minigrid_env.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. from __future__ import annotations
  2. import hashlib
  3. import math
  4. from abc import abstractmethod
  5. from typing import Any, Iterable, SupportsFloat, TypeVar
  6. import gymnasium as gym
  7. import numpy as np
  8. import pygame
  9. import pygame.freetype
  10. from gymnasium import spaces
  11. from gymnasium.core import ActType, ObsType
  12. from minigrid.core.actions import Actions
  13. from minigrid.core.constants import COLOR_NAMES, DIR_TO_VEC, TILE_PIXELS
  14. from minigrid.core.grid import Grid
  15. from minigrid.core.mission import MissionSpace
  16. from minigrid.core.world_object import Point, WorldObj
  17. T = TypeVar("T")
  18. class MiniGridEnv(gym.Env):
  19. """
  20. 2D grid world game environment
  21. """
  22. metadata = {
  23. "render_modes": ["human", "rgb_array"],
  24. "render_fps": 10,
  25. }
  26. def __init__(
  27. self,
  28. mission_space: MissionSpace,
  29. grid_size: int | None = None,
  30. width: int | None = None,
  31. height: int | None = None,
  32. max_steps: int = 100,
  33. see_through_walls: bool = False,
  34. agent_view_size: int = 7,
  35. render_mode: str | None = None,
  36. screen_size: int | None = 640,
  37. highlight: bool = True,
  38. tile_size: int = TILE_PIXELS,
  39. agent_pov: bool = False,
  40. ):
  41. # Initialize mission
  42. self.mission = mission_space.sample()
  43. # Can't set both grid_size and width/height
  44. if grid_size:
  45. assert width is None and height is None
  46. width = grid_size
  47. height = grid_size
  48. assert width is not None and height is not None
  49. # Action enumeration for this environment
  50. self.actions = Actions
  51. # Actions are discrete integer values
  52. self.action_space = spaces.Discrete(len(self.actions))
  53. # Number of cells (width and height) in the agent view
  54. assert agent_view_size % 2 == 1
  55. assert agent_view_size >= 3
  56. self.agent_view_size = agent_view_size
  57. # Observations are dictionaries containing an
  58. # encoding of the grid and a textual 'mission' string
  59. image_observation_space = spaces.Box(
  60. low=0,
  61. high=255,
  62. shape=(self.agent_view_size, self.agent_view_size, 3),
  63. dtype="uint8",
  64. )
  65. self.observation_space = spaces.Dict(
  66. {
  67. "image": image_observation_space,
  68. "direction": spaces.Discrete(4),
  69. "mission": mission_space,
  70. }
  71. )
  72. # Range of possible rewards
  73. self.reward_range = (0, 1)
  74. self.screen_size = screen_size
  75. self.render_size = None
  76. self.window = None
  77. self.clock = None
  78. # Environment configuration
  79. self.width = width
  80. self.height = height
  81. assert isinstance(
  82. max_steps, int
  83. ), f"The argument max_steps must be an integer, got: {type(max_steps)}"
  84. self.max_steps = max_steps
  85. self.see_through_walls = see_through_walls
  86. # Current position and direction of the agent
  87. self.agent_pos: np.ndarray | tuple[int, int] = None
  88. self.agent_dir: int = None
  89. # Current grid and mission and carrying
  90. self.grid = Grid(width, height)
  91. self.carrying = None
  92. # Rendering attributes
  93. self.render_mode = render_mode
  94. self.highlight = highlight
  95. self.tile_size = tile_size
  96. self.agent_pov = agent_pov
  97. def reset(
  98. self,
  99. *,
  100. seed: int | None = None,
  101. options: dict[str, Any] | None = None,
  102. ) -> tuple[ObsType, dict[str, Any]]:
  103. super().reset(seed=seed)
  104. # Reinitialize episode-specific variables
  105. self.agent_pos = (-1, -1)
  106. self.agent_dir = -1
  107. # Generate a new random grid at the start of each episode
  108. self._gen_grid(self.width, self.height)
  109. # These fields should be defined by _gen_grid
  110. assert (
  111. self.agent_pos >= (0, 0)
  112. if isinstance(self.agent_pos, tuple)
  113. else all(self.agent_pos >= 0) and self.agent_dir >= 0
  114. )
  115. # Check that the agent doesn't overlap with an object
  116. start_cell = self.grid.get(*self.agent_pos)
  117. assert start_cell is None or start_cell.can_overlap()
  118. # Item picked up, being carried, initially nothing
  119. self.carrying = None
  120. # Step count since episode start
  121. self.step_count = 0
  122. if self.render_mode == "human":
  123. self.render()
  124. # Return first observation
  125. obs = self.gen_obs()
  126. return obs, {}
  127. def hash(self, size=16):
  128. """Compute a hash that uniquely identifies the current state of the environment.
  129. :param size: Size of the hashing
  130. """
  131. sample_hash = hashlib.sha256()
  132. to_encode = [self.grid.encode().tolist(), self.agent_pos, self.agent_dir]
  133. for item in to_encode:
  134. sample_hash.update(str(item).encode("utf8"))
  135. return sample_hash.hexdigest()[:size]
  136. @property
  137. def steps_remaining(self):
  138. return self.max_steps - self.step_count
  139. def __str__(self):
  140. """
  141. Produce a pretty string of the environment's grid along with the agent.
  142. A grid cell is represented by 2-character string, the first one for
  143. the object and the second one for the color.
  144. """
  145. # Map of object types to short string
  146. OBJECT_TO_STR = {
  147. "wall": "W",
  148. "floor": "F",
  149. "door": "D",
  150. "key": "K",
  151. "ball": "A",
  152. "box": "B",
  153. "goal": "G",
  154. "lava": "V",
  155. }
  156. # Map agent's direction to short string
  157. AGENT_DIR_TO_STR = {0: ">", 1: "V", 2: "<", 3: "^"}
  158. output = ""
  159. for j in range(self.grid.height):
  160. for i in range(self.grid.width):
  161. if i == self.agent_pos[0] and j == self.agent_pos[1]:
  162. output += 2 * AGENT_DIR_TO_STR[self.agent_dir]
  163. continue
  164. tile = self.grid.get(i, j)
  165. if tile is None:
  166. output += " "
  167. continue
  168. if tile.type == "door":
  169. if tile.is_open:
  170. output += "__"
  171. elif tile.is_locked:
  172. output += "L" + tile.color[0].upper()
  173. else:
  174. output += "D" + tile.color[0].upper()
  175. continue
  176. output += OBJECT_TO_STR[tile.type] + tile.color[0].upper()
  177. if j < self.grid.height - 1:
  178. output += "\n"
  179. return output
  180. @abstractmethod
  181. def _gen_grid(self, width, height):
  182. pass
  183. def _reward(self) -> float:
  184. """
  185. Compute the reward to be given upon success
  186. """
  187. return 1 - 0.9 * (self.step_count / self.max_steps)
  188. def _rand_int(self, low: int, high: int) -> int:
  189. """
  190. Generate random integer in [low,high[
  191. """
  192. return self.np_random.integers(low, high)
  193. def _rand_float(self, low: float, high: float) -> float:
  194. """
  195. Generate random float in [low,high[
  196. """
  197. return self.np_random.uniform(low, high)
  198. def _rand_bool(self) -> bool:
  199. """
  200. Generate random boolean value
  201. """
  202. return self.np_random.integers(0, 2) == 0
  203. def _rand_elem(self, iterable: Iterable[T]) -> T:
  204. """
  205. Pick a random element in a list
  206. """
  207. lst = list(iterable)
  208. idx = self._rand_int(0, len(lst))
  209. return lst[idx]
  210. def _rand_subset(self, iterable: Iterable[T], num_elems: int) -> list[T]:
  211. """
  212. Sample a random subset of distinct elements of a list
  213. """
  214. lst = list(iterable)
  215. assert num_elems <= len(lst)
  216. out: list[T] = []
  217. while len(out) < num_elems:
  218. elem = self._rand_elem(lst)
  219. lst.remove(elem)
  220. out.append(elem)
  221. return out
  222. def _rand_color(self) -> str:
  223. """
  224. Generate a random color name (string)
  225. """
  226. return self._rand_elem(COLOR_NAMES)
  227. def _rand_pos(
  228. self, x_low: int, x_high: int, y_low: int, y_high: int
  229. ) -> tuple[int, int]:
  230. """
  231. Generate a random (x,y) position tuple
  232. """
  233. return (
  234. self.np_random.integers(x_low, x_high),
  235. self.np_random.integers(y_low, y_high),
  236. )
  237. def place_obj(
  238. self,
  239. obj: WorldObj | None,
  240. top: Point = None,
  241. size: tuple[int, int] = None,
  242. reject_fn=None,
  243. max_tries=math.inf,
  244. ):
  245. """
  246. Place an object at an empty position in the grid
  247. :param top: top-left position of the rectangle where to place
  248. :param size: size of the rectangle where to place
  249. :param reject_fn: function to filter out potential positions
  250. """
  251. if top is None:
  252. top = (0, 0)
  253. else:
  254. top = (max(top[0], 0), max(top[1], 0))
  255. if size is None:
  256. size = (self.grid.width, self.grid.height)
  257. num_tries = 0
  258. while True:
  259. # This is to handle with rare cases where rejection sampling
  260. # gets stuck in an infinite loop
  261. if num_tries > max_tries:
  262. raise RecursionError("rejection sampling failed in place_obj")
  263. num_tries += 1
  264. pos = (
  265. self._rand_int(top[0], min(top[0] + size[0], self.grid.width)),
  266. self._rand_int(top[1], min(top[1] + size[1], self.grid.height)),
  267. )
  268. # Don't place the object on top of another object
  269. if self.grid.get(*pos) is not None:
  270. continue
  271. # Don't place the object where the agent is
  272. if np.array_equal(pos, self.agent_pos):
  273. continue
  274. # Check if there is a filtering criterion
  275. if reject_fn and reject_fn(self, pos):
  276. continue
  277. break
  278. self.grid.set(pos[0], pos[1], obj)
  279. if obj is not None:
  280. obj.init_pos = pos
  281. obj.cur_pos = pos
  282. return pos
  283. def put_obj(self, obj: WorldObj, i: int, j: int):
  284. """
  285. Put an object at a specific position in the grid
  286. """
  287. self.grid.set(i, j, obj)
  288. obj.init_pos = (i, j)
  289. obj.cur_pos = (i, j)
  290. def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf):
  291. """
  292. Set the agent's starting point at an empty position in the grid
  293. """
  294. self.agent_pos = (-1, -1)
  295. pos = self.place_obj(None, top, size, max_tries=max_tries)
  296. self.agent_pos = pos
  297. if rand_dir:
  298. self.agent_dir = self._rand_int(0, 4)
  299. return pos
  300. @property
  301. def dir_vec(self):
  302. """
  303. Get the direction vector for the agent, pointing in the direction
  304. of forward movement.
  305. """
  306. assert (
  307. self.agent_dir >= 0 and self.agent_dir < 4
  308. ), f"Invalid agent_dir: {self.agent_dir} is not within range(0, 4)"
  309. return DIR_TO_VEC[self.agent_dir]
  310. @property
  311. def right_vec(self):
  312. """
  313. Get the vector pointing to the right of the agent.
  314. """
  315. dx, dy = self.dir_vec
  316. return np.array((-dy, dx))
  317. @property
  318. def front_pos(self):
  319. """
  320. Get the position of the cell that is right in front of the agent
  321. """
  322. return self.agent_pos + self.dir_vec
  323. def get_view_coords(self, i, j):
  324. """
  325. Translate and rotate absolute grid coordinates (i, j) into the
  326. agent's partially observable view (sub-grid). Note that the resulting
  327. coordinates may be negative or outside of the agent's view size.
  328. """
  329. ax, ay = self.agent_pos
  330. dx, dy = self.dir_vec
  331. rx, ry = self.right_vec
  332. # Compute the absolute coordinates of the top-left view corner
  333. sz = self.agent_view_size
  334. hs = self.agent_view_size // 2
  335. tx = ax + (dx * (sz - 1)) - (rx * hs)
  336. ty = ay + (dy * (sz - 1)) - (ry * hs)
  337. lx = i - tx
  338. ly = j - ty
  339. # Project the coordinates of the object relative to the top-left
  340. # corner onto the agent's own coordinate system
  341. vx = rx * lx + ry * ly
  342. vy = -(dx * lx + dy * ly)
  343. return vx, vy
  344. def get_view_exts(self, agent_view_size=None):
  345. """
  346. Get the extents of the square set of tiles visible to the agent
  347. Note: the bottom extent indices are not included in the set
  348. if agent_view_size is None, use self.agent_view_size
  349. """
  350. agent_view_size = agent_view_size or self.agent_view_size
  351. # Facing right
  352. if self.agent_dir == 0:
  353. topX = self.agent_pos[0]
  354. topY = self.agent_pos[1] - agent_view_size // 2
  355. # Facing down
  356. elif self.agent_dir == 1:
  357. topX = self.agent_pos[0] - agent_view_size // 2
  358. topY = self.agent_pos[1]
  359. # Facing left
  360. elif self.agent_dir == 2:
  361. topX = self.agent_pos[0] - agent_view_size + 1
  362. topY = self.agent_pos[1] - agent_view_size // 2
  363. # Facing up
  364. elif self.agent_dir == 3:
  365. topX = self.agent_pos[0] - agent_view_size // 2
  366. topY = self.agent_pos[1] - agent_view_size + 1
  367. else:
  368. assert False, "invalid agent direction"
  369. botX = topX + agent_view_size
  370. botY = topY + agent_view_size
  371. return topX, topY, botX, botY
  372. def relative_coords(self, x, y):
  373. """
  374. Check if a grid position belongs to the agent's field of view, and returns the corresponding coordinates
  375. """
  376. vx, vy = self.get_view_coords(x, y)
  377. if vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size:
  378. return None
  379. return vx, vy
  380. def in_view(self, x, y):
  381. """
  382. check if a grid position is visible to the agent
  383. """
  384. return self.relative_coords(x, y) is not None
  385. def agent_sees(self, x, y):
  386. """
  387. Check if a non-empty grid position is visible to the agent
  388. """
  389. coordinates = self.relative_coords(x, y)
  390. if coordinates is None:
  391. return False
  392. vx, vy = coordinates
  393. obs = self.gen_obs()
  394. obs_grid, _ = Grid.decode(obs["image"])
  395. obs_cell = obs_grid.get(vx, vy)
  396. world_cell = self.grid.get(x, y)
  397. assert world_cell is not None
  398. return obs_cell is not None and obs_cell.type == world_cell.type
  399. def step(
  400. self, action: ActType
  401. ) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
  402. self.step_count += 1
  403. reward = 0
  404. terminated = False
  405. truncated = False
  406. # Get the position in front of the agent
  407. fwd_pos = self.front_pos
  408. # Get the contents of the cell in front of the agent
  409. fwd_cell = self.grid.get(*fwd_pos)
  410. # Rotate left
  411. if action == self.actions.left:
  412. self.agent_dir -= 1
  413. if self.agent_dir < 0:
  414. self.agent_dir += 4
  415. # Rotate right
  416. elif action == self.actions.right:
  417. self.agent_dir = (self.agent_dir + 1) % 4
  418. # Move forward
  419. elif action == self.actions.forward:
  420. if fwd_cell is None or fwd_cell.can_overlap():
  421. self.agent_pos = tuple(fwd_pos)
  422. if fwd_cell is not None and fwd_cell.type == "goal":
  423. terminated = True
  424. reward = self._reward()
  425. if fwd_cell is not None and fwd_cell.type == "lava":
  426. terminated = True
  427. # Pick up an object
  428. elif action == self.actions.pickup:
  429. if fwd_cell and fwd_cell.can_pickup():
  430. if self.carrying is None:
  431. self.carrying = fwd_cell
  432. self.carrying.cur_pos = np.array([-1, -1])
  433. self.grid.set(fwd_pos[0], fwd_pos[1], None)
  434. # Drop an object
  435. elif action == self.actions.drop:
  436. if not fwd_cell and self.carrying:
  437. self.grid.set(fwd_pos[0], fwd_pos[1], self.carrying)
  438. self.carrying.cur_pos = fwd_pos
  439. self.carrying = None
  440. # Toggle/activate an object
  441. elif action == self.actions.toggle:
  442. if fwd_cell:
  443. fwd_cell.toggle(self, fwd_pos)
  444. # Done action (not used by default)
  445. elif action == self.actions.done:
  446. pass
  447. else:
  448. raise ValueError(f"Unknown action: {action}")
  449. if self.step_count >= self.max_steps:
  450. truncated = True
  451. if self.render_mode == "human":
  452. self.render()
  453. obs = self.gen_obs()
  454. return obs, reward, terminated, truncated, {}
  455. def gen_obs_grid(self, agent_view_size=None):
  456. """
  457. Generate the sub-grid observed by the agent.
  458. This method also outputs a visibility mask telling us which grid
  459. cells the agent can actually see.
  460. if agent_view_size is None, self.agent_view_size is used
  461. """
  462. topX, topY, botX, botY = self.get_view_exts(agent_view_size)
  463. agent_view_size = agent_view_size or self.agent_view_size
  464. grid = self.grid.slice(topX, topY, agent_view_size, agent_view_size)
  465. for i in range(self.agent_dir + 1):
  466. grid = grid.rotate_left()
  467. # Process occluders and visibility
  468. # Note that this incurs some performance cost
  469. if not self.see_through_walls:
  470. vis_mask = grid.process_vis(
  471. agent_pos=(agent_view_size // 2, agent_view_size - 1)
  472. )
  473. else:
  474. vis_mask = np.ones(shape=(grid.width, grid.height), dtype=bool)
  475. # Make it so the agent sees what it's carrying
  476. # We do this by placing the carried object at the agent's position
  477. # in the agent's partially observable view
  478. agent_pos = grid.width // 2, grid.height - 1
  479. if self.carrying:
  480. grid.set(*agent_pos, self.carrying)
  481. else:
  482. grid.set(*agent_pos, None)
  483. return grid, vis_mask
  484. def gen_obs(self):
  485. """
  486. Generate the agent's view (partially observable, low-resolution encoding)
  487. """
  488. grid, vis_mask = self.gen_obs_grid()
  489. # Encode the partially observable view into a numpy array
  490. image = grid.encode(vis_mask)
  491. # Observations are dictionaries containing:
  492. # - an image (partially observable view of the environment)
  493. # - the agent's direction/orientation (acting as a compass)
  494. # - a textual mission string (instructions for the agent)
  495. obs = {"image": image, "direction": self.agent_dir, "mission": self.mission}
  496. return obs
  497. def get_pov_render(self, tile_size):
  498. """
  499. Render an agent's POV observation for visualization
  500. """
  501. grid, vis_mask = self.gen_obs_grid()
  502. # Render the whole grid
  503. img = grid.render(
  504. tile_size,
  505. agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1),
  506. agent_dir=3,
  507. highlight_mask=vis_mask,
  508. )
  509. return img
  510. def get_full_render(self, highlight, tile_size):
  511. """
  512. Render a non-paratial observation for visualization
  513. """
  514. # Compute which cells are visible to the agent
  515. _, vis_mask = self.gen_obs_grid()
  516. # Compute the world coordinates of the bottom-left corner
  517. # of the agent's view area
  518. f_vec = self.dir_vec
  519. r_vec = self.right_vec
  520. top_left = (
  521. self.agent_pos
  522. + f_vec * (self.agent_view_size - 1)
  523. - r_vec * (self.agent_view_size // 2)
  524. )
  525. # Mask of which cells to highlight
  526. highlight_mask = np.zeros(shape=(self.width, self.height), dtype=bool)
  527. # For each cell in the visibility mask
  528. for vis_j in range(0, self.agent_view_size):
  529. for vis_i in range(0, self.agent_view_size):
  530. # If this cell is not visible, don't highlight it
  531. if not vis_mask[vis_i, vis_j]:
  532. continue
  533. # Compute the world coordinates of this cell
  534. abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i)
  535. if abs_i < 0 or abs_i >= self.width:
  536. continue
  537. if abs_j < 0 or abs_j >= self.height:
  538. continue
  539. # Mark this cell to be highlighted
  540. highlight_mask[abs_i, abs_j] = True
  541. # Render the whole grid
  542. img = self.grid.render(
  543. tile_size,
  544. self.agent_pos,
  545. self.agent_dir,
  546. highlight_mask=highlight_mask if highlight else None,
  547. )
  548. return img
  549. def get_frame(
  550. self,
  551. highlight: bool = True,
  552. tile_size: int = TILE_PIXELS,
  553. agent_pov: bool = False,
  554. ):
  555. """Returns an RGB image corresponding to the whole environment or the agent's point of view.
  556. Args:
  557. highlight (bool): If true, the agent's field of view or point of view is highlighted with a lighter gray color.
  558. tile_size (int): How many pixels will form a tile from the NxM grid.
  559. agent_pov (bool): If true, the rendered frame will only contain the point of view of the agent.
  560. Returns:
  561. frame (np.ndarray): A frame of type numpy.ndarray with shape (x, y, 3) representing RGB values for the x-by-y pixel image.
  562. """
  563. if agent_pov:
  564. return self.get_pov_render(tile_size)
  565. else:
  566. return self.get_full_render(highlight, tile_size)
  567. def render(self):
  568. img = self.get_frame(self.highlight, self.tile_size, self.agent_pov)
  569. if self.render_mode == "human":
  570. img = np.transpose(img, axes=(1, 0, 2))
  571. if self.render_size is None:
  572. self.render_size = img.shape[:2]
  573. if self.window is None:
  574. pygame.init()
  575. pygame.display.init()
  576. self.window = pygame.display.set_mode(
  577. (self.screen_size, self.screen_size)
  578. )
  579. pygame.display.set_caption("minigrid")
  580. if self.clock is None:
  581. self.clock = pygame.time.Clock()
  582. surf = pygame.surfarray.make_surface(img)
  583. # Create background with mission description
  584. offset = surf.get_size()[0] * 0.1
  585. # offset = 32 if self.agent_pov else 64
  586. bg = pygame.Surface(
  587. (int(surf.get_size()[0] + offset), int(surf.get_size()[1] + offset))
  588. )
  589. bg.convert()
  590. bg.fill((255, 255, 255))
  591. bg.blit(surf, (offset / 2, 0))
  592. bg = pygame.transform.smoothscale(bg, (self.screen_size, self.screen_size))
  593. font_size = 22
  594. text = self.mission
  595. font = pygame.freetype.SysFont(pygame.font.get_default_font(), font_size)
  596. text_rect = font.get_rect(text, size=font_size)
  597. text_rect.center = bg.get_rect().center
  598. text_rect.y = bg.get_height() - font_size * 1.5
  599. font.render_to(bg, text_rect, text, size=font_size)
  600. self.window.blit(bg, (0, 0))
  601. pygame.event.pump()
  602. self.clock.tick(self.metadata["render_fps"])
  603. pygame.display.flip()
  604. elif self.render_mode == "rgb_array":
  605. return img
  606. def close(self):
  607. if self.window:
  608. pygame.quit()