dynamicobstacles.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. from operator import add
  2. from gymnasium.spaces import Discrete
  3. from minigrid.core.grid import Grid
  4. from minigrid.core.mission import MissionSpace
  5. from minigrid.core.world_object import Ball, Goal
  6. from minigrid.minigrid_env import MiniGridEnv
  7. class DynamicObstaclesEnv(MiniGridEnv):
  8. """
  9. ![dynamic_obstacles](../_static/figures/dynamic_obstacles.gif)
  10. ### Description
  11. This environment is an empty room with moving obstacles.
  12. The goal of the agent is to reach the green goal square without colliding
  13. with any obstacle. A large penalty is subtracted if the agent collides with
  14. an obstacle and the episode finishes. This environment is useful to test
  15. Dynamic Obstacle Avoidance for mobile robots with Reinforcement Learning in
  16. Partial Observability.
  17. ### Mission Space
  18. "get to the green goal square"
  19. ### Action Space
  20. | Num | Name | Action |
  21. |-----|--------------|--------------|
  22. | 0 | left | Turn left |
  23. | 1 | right | Turn right |
  24. | 2 | forward | Move forward |
  25. | 3 | pickup | Unused |
  26. | 4 | drop | Unused |
  27. | 5 | toggle | Unused |
  28. | 6 | done | Unused |
  29. ### Observation Encoding
  30. - Each tile is encoded as a 3 dimensional tuple:
  31. `(OBJECT_IDX, COLOR_IDX, STATE)`
  32. - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
  33. [minigrid/minigrid.py](minigrid/minigrid.py)
  34. - `STATE` refers to the door state with 0=open, 1=closed and 2=locked
  35. ### Rewards
  36. A reward of '1' is given for success, and '0' for failure. A '-1' penalty is
  37. subtracted if the agent collides with an obstacle.
  38. ### Termination
  39. The episode ends if any one of the following conditions is met:
  40. 1. The agent reaches the goal.
  41. 2. The agent collides with an obstacle.
  42. 3. Timeout (see `max_steps`).
  43. ### Registered Configurations
  44. - `MiniGrid-Dynamic-Obstacles-5x5-v0`
  45. - `MiniGrid-Dynamic-Obstacles-Random-5x5-v0`
  46. - `MiniGrid-Dynamic-Obstacles-6x6-v0`
  47. - `MiniGrid-Dynamic-Obstacles-Random-6x6-v0`
  48. - `MiniGrid-Dynamic-Obstacles-8x8-v0`
  49. - `MiniGrid-Dynamic-Obstacles-16x16-v0`
  50. """
  51. def __init__(
  52. self, size=8, agent_start_pos=(1, 1), agent_start_dir=0, n_obstacles=4, **kwargs
  53. ):
  54. self.agent_start_pos = agent_start_pos
  55. self.agent_start_dir = agent_start_dir
  56. # Reduce obstacles if there are too many
  57. if n_obstacles <= size / 2 + 1:
  58. self.n_obstacles = int(n_obstacles)
  59. else:
  60. self.n_obstacles = int(size / 2)
  61. mission_space = MissionSpace(
  62. mission_func=lambda: "get to the green goal square"
  63. )
  64. super().__init__(
  65. mission_space=mission_space,
  66. grid_size=size,
  67. max_steps=4 * size * size,
  68. # Set this to True for maximum speed
  69. see_through_walls=True,
  70. **kwargs
  71. )
  72. # Allow only 3 actions permitted: left, right, forward
  73. self.action_space = Discrete(self.actions.forward + 1)
  74. self.reward_range = (-1, 1)
  75. def _gen_grid(self, width, height):
  76. # Create an empty grid
  77. self.grid = Grid(width, height)
  78. # Generate the surrounding walls
  79. self.grid.wall_rect(0, 0, width, height)
  80. # Place a goal square in the bottom-right corner
  81. self.grid.set(width - 2, height - 2, Goal())
  82. # Place the agent
  83. if self.agent_start_pos is not None:
  84. self.agent_pos = self.agent_start_pos
  85. self.agent_dir = self.agent_start_dir
  86. else:
  87. self.place_agent()
  88. # Place obstacles
  89. self.obstacles = []
  90. for i_obst in range(self.n_obstacles):
  91. self.obstacles.append(Ball())
  92. self.place_obj(self.obstacles[i_obst], max_tries=100)
  93. self.mission = "get to the green goal square"
  94. def step(self, action):
  95. # Invalid action
  96. if action >= self.action_space.n:
  97. action = 0
  98. # Check if there is an obstacle in front of the agent
  99. front_cell = self.grid.get(*self.front_pos)
  100. not_clear = front_cell and front_cell.type != "goal"
  101. # Update obstacle positions
  102. for i_obst in range(len(self.obstacles)):
  103. old_pos = self.obstacles[i_obst].cur_pos
  104. top = tuple(map(add, old_pos, (-1, -1)))
  105. try:
  106. self.place_obj(
  107. self.obstacles[i_obst], top=top, size=(3, 3), max_tries=100
  108. )
  109. self.grid.set(old_pos[0], old_pos[1], None)
  110. except Exception:
  111. pass
  112. # Update the agent's position/direction
  113. obs, reward, terminated, truncated, info = super().step(action)
  114. # If the agent tried to walk over an obstacle or wall
  115. if action == self.actions.forward and not_clear:
  116. reward = -1
  117. terminated = True
  118. return obs, reward, terminated, truncated, info
  119. return obs, reward, terminated, truncated, info