Ver código fonte

Created using Colaboratory

Maxime Labonne 1 ano atrás
pai
commit
c7f043a42e
1 arquivos alterados com 301 adições e 0 exclusões
  1. 301 0
      Fine_tune_Llama_2_in_Google_Colab.ipynb

+ 301 - 0
Fine_tune_Llama_2_in_Google_Colab.ipynb

@@ -0,0 +1,301 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "provenance": [],
+      "machine_shape": "hm",
+      "gpuType": "V100",
+      "authorship_tag": "ABX9TyNKKJhDeFB7aXPizGqrvwhA",
+      "include_colab_link": true
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "language_info": {
+      "name": "python"
+    },
+    "accelerator": "GPU"
+  },
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "view-in-github",
+        "colab_type": "text"
+      },
+      "source": [
+        "<a href=\"https://colab.research.google.com/github/mlabonne/llm-course/blob/main/Fine_tune_Llama_2_in_Google_Colab.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Fine-tune Llama 2 in Google Colab\n",
+        "> 🗣️ Large Language Model Course\n",
+        "\n",
+        "❤️ Created by [@maximelabonne](), based on Pclanglais' [GitHub Gist](https://gist.github.com/Pclanglais/e90381ed142ee80c8e7ea602b18d50f0).\n"
+      ],
+      "metadata": {
+        "id": "OSHlAbqzDFDq"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "GLXwJqbjtPho"
+      },
+      "outputs": [],
+      "source": [
+        "!pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.30.2 trl==0.4.7"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "import os\n",
+        "import torch\n",
+        "from datasets import load_dataset\n",
+        "from transformers import (\n",
+        "    AutoModelForCausalLM,\n",
+        "    AutoTokenizer,\n",
+        "    BitsAndBytesConfig,\n",
+        "    HfArgumentParser,\n",
+        "    TrainingArguments,\n",
+        "    pipeline,\n",
+        "    logging,\n",
+        ")\n",
+        "from peft import LoraConfig, PeftModel\n",
+        "from trl import SFTTrainer"
+      ],
+      "metadata": {
+        "id": "nAMzy_0FtaUZ"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Used for multi-gpu\n",
+        "local_rank = -1\n",
+        "per_device_train_batch_size = 4\n",
+        "per_device_eval_batch_size = 1\n",
+        "gradient_accumulation_steps = 4\n",
+        "learning_rate = 2e-4\n",
+        "max_grad_norm = 0.3\n",
+        "weight_decay = 0.001\n",
+        "lora_alpha = 16\n",
+        "lora_dropout = 0.1\n",
+        "lora_r = 64\n",
+        "max_seq_length = 512\n",
+        "\n",
+        "# The model that you want to train from the Hugging Face hub\n",
+        "model_name = \"daryl149/llama-2-7b-chat-hf\"\n",
+        "\n",
+        "# Fine-tuned model name\n",
+        "new_model = \"llama-2-7b-guanaco\"\n",
+        "\n",
+        "# The instruction dataset to use\n",
+        "dataset_name = \"timdettmers/openassistant-guanaco\"\n",
+        "\n",
+        "# Activate 4-bit precision base model loading\n",
+        "use_4bit = True\n",
+        "\n",
+        "# Activate nested quantization for 4-bit base models\n",
+        "use_nested_quant = False\n",
+        "\n",
+        "# Compute dtype for 4-bit base models\n",
+        "bnb_4bit_compute_dtype = \"float16\"\n",
+        "\n",
+        "# Quantization type (fp4 or nf4=\n",
+        "bnb_4bit_quant_type = \"nf4\"\n",
+        "\n",
+        "# Number of training epochs\n",
+        "num_train_epochs = 1\n",
+        "\n",
+        "# Enable fp16 training\n",
+        "fp16 = False\n",
+        "\n",
+        "# Enable bf16 training\n",
+        "bf16 = False\n",
+        "\n",
+        "# Use packing dataset creating\n",
+        "packing = False\n",
+        "\n",
+        "# Enable gradient checkpointing\n",
+        "gradient_checkpointing = True\n",
+        "\n",
+        "# Optimizer to use\n",
+        "optim = \"paged_adamw_32bit\"\n",
+        "\n",
+        "# Learning rate schedule (constant a bit better than cosine, and has advantage for analysis)\n",
+        "lr_scheduler_type = \"constant\"\n",
+        "\n",
+        "# Number of optimizer update steps\n",
+        "max_steps = 10000\n",
+        "\n",
+        "# Fraction of steps to do a warmup for\n",
+        "warmup_ratio = 0.03\n",
+        "\n",
+        "# Group sequences into batches with same length (saves memory and speeds up training considerably)\n",
+        "group_by_length = True\n",
+        "\n",
+        "# Save checkpoint every X updates steps\n",
+        "save_steps = 10\n",
+        "\n",
+        "# Log every X updates steps\n",
+        "logging_steps = 10\n",
+        "\n",
+        "# The output directory where the model predictions and checkpoints will be written\n",
+        "output_dir = \"./results\"\n",
+        "\n",
+        "# Load the entire model on the GPU 0\n",
+        "device_map = {\"\": 0}"
+      ],
+      "metadata": {
+        "id": "ib_We3NLtj2E"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "dataset = load_dataset(dataset_name, split=\"train\")\n",
+        "\n",
+        "# Load tokenizer and model with QLoRA configuration\n",
+        "compute_dtype = getattr(torch, bnb_4bit_compute_dtype)\n",
+        "\n",
+        "bnb_config = BitsAndBytesConfig(\n",
+        "    load_in_4bit=use_4bit,\n",
+        "    bnb_4bit_quant_type=bnb_4bit_quant_type,\n",
+        "    bnb_4bit_compute_dtype=compute_dtype,\n",
+        "    bnb_4bit_use_double_quant=use_nested_quant,\n",
+        ")\n",
+        "\n",
+        "if compute_dtype == torch.float16 and use_4bit:\n",
+        "    major, _ = torch.cuda.get_device_capability()\n",
+        "    if major >= 8:\n",
+        "        print(\"=\" * 80)\n",
+        "        print(\"Your GPU supports bfloat16, you can accelerate training with the argument --bf16\")\n",
+        "        print(\"=\" * 80)\n",
+        "\n",
+        "model = AutoModelForCausalLM.from_pretrained(\n",
+        "    model_name,\n",
+        "    quantization_config=bnb_config,\n",
+        "    device_map=device_map\n",
+        ")\n",
+        "model.config.use_cache = False\n",
+        "\n",
+        "peft_config = LoraConfig(\n",
+        "    lora_alpha=lora_alpha,\n",
+        "    lora_dropout=lora_dropout,\n",
+        "    r=lora_r,\n",
+        "    bias=\"none\",\n",
+        "    task_type=\"CAUSAL_LM\",\n",
+        ")\n",
+        "\n",
+        "tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)\n",
+        "tokenizer.pad_token = tokenizer.eos_token\n",
+        "\n",
+        "training_arguments = TrainingArguments(\n",
+        "    output_dir=output_dir,\n",
+        "    per_device_train_batch_size=per_device_train_batch_size,\n",
+        "    gradient_accumulation_steps=gradient_accumulation_steps,\n",
+        "    optim=optim,\n",
+        "    save_steps=save_steps,\n",
+        "    logging_steps=logging_steps,\n",
+        "    learning_rate=learning_rate,\n",
+        "    fp16=fp16,\n",
+        "    bf16=bf16,\n",
+        "    max_grad_norm=max_grad_norm,\n",
+        "    max_steps=max_steps,\n",
+        "    warmup_ratio=warmup_ratio,\n",
+        "    group_by_length=group_by_length,\n",
+        "    lr_scheduler_type=lr_scheduler_type,\n",
+        ")\n",
+        "\n",
+        "trainer = SFTTrainer(\n",
+        "    model=model,\n",
+        "    train_dataset=dataset,\n",
+        "    peft_config=peft_config,\n",
+        "    dataset_text_field=\"text\",\n",
+        "    max_seq_length=max_seq_length,\n",
+        "    tokenizer=tokenizer,\n",
+        "    args=training_arguments,\n",
+        "    packing=packing,\n",
+        ")\n",
+        "\n",
+        "trainer.train()\n",
+        "trainer.model.save_pretrained(output_dir)"
+      ],
+      "metadata": {
+        "id": "OJXpOgBFuSrc"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "logging.set_verbosity(logging.CRITICAL)\n",
+        "pipe = pipeline(task=\"text-generation\", model=model, tokenizer=tokenizer, max_length=200)\n",
+        "result = pipe(\"Tell me a joke\")\n",
+        "print(result[0]['generated_text'])"
+      ],
+      "metadata": {
+        "id": "frlSLPin4IJ4"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "from numba import cuda\n",
+        "\n",
+        "if use_4bit:\n",
+        "    del model\n",
+        "    torch.cuda.empty_cache()\n",
+        "    cuda.select_device(0)\n",
+        "    cuda.close()\n",
+        "\n",
+        "    base_model = AutoModelForCausalLM.from_pretrained(\n",
+        "        model_name,\n",
+        "        low_cpu_mem_usage=True,\n",
+        "        return_dict=True,\n",
+        "        torch_dtype=torch.float16,\n",
+        "        device_map=device_map,\n",
+        "    )\n",
+        "    model = PeftModel.from_pretrained(base_model, \"./adapter\", offload_folder=\"/content/sample_data\")\n",
+        "    model = model.merge_and_unload()\n",
+        "\n",
+        "# Save merged weights and tokenizer\n",
+        "model.save_pretrained(new_model, use_safetensors=True)\n",
+        "tokenizer.save_pretrained(new_model)"
+      ],
+      "metadata": {
+        "id": "QQn30cRtAZ-P"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "!huggingface-cli login\n",
+        "\n",
+        "model.push_to_hub(new_model, use_temp_dir=False)\n",
+        "tokenizer.push_to_hub(new_model, use_temp_dir=False)"
+      ],
+      "metadata": {
+        "id": "x-xPb-_qB0dz"
+      },
+      "execution_count": null,
+      "outputs": []
+    }
+  ]
+}