Просмотр исходного кода

Updates to accommodate OpenLLM leaderboard v2 tasks and change Meta Llama 3.1 to Llama 3.1 (#639)

Kai Wu 7 месяцев назад
Родитель
Сommit
2501f519c7
26 измененных файлов с 144 добавлено и 434 удалено
  1. 7 0
      .github/scripts/spellcheck_conf/wordlist.txt
  2. 1 1
      tools/benchmarks/README.md
  3. 86 58
      tools/benchmarks/llm_eval_harness/README.md
  4. 0 229
      tools/benchmarks/llm_eval_harness/eval.py
  5. 24 44
      tools/benchmarks/llm_eval_harness/meta_eval_reproduce/README.md
  6. 3 3
      tools/benchmarks/llm_eval_harness/meta_eval_reproduce/eval_config.yaml
  7. 2 2
      tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/bbh/bbh_3shot_cot.yaml
  8. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/bbh/utils.py
  9. 2 2
      tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/gpqa_cot/gpqa_0shot_cot.yaml
  10. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/gpqa_cot/utils.py
  11. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/ifeval/ifeval.yaml
  12. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/ifeval/utils.py
  13. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/math_hard/math_hard_0shot_cot.yaml
  14. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/math_hard/utils.py
  15. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/meta_instruct.yaml
  16. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/meta_pretrain.yaml
  17. 2 2
      tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/mmlu_pro/mmlu_pro_5shot_cot_instruct.yaml
  18. 2 2
      tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/mmlu_pro/mmlu_pro_5shot_cot_pretrain.yaml
  19. 0 0
      tools/benchmarks/llm_eval_harness/meta_eval/meta_template/mmlu_pro/utils.py
  20. 15 15
      tools/benchmarks/llm_eval_harness/meta_eval_reproduce/prepare_meta_eval.py
  21. 0 25
      tools/benchmarks/llm_eval_harness/open_llm_eval_prep.sh
  22. 0 6
      tools/benchmarks/llm_eval_harness/open_llm_leaderboard/arc_challeneg_25shots.yaml
  23. 0 6
      tools/benchmarks/llm_eval_harness/open_llm_leaderboard/hellaswag_10shots.yaml
  24. 0 24
      tools/benchmarks/llm_eval_harness/open_llm_leaderboard/hellaswag_utils.py
  25. 0 9
      tools/benchmarks/llm_eval_harness/open_llm_leaderboard/mmlu_5shots.yaml
  26. 0 6
      tools/benchmarks/llm_eval_harness/open_llm_leaderboard/winogrande_5shots.yaml

+ 7 - 0
.github/scripts/spellcheck_conf/wordlist.txt

@@ -1451,6 +1451,13 @@ openhathi
 sarvam
 subtask
 acc
+BigBench
+IFEval
+MuSR
+Multistep
+multistep
+algorithmically
+asymptote
 Triaging
 matplotlib
 remediations

+ 1 - 1
tools/benchmarks/README.md

@@ -1,4 +1,4 @@
 # Benchmarks
 
 * inference - a folder contains benchmark scripts that apply a throughput analysis for Llama models inference on various backends including on-prem, cloud and on-device.
-* llm_eval_harness - a folder contains a tool to evaluate fine-tuned Llama models including quantized models focusing on quality.  
+* llm_eval_harness - a folder that introduces `lm-evaluation-harness`, a tool to evaluate Llama models including quantized models focusing on quality. We also included a recipe that calculates Llama 3.1 evaluation metrics Using `lm-evaluation-harness` and instructions that calculate HuggingFace Open LLM Leaderboard v2 metrics.

Разница между файлами не показана из-за своего большого размера
+ 86 - 58
tools/benchmarks/llm_eval_harness/README.md


+ 0 - 229
tools/benchmarks/llm_eval_harness/eval.py

@@ -1,229 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
-
-import argparse
-import json
-import logging
-import os
-import re
-import sys
-from pathlib import Path
-
-import numpy as np
-import lm_eval
-from lm_eval import tasks
-from lm_eval.utils import make_table
-
-
-def _handle_non_serializable(o):
-    if isinstance(o, np.int64) or isinstance(o, np.int32):
-        return int(o)
-    elif isinstance(o, set):
-        return list(o)
-    else:
-        return str(o)
-
-
-def setup_logging(verbosity):
-    logging.basicConfig(
-        level=verbosity.upper(), format="%(asctime)s - %(levelname)s - %(message)s"
-    )
-    return logging.getLogger(__name__)
-
-
-def handle_output(args, results, logger):
-    if not args.output_path:
-        if args.log_samples:
-            logger.error("Specify --output_path for logging samples.")
-            sys.exit(1)
-        logger.info(json.dumps(results, indent=2, default=_handle_non_serializable))
-        return
-
-    path = Path(args.output_path)
-    if path.is_file() or path.with_name("results.json").is_file():
-        logger.warning(f"File already exists at {path}. Results will be overwritten.")
-
-    output_dir = path.parent if path.suffix in (".json", ".jsonl") else path
-    output_dir.mkdir(parents=True, exist_ok=True)
-
-    results_str = json.dumps(results, indent=2, default=_handle_non_serializable)
-    if args.show_config:
-        logger.info(results_str)
-
-    file_path = os.path.join(args.output_path, "results.json")
-    with open(file_path , "w", encoding="utf-8") as f:
-        f.write(results_str)
-
-    if args.log_samples:
-        samples = results.pop("samples", {})
-        for task_name, _ in results.get("configs", {}).items():
-            output_name = re.sub(r"/|=", "__", args.model_args) + "_" + task_name
-            sample_file = output_dir.joinpath(f"{output_name}.jsonl")
-            sample_data = json.dumps(
-                samples.get(task_name, {}), indent=2, default=_handle_non_serializable
-            )
-            sample_file.write_text(sample_data, encoding="utf-8")
-
-    batch_sizes = ",".join(map(str, results.get("config", {}).get("batch_sizes", [])))
-    summary = f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
-    logger.info(summary)
-    logger.info(make_table(results))
-    if "groups" in results:
-        logger.info(make_table(results, "groups"))
-
-
-def load_tasks(args):
-    if args.open_llm_leaderboard_tasks:
-        current_dir = os.getcwd()
-        config_dir = os.path.join(current_dir, "open_llm_leaderboard")
-        task_manager = tasks.TaskManager(include_path=config_dir)
-        return task_manager, [
-            "arc_challenge_25_shot",
-            "hellaswag_10_shot",
-            "truthfulqa_mc2",
-            "winogrande_5_shot",
-            "gsm8k",
-            "mmlu",
-        ]
-    return None, args.tasks.split(",") if args.tasks else []
-
-
-def parse_eval_args():
-    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
-    parser.add_argument(
-        "--model", "-m", default="hf", help="Name of model, e.g., `hf`."
-    )
-    parser.add_argument(
-        "--tasks",
-        "-t",
-        default=None,
-        help="Comma-separated list of tasks, or 'list' to display available tasks.",
-    )
-    parser.add_argument(
-        "--model_args",
-        "-a",
-        default="",
-        help="Comma-separated string arguments for model, e.g., `pretrained=EleutherAI/pythia-160m`.",
-    )
-    parser.add_argument(
-        "--open_llm_leaderboard_tasks",
-        "-oplm",
-        action="store_true",
-        default=False,
-        help="Choose the list of tasks with specification in HF open LLM-leaderboard.",
-    )
-    parser.add_argument(
-        "--num_fewshot",
-        "-f",
-        type=int,
-        default=None,
-        help="Number of examples in few-shot context.",
-    )
-    parser.add_argument(
-        "--batch_size",
-        "-b",
-        default=1,
-        help="Batch size, can be 'auto', 'auto:N', or an integer.",
-    )
-    parser.add_argument(
-        "--max_batch_size",
-        type=int,
-        default=None,
-        help="Maximal batch size with 'auto' batch size.",
-    )
-    parser.add_argument(
-        "--device", default=None, help="Device for evaluation, e.g., 'cuda', 'cpu'."
-    )
-    parser.add_argument(
-        "--output_path", "-o", type=str, default=None, help="Path for saving results."
-    )
-    parser.add_argument(
-        "--limit",
-        "-L",
-        type=float,
-        default=None,
-        help="Limit number of examples per task.",
-    )
-    parser.add_argument(
-        "--use_cache", "-c", default=None, help="Path to cache db file, if used."
-    )
-    parser.add_argument(
-        "--verbosity",
-        "-v",
-        default="INFO",
-        help="Logging level: CRITICAL, ERROR, WARNING, INFO, DEBUG.",
-    )
-    parser.add_argument(
-        "--gen_kwargs",
-        default=None,
-        help="Generation kwargs for tasks that support it.",
-    )
-    parser.add_argument(
-        "--check_integrity",
-        action="store_true",
-        help="Whether to run the relevant part of the test suite for the tasks.",
-    )
-    parser.add_argument(
-        "--write_out",
-        "-w",
-        action="store_true",
-        default=False,
-        help="Prints the prompt for the first few documents.",
-    )
-    parser.add_argument(
-        "--log_samples",
-        "-s",
-        action="store_true",
-        default=False,
-        help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis.",
-    )
-    parser.add_argument(
-        "--show_config",
-        action="store_true",
-        default=False,
-        help="If True, shows the full config of all tasks at the end of the evaluation.",
-    )
-    parser.add_argument(
-        "--include_path",
-        type=str,
-        default=None,
-        help="Additional path to include if there are external tasks.",
-    )
-    return parser.parse_args()
-
-
-def evaluate_model(args):
-    try:
-        task_manager, task_list = load_tasks(args)
-        # Customized model such as Quantized model etc.
-        # In case you are working with a custom model, you can use the following guide to add it here:
-        # https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage
-
-        # Evaluate
-        results = lm_eval.simple_evaluate(
-            model=args.model,
-            model_args=args.model_args,
-            tasks=task_list,
-            num_fewshot=args.num_fewshot,
-            batch_size=args.batch_size,
-            max_batch_size=args.max_batch_size,
-            device=args.device,
-            use_cache=args.use_cache,
-            limit=args.limit,
-            check_integrity=args.check_integrity,
-            write_out=args.write_out,
-            log_samples=args.log_samples,
-            gen_kwargs=args.gen_kwargs,
-            task_manager=task_manager,
-        )
-        handle_output(args, results, logger)
-
-    except Exception as e:
-        logger.error(f"An error occurred during evaluation: {e}")
-        sys.exit(1)
-
-
-if __name__ == "__main__":
-    args = parse_eval_args()
-    logger = setup_logging(args.verbosity)
-    evaluate_model(args)

Разница между файлами не показана из-за своего большого размера
+ 24 - 44
tools/benchmarks/llm_eval_harness/meta_eval_reproduce/README.md


+ 3 - 3
tools/benchmarks/llm_eval_harness/meta_eval_reproduce/eval_config.yaml

@@ -1,7 +1,7 @@
-model_name: "meta-llama/Meta-Llama-3.1-8B-Instruct" # The name of the model to evaluate. This must be a valid Meta Llama 3 based model name in the HuggingFace model hub."
+model_name: "meta-llama/Llama-3.1-8B-Instruct" # The name of the model to evaluate. This must be a valid Meta Llama 3 based model name in the HuggingFace model hub."
 
-evals_dataset: "meta-llama/Meta-Llama-3.1-8B-Instruct-evals" # The name of the 3.1 evals dataset to evaluate, please make sure this eval dataset corresponds to the model loaded. This must be a valid Meta Llama 3.1 evals dataset name in the Llama 3.1 Evals collection.
-# Must be one of the following ["meta-llama/Meta-Llama-3.1-8B-Instruct-evals","meta-llama/Meta-Llama-3.1-70B-Instruct-evals","meta-llama/Meta-Llama-3.1-405B-Instruct-evals","meta-llama/Meta-Llama-3.1-8B-evals","meta-llama/Meta-Llama-3.1-70B-evals","meta-llama/Meta-Llama-3.1-405B-evals"]
+evals_dataset: "meta-llama/Llama-3.1-8B-Instruct-evals" # The name of the 3.1 evals dataset to evaluate, please make sure this eval dataset corresponds to the model loaded. This must be a valid Meta Llama 3.1 evals dataset name in the Llama 3.1 Evals collection.
+# Must be one of the following ["meta-llama/Llama-3.1-8B-Instruct-evals","meta-llama/Llama-3.1-70B-Instruct-evals","meta-llama/Llama-3.1-405B-Instruct-evals","meta-llama/Llama-3.1-8B-evals","meta-llama/Llama-3.1-70B-evals","meta-llama/Llama-3.1-405B-evals"]
 
 tasks: "meta_instruct" # Available tasks for instruct model: "meta_math_hard", "meta_gpqa", "meta_mmlu_pro_instruct", "meta_ifeval"; or just use "meta_instruct" to run all of them.
 # Available tasks for pretrain model: "meta_bbh", "meta_mmlu_pro_pretrain"; or just use "meta_pretrain" to run all of them.

+ 2 - 2
tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/bbh/bbh_3shot_cot.yaml

@@ -1,5 +1,5 @@
-dataset_path: meta-llama/Meta-Llama-3.1-8B-evals
-dataset_name: Meta-Llama-3.1-8B-evals__bbh__details
+dataset_path: meta-llama/Llama-3.1-8B-evals
+dataset_name: Llama-3.1-8B-evals__bbh__details
 task: meta_bbh
 output_type: generate_until
 process_docs: !function utils.process_docs

tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/bbh/utils.py → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/bbh/utils.py


+ 2 - 2
tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/gpqa_cot/gpqa_0shot_cot.yaml

@@ -1,5 +1,5 @@
-dataset_path: meta-llama/Meta-Llama-3.1-8B-Instruct-evals
-dataset_name: Meta-Llama-3.1-8B-Instruct-evals__gpqa__details
+dataset_path: meta-llama/Llama-3.1-8B-Instruct-evals
+dataset_name: Llama-3.1-8B-Instruct-evals__gpqa__details
 task: meta_gpqa
 output_type: generate_until
 process_docs: !function utils.process_docs

tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/gpqa_cot/utils.py → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/gpqa_cot/utils.py


tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/ifeval/ifeval.yaml → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/ifeval/ifeval.yaml


tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/ifeval/utils.py → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/ifeval/utils.py


tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/math_hard/math_hard_0shot_cot.yaml → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/math_hard/math_hard_0shot_cot.yaml


tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/math_hard/utils.py → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/math_hard/utils.py


tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/meta_instruct.yaml → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/meta_instruct.yaml


tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/meta_pretrain.yaml → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/meta_pretrain.yaml


+ 2 - 2
tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/mmlu_pro/mmlu_pro_5shot_cot_instruct.yaml

@@ -1,6 +1,6 @@
 task: meta_mmlu_pro_instruct
-dataset_path: meta-llama/Meta-Llama-3.1-8B-Instruct-evals
-dataset_name: Meta-Llama-3.1-8B-Instruct-evals__mmlu_pro__details
+dataset_path: meta-llama/Llama-3.1-8B-Instruct-evals
+dataset_name: Llama-3.1-8B-Instruct-evals__mmlu_pro__details
 test_split: latest
 output_type: generate_until
 process_docs: !function utils.process_docs

+ 2 - 2
tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/mmlu_pro/mmlu_pro_5shot_cot_pretrain.yaml

@@ -1,6 +1,6 @@
 task: meta_mmlu_pro_pretrain
-dataset_path: meta-llama/Meta-Llama-3.1-8B-evals
-dataset_name: Meta-Llama-3.1-8B-evals__mmlu_pro__details
+dataset_path: meta-llama/Llama-3.1-8B-evals
+dataset_name: Llama-3.1-8B-evals__mmlu_pro__details
 test_split: latest
 output_type: generate_until
 process_docs: !function utils.process_docs

tools/benchmarks/llm_eval_harness/meta_eval_reproduce/meta_template/mmlu_pro/utils.py → tools/benchmarks/llm_eval_harness/meta_eval/meta_template/mmlu_pro/utils.py


+ 15 - 15
tools/benchmarks/llm_eval_harness/meta_eval_reproduce/prepare_meta_eval.py

@@ -16,12 +16,12 @@ from datasets import Dataset, load_dataset
 def get_ifeval_data(model_name, output_dir):
     print(f"preparing the ifeval data using {model_name}'s evals dataset")
     if model_name not in [
-        "Meta-Llama-3.1-8B-Instruct",
-        "Meta-Llama-3.1-70B-Instruct",
-        "Meta-Llama-3.1-405B-Instruct",
+        "Llama-3.1-8B-Instruct",
+        "Llama-3.1-70B-Instruct",
+        "Llama-3.1-405B-Instruct",
     ]:
         raise ValueError(
-            "Only Meta-Llama-3.1-8B-Instruct, Meta-Llama-3.1-70B-Instruct, Meta-Llama-3.1-405B-Instruct models are supported for IFEval"
+            "Only Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, Llama-3.1-405B-Instruct models are supported for IFEval"
         )
     original_dataset_name = "wis-k/instruction-following-eval"
     meta_dataset_name = f"meta-llama/{model_name}-evals"
@@ -59,12 +59,12 @@ def get_ifeval_data(model_name, output_dir):
 def get_math_data(model_name, output_dir):
     print(f"preparing the math data using {model_name}'s evals dataset")
     if model_name not in [
-        "Meta-Llama-3.1-8B-Instruct",
-        "Meta-Llama-3.1-70B-Instruct",
-        "Meta-Llama-3.1-405B-Instruct",
+        "Llama-3.1-8B-Instruct",
+        "Llama-3.1-70B-Instruct",
+        "Llama-3.1-405B-Instruct",
     ]:
         raise ValueError(
-            "Only Meta-Llama-3.1-8B-Instruct, Meta-Llama-3.1-70B-Instruct, Meta-Llama-3.1-405B-Instruct models are supported for MATH_hard"
+            "Only Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, Llama-3.1-405B-Instruct models are supported for MATH_hard"
         )
     original_dataset_name = "lighteval/MATH-Hard"
     meta_dataset_name = f"meta-llama/{model_name}-evals"
@@ -130,7 +130,7 @@ def change_yaml(args, base_name):
         with open(output_path, "w") as output:
             for line in lines:
                 output.write(
-                    line.replace("Meta-Llama-3.1-8B", base_name).replace(
+                    line.replace("Llama-3.1-8B", base_name).replace(
                         "WORK_DIR", str(yaml_dir)
                     )
                 )
@@ -208,12 +208,12 @@ if __name__ == "__main__":
     if not os.path.exists(args.template_dir):
         raise ValueError("The template_dir does not exist, please check the path")
     if args.evals_dataset not in [
-        "meta-llama/Meta-Llama-3.1-8B-Instruct-evals",
-        "meta-llama/Meta-Llama-3.1-70B-Instruct-evals",
-        "meta-llama/Meta-Llama-3.1-405B-Instruct-evals",
-        "meta-llama/Meta-Llama-3.1-8B-evals",
-        "meta-llama/Meta-Llama-3.1-70B-evals",
-        "meta-llama/Meta-Llama-3.1-405B-evals",
+        "meta-llama/Llama-3.1-8B-Instruct-evals",
+        "meta-llama/Llama-3.1-70B-Instruct-evals",
+        "meta-llama/Llama-3.1-405B-Instruct-evals",
+        "meta-llama/Llama-3.1-8B-evals",
+        "meta-llama/Llama-3.1-70B-evals",
+        "meta-llama/Llama-3.1-405B-evals",
     ]:
         raise ValueError(
             "The evals dataset is not valid, please double check the name, must use the name in the Llama 3.1 Evals collection"

+ 0 - 25
tools/benchmarks/llm_eval_harness/open_llm_eval_prep.sh

@@ -1,25 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
-
-#!/bin/bash
-
-# Prompt the user for the EVAL_PATH
-read -p "Enter the asbolute path to the lm-evaluation-harness: " EVAL_PATH
-conda activate 
-# Directory containing YAML files
-DIR="open_llm_leaderboard"
-
-# Check if the directory exists
-if [ ! -d "$DIR" ]; then
-    echo "Error: Directory '$DIR' not found."
-    exit 1
-fi
-
-# Iterate over YAML files in the directory and update them
-for YAML_FILE in "$DIR"/*.yaml
-do
-    if [ -f "$YAML_FILE" ]; then
-        sed -i 's|{\$EVAL_PATH}|'"$EVAL_PATH"'|g' "$YAML_FILE"
-        echo "Updated $YAML_FILE with EVAL_PATH: $EVAL_PATH"
-    fi
-done

+ 0 - 6
tools/benchmarks/llm_eval_harness/open_llm_leaderboard/arc_challeneg_25shots.yaml

@@ -1,6 +0,0 @@
-include: {$EVAL_PATH}/lm_eval/tasks/arc/arc_challenge.yaml
-task: arc_challenge_25_shot
-task_alias: arc 25 shot
-num_fewshot: 25
-metric_list:
-  - metric: acc_norm

+ 0 - 6
tools/benchmarks/llm_eval_harness/open_llm_leaderboard/hellaswag_10shots.yaml

@@ -1,6 +0,0 @@
-include: {$EVAL_PATH}/lm_eval/tasks/hellaswag/hellaswag.yaml
-task: hellaswag_10_shot
-task_alias: hellaswag 10 shot
-num_fewshot: 10
-metric_list:
-  - metric: acc_norm

+ 0 - 24
tools/benchmarks/llm_eval_harness/open_llm_leaderboard/hellaswag_utils.py

@@ -1,24 +0,0 @@
-import datasets
-import re
-
-
-def preprocess(text):
-    text = text.strip()
-    # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
-    text = text.replace(" [title]", ". ")
-    text = re.sub("\\[.*?\\]", "", text)
-    text = text.replace("  ", " ")
-    return text
-
-
-def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
-    def _process_doc(doc):
-        ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize()
-        out_doc = {
-            "query": preprocess(doc["activity_label"] + ": " + ctx),
-            "choices": [preprocess(ending) for ending in doc["endings"]],
-            "gold": int(doc["label"]),
-        }
-        return out_doc
-
-    return dataset.map(_process_doc)

+ 0 - 9
tools/benchmarks/llm_eval_harness/open_llm_leaderboard/mmlu_5shots.yaml

@@ -1,9 +0,0 @@
-include: {$EVAL_PATH}/lm_eval/tasks/mmlu/default/_mmlu.yaml
-task:
-  - mmlu_stem
-  - mmlu_other
-  - mmlu_social_sciences
-  - mmlu_humanities
-num_fewshot: 5
-metric_list:
-  - metric: acc

+ 0 - 6
tools/benchmarks/llm_eval_harness/open_llm_leaderboard/winogrande_5shots.yaml

@@ -1,6 +0,0 @@
-include: {$EVAL_PATH}/lm_eval/tasks/winogrande/default.yaml
-task: winogrande_5_shot
-task_alias: winogrande 5 shot
-num_fewshot: 5
-metric_list:
-  - metric: acc