@@ -1,9 +1,9 @@
+task: meta_mmlu_pro_instruct
dataset_path: meta-llama/Meta-Llama-3.1-8B-Instruct-evals
dataset_name: Meta-Llama-3.1-8B-Instruct-evals__mmlu_pro__details
+test_split: latest
output_type: generate_until
-task: meta_mmlu_pro_instruct
process_docs: !function utils.process_docs
-test_split: latest
doc_to_text: !function utils.doc_to_text
doc_to_target: gold
filter_list:
@@ -15,6 +15,7 @@ filter_list:
- function: "take_first"
generation_kwargs:
until: []
+ do_sample: false
temperature: 0
max_gen_toks: 1024
num_fewshot: 0
+task: meta_mmlu_pro_pretrain
dataset_path: meta-llama/Meta-Llama-3.1-8B-evals
dataset_name: Meta-Llama-3.1-8B-evals__mmlu_pro__details
-task: meta_mmlu_pro_pretrain
@@ -14,6 +14,7 @@ filter_list:
until: "\n\nQ: "
max_gen_toks: 512
@@ -13,7 +13,6 @@ def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
out_doc = {
"problem": doc["input_question"],
"gold": doc["input_correct_responses"][0],
- "choices": list(doc["input_choice_list"])
}
return out_doc
dataset = dataset.select_columns(["input_question", "input_correct_responses", "input_final_prompts", "is_correct","input_question_hash","input_choice_list","output_prediction_text"])