. def _randInt(self, low, high):
  472. """
  473. Generate random integer in [low,high[
  474. """
  475. return self.np_random.randint(low, high)
  476. def _randPos(self, xLow, xHigh, yLow, yHigh):
  477. """
  478. Generate a random (x,y) position tuple
  479. """
  480. return (
  481. self.np_random.randint(xLow, xHigh),
  482. self.np_random.randint(yLow, yHigh)
  483. )
  484. def _randElem(self, iterable):
  485. lst = list(iterable)
  486. idx = self._randInt(0, len(lst))
  487. return lst[idx]
  488. def getStepsRemaining(self):
  489. return self.maxSteps - self.stepCount
  490. def getDirVec(self):
  491. """
  492. Get the direction vector for the agent, pointing in the direction
  493. of forward movement.
  494. """
  495. # Pointing right
  496. if self.agentDir == 0:
  497. return (1, 0)
  498. # Down (positive Y)
  499. elif self.agentDir == 1:
  500. return (0, 1)
  501. # Pointing left
  502. elif self.agentDir == 2:
  503. return (-1, 0)
  504. # Up (negative Y)
  505. elif self.agentDir == 3:
  506. return (0, -1)
  507. else:
  508. assert False
  509. def getViewExts(self):
  510. """
  511. Get the extents of the square set of tiles visible to the agent
  512. Note: the bottom extent indices are not included in the set
  513. """
  514. # Facing right
  515. if self.agentDir == 0:
  516. topX = self.agentPos[0]
  517. topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
  518. # Facing down
  519. elif self.agentDir == 1:
  520. topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
  521. topY = self.agentPos[1]
  522. # Facing right
  523. elif self.agentDir == 2:
  524. topX = self.agentPos[0] - AGENT_VIEW_SIZE + 1
  525. topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
  526. # Facing up
  527. elif self.agentDir == 3:
  528. topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
  529. topY = self.agentPos[1] - AGENT_VIEW_SIZE + 1
  530. else:
  531. assert False, "invalid agent direction"
  532. botX = topX + AGENT_VIEW_SIZE
  533. botY = topY + AGENT_VIEW_SIZE
  534. return (topX, topY, botX, botY)
  535. def agentSees(self, x, y):
  536. """
  537. Check if a grid position is visible to the agent
  538. """
  539. topX, topY, botX, botY = self.getViewExts()
  540. return (x >= topX and x < botX and y >= topY and y < botY)
  541. def step(self, action):
  542. self.stepCount += 1
  543. reward = 0
  544. done = False
  545. # Rotate left
  546. if action == self.actions.left:
  547. self.agentDir -= 1
  548. if self.agentDir < 0:
  549. self.agentDir += 4
  550. # Rotate right
  551. elif action == self.actions.right:
  552. self.agentDir = (self.agentDir + 1) % 4
  553. # Move forward
  554. elif action == self.actions.forward:
  555. u, v = self.getDirVec()
  556. newPos = (self.agentPos[0] + u, self.agentPos[1] + v)
  557. targetCell = self.grid.get(newPos[0], newPos[1])
  558. if targetCell == None or targetCell.canOverlap():
  559. self.agentPos = newPos
  560. elif targetCell.type == 'goal':
  561. done = True
  562. reward = 1000 - self.stepCount
  563. # Pick up or trigger/activate an item
  564. elif action == self.actions.toggle:
  565. u, v = self.getDirVec()
  566. objPos = (self.agentPos[0] + u, self.agentPos[1] + v)
  567. cell = self.grid.get(*objPos)
  568. if cell and cell.canPickup():
  569. if self.carrying is None:
  570. self.carrying = cell
  571. self.grid.set(*objPos, None)
  572. elif cell:
  573. cell.toggle(self, objPos)
  574. elif self.carrying:
  575. self.grid.set(*objPos, self.carrying)
  576. self.carrying = None
  577. # Wait/do nothing
  578. elif action == self.actions.wait:
  579. pass
  580. else:
  581. assert False, "unknown action"
  582. if self.stepCount >= self.maxSteps:
  583. done = True
  584. obs = self._genObs()
  585. return obs, reward, done, {}
  586. def _genObs(self):
  587. """
  588. Generate the agent's view (partially observable, low-resolution encoding)
  589. """
  590. topX, topY, botX, botY = self.getViewExts()
  591. grid = self.grid.slice(topX, topY, AGENT_VIEW_SIZE, AGENT_VIEW_SIZE)
  592. for i in range(self.agentDir + 1):
  593. grid = grid.rotateLeft()
  594. # Make it so the agent sees what it's carrying
  595. # We do this by placing the carried object at the agent's position
  596. # in the agent's partially observable view
  597. agentPos = grid.width // 2, grid.height - 1
  598. if self.carrying:
  599. grid.set(*agentPos, self.carrying)
  600. else:
  601. grid.set(*agentPos, None)
  602. # Encode the partially observable view into a numpy array
  603. obs = grid.encode()
  604. return obs
  605. def getObsRender(self, obs):
  606. """
  607. Render an agent observation for visualization
  608. """
  609. if self.obsRender == None:
  610. self.obsRender = Renderer(
  611. AGENT_VIEW_SIZE * CELL_PIXELS // 2,
  612. AGENT_VIEW_SIZE * CELL_PIXELS // 2
  613. )
  614. r = self.obsRender
  615. r.beginFrame()
  616. grid = Grid.decode(obs)
  617. # Render the whole grid
  618. grid.render(r, CELL_PIXELS // 2)
  619. # Draw the agent
  620. r.push()
  621. r.scale(0.5, 0.5)
  622. r.translate(
  623. CELL_PIXELS * (0.5 + AGENT_VIEW_SIZE // 2),
  624. CELL_PIXELS * (AGENT_VIEW_SIZE - 0.5)
  625. )
  626. r.rotate(3 * 90)
  627. r.setLineColor(255, 0, 0)
  628. r.setColor(255, 0, 0)
  629. r.drawPolygon([
  630. (-12, 10),
  631. ( 12, 0),
  632. (-12, -10)
  633. ])
  634. r.pop()
  635. r.endFrame()
  636. return r.getPixmap()
  637. def render(self, mode='human', close=False):
  638. """
  639. Render the whole-grid human view
  640. """
  641. if close:
  642. if self.gridRender:
  643. self.gridRender.close()
  644. return
  645. if self.gridRender is None:
  646. self.gridRender = Renderer(
  647. self.gridSize * CELL_PIXELS,
  648. self.gridSize * CELL_PIXELS,
  649. True if mode == 'human' else False
  650. )
  651. r = self.gridRender
  652. r.beginFrame()
  653. # Render the whole grid
  654. self.grid.render(r, CELL_PIXELS)
  655. # Draw the agent
  656. r.push()
  657. r.translate(
  658. CELL_PIXELS * (self.agentPos[0] + 0.5),
  659. CELL_PIXELS * (self.agentPos[1] + 0.5)
  660. )
  661. r.rotate(self.agentDir * 90)
  662. r.setLineColor(255, 0, 0)
  663. r.setColor(255, 0, 0)
  664. r.drawPolygon([
  665. (-12, 10),
  666. ( 12, 0),
  667. (-12, -10)
  668. ])
  669. r.pop()
  670. # Highlight what the agent can see
  671. topX, topY, botX, botY = self.getViewExts()
  672. r.fillRect(
  673. topX * CELL_PIXELS,
  674. topY * CELL_PIXELS,
  675. AGENT_VIEW_SIZE * CELL_PIXELS,
  676. AGENT_VIEW_SIZE * CELL_PIXELS,
  677. 200, 200, 200, 75
  678. )
  679. r.endFrame()
  680. if mode == 'rgb_array':
  681. return r.getArray()
  682. elif mode == 'pixmap':
  683. return r.getPixmap()
  684. return r