|
@@ -341,9 +341,8 @@ class SinkCache(Cache):
|
|
|
|
|
|
class HHCache(Cache):
|
|
|
"""
|
|
|
- A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
|
|
|
- generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
|
|
|
- tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
|
|
|
+ A cache that apply heavy-hitter oracle (https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf).
|
|
|
+ Only the heavy-hitter and the recent tokens are stored in the cache.
|
|
|
|
|
|
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
|
|
`[batch_size, num_heads, seq_len, head_dim]`.
|
|
@@ -351,62 +350,39 @@ class HHCache(Cache):
|
|
|
Parameters:
|
|
|
window_length (`int`):
|
|
|
The length of the context window.
|
|
|
- num_sink_tokens (`int`):
|
|
|
- The number of sink tokens. See the original paper for more information.
|
|
|
+ num_hh_tokens (`int`):
|
|
|
+ The number of heavy hitter tokens. See the original paper for more information.
|
|
|
"""
|
|
|
|
|
|
- def __init__(self, window_length: int, num_sink_tokens: int) -> None:
|
|
|
+ def __init__(self) -> None:
|
|
|
self.key_cache: List[torch.Tensor] = []
|
|
|
self.value_cache: List[torch.Tensor] = []
|
|
|
- self.window_length = window_length
|
|
|
- self.num_sink_tokens = num_sink_tokens
|
|
|
- self.cos_sin_cache = {}
|
|
|
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
|
|
|
|
|
- @staticmethod
|
|
|
- def _rotate_half(x):
|
|
|
- x1 = x[..., : x.shape[-1] // 2]
|
|
|
- x2 = x[..., x.shape[-1] // 2 :]
|
|
|
- return torch.cat((-x2, x1), dim=-1)
|
|
|
-
|
|
|
- def _apply_key_rotary_pos_emb(
|
|
|
- self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
|
|
- ) -> torch.Tensor:
|
|
|
- rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
|
|
|
- return rotated_key_states
|
|
|
-
|
|
|
- def _get_rerotation_cos_sin(
|
|
|
- self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
|
|
- ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
- if key_states.shape[-2] not in self.cos_sin_cache:
|
|
|
- # Upcast to float32 temporarily for better accuracy
|
|
|
- cos = cos.to(torch.float32)
|
|
|
- sin = sin.to(torch.float32)
|
|
|
-
|
|
|
- # Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
|
|
|
- original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
|
|
|
- shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
|
|
|
- original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
|
|
|
- shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
|
|
|
- rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
|
|
|
- rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
|
|
|
-
|
|
|
- self.cos_sin_cache[key_states.shape[-2]] = (
|
|
|
- rerotation_cos.to(key_states.dtype).unsqueeze(0),
|
|
|
- rerotation_sin.to(key_states.dtype).unsqueeze(0),
|
|
|
- )
|
|
|
- return self.cos_sin_cache[key_states.shape[-2]]
|
|
|
+ def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
|
|
+ sequence length.
|
|
|
+ """
|
|
|
+ if layer_idx < len(self):
|
|
|
+ return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
|
+ else:
|
|
|
+ raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
|
|
|
|
|
- def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
|
- """Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
|
- # Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
|
|
- if len(self.key_cache) <= layer_idx:
|
|
|
- return 0
|
|
|
- return self.key_cache[layer_idx].shape[-2]
|
|
|
+ def __iter__(self):
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
|
|
+ keys and values
|
|
|
+ """
|
|
|
+ for layer_idx in range(len(self)):
|
|
|
+ yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
|
|
|
|
- def get_max_length(self) -> Optional[int]:
|
|
|
- """Returns the maximum sequence length of the cached states."""
|
|
|
- return self.window_length
|
|
|
+ def __len__(self):
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
|
|
+ to the number of layers in the model.
|
|
|
+ """
|
|
|
+ return len(self.key_cache)
|
|
|
|
|
|
def update(
|
|
|
self,
|
|
@@ -426,66 +402,34 @@ class HHCache(Cache):
|
|
|
layer_idx (`int`):
|
|
|
The index of the layer to cache the states for.
|
|
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
|
- Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
|
|
|
- `cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
|
|
|
- rotation as the tokens are shifted.
|
|
|
+ Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
|
|
|
Return:
|
|
|
A tuple containing the updated key and value states.
|
|
|
"""
|
|
|
- # Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
|
|
|
- # with partially rotated position embeddings, like Phi or Persimmon.
|
|
|
- sin = cache_kwargs.get("sin")
|
|
|
- cos = cache_kwargs.get("cos")
|
|
|
- partial_rotation_size = cache_kwargs.get("partial_rotation_size")
|
|
|
- using_rope = cos is not None and sin is not None
|
|
|
-
|
|
|
# Update the number of seen tokens
|
|
|
if layer_idx == 0:
|
|
|
self._seen_tokens += key_states.shape[-2]
|
|
|
|
|
|
- # [bsz, num_heads, seq_len, head_dim]
|
|
|
+ # Update the cache
|
|
|
if len(self.key_cache) <= layer_idx:
|
|
|
- # Empty cache
|
|
|
self.key_cache.append(key_states)
|
|
|
self.value_cache.append(value_states)
|
|
|
-
|
|
|
- elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
|
|
|
- # Growing cache
|
|
|
+ else:
|
|
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
|
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
|
|
|
|
|
- else:
|
|
|
- # Shifting cache
|
|
|
- keys_to_keep = self.key_cache[layer_idx][
|
|
|
- :, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
|
|
|
- ]
|
|
|
-
|
|
|
- # On RoPE models, we need to recompute the Key rotation as the tokens are shifted
|
|
|
- if using_rope:
|
|
|
- rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
|
|
|
- key_states, cos[: self.window_length], sin[: self.window_length]
|
|
|
- )
|
|
|
- if partial_rotation_size is not None:
|
|
|
- keys_to_keep, keys_pass = (
|
|
|
- keys_to_keep[..., :partial_rotation_size],
|
|
|
- keys_to_keep[..., partial_rotation_size:],
|
|
|
- )
|
|
|
- keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
|
|
|
- if partial_rotation_size is not None:
|
|
|
- keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
|
|
|
-
|
|
|
- # Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
|
|
|
- sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
|
|
|
- self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
|
|
|
+ return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
|
|
|
- sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
|
|
|
- values_to_keep = self.value_cache[layer_idx][
|
|
|
- :, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
|
|
|
- ]
|
|
|
- self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
|
|
|
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
|
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
|
+ if len(self.key_cache) <= layer_idx:
|
|
|
+ return 0
|
|
|
+ return self.key_cache[layer_idx].shape[-2]
|
|
|
|
|
|
- return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
+ def get_max_length(self) -> Optional[int]:
|
|
|
+ """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
|
|
+ return None
|
|
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
|
"""Reorders the cache for beam search, given the selected beam indices."""
|
|
@@ -495,6 +439,23 @@ class HHCache(Cache):
|
|
|
device = self.value_cache[layer_idx].device
|
|
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
|
|
|
+ def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
|
|
+ """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
|
|
|
+ legacy_cache = ()
|
|
|
+ for layer_idx in range(len(self)):
|
|
|
+ legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
|
|
+ return legacy_cache
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
|
|
+ """Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
|
|
|
+ cache = cls()
|
|
|
+ if past_key_values is not None:
|
|
|
+ for layer_idx in range(len(past_key_values)):
|
|
|
+ key_states, value_states = past_key_values[layer_idx]
|
|
|
+ cache.update(key_states, value_states, layer_idx)
|
|
|
+ return cache
|
|
|
+
|
|
|
|
|
|
class StaticCache(Cache):
|
|
|
"""
|
|
@@ -587,4 +548,5 @@ class StaticCache(Cache):
|
|
|
|
|
|
def to_legacy_cache(self):
|
|
|
"""Dummy function for BC. We have to keep it because otherwise the call in the forward of models will break it"""
|
|
|
- return None
|
|
|
+ return None
|
|
|
+
|