|
@@ -301,7 +301,7 @@ Tool calling returned: [{'message_id': '1936ef72ad3f30e8', 'sender': 'gmagent_te
|
|
|
# TODOs
|
|
|
|
|
|
1. Port the app to using [Llama Stack](https://github.com/meta-llama/llama-stack) Agents API.
|
|
|
-2. Improve the search, reply, forward, create email draft, and query about attachments to cover all listed and other examples in `functions_prompt.py`.
|
|
|
+2. Improve the search, reply, forward, create email draft, and query about types of attachments.
|
|
|
3. Improve the fallback and error handling mechanism when the user asks don't lead to a correct function calling spec or the function calling fails.
|
|
|
4. Improve the user experience by showing progress when some Gmail search API calls take long (minutes) to complete.
|
|
|
5. Implement the async behavior of Gmagent - schedule an email to be sent later.
|
|
@@ -311,17 +311,17 @@ Tool calling returned: [{'message_id': '1936ef72ad3f30e8', 'sender': 'gmagent_te
|
|
|
9. Introduce multiple-agent collaboration.
|
|
|
10. Implement the agent observability.
|
|
|
11. Compare different agent frameworks using Gmagent as the case study.
|
|
|
-12. Productionize Gmagent.
|
|
|
+12. Add and implement a test plan and productionize Gmagent.
|
|
|
|
|
|
|
|
|
# Resources
|
|
|
1. Lilian Weng's blog [LLM Powered Autonomous Agents](https://lilianweng.github.io/posts/2023-06-23-agent/)
|
|
|
-2. Andrew Ng's posts [Agentic Design Patterns](https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/)
|
|
|
+2. Andrew Ng's posts [Agentic Design Patterns](https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/) with basic [implementations from scratch](https://github.com/neural-maze/agentic_patterns).
|
|
|
3. LangChain's survey [State of AI Agents](https://www.langchain.com/stateofaiagents)
|
|
|
4. Deloitte's report [AI agents and multiagent systems](https://www2.deloitte.com/content/dam/Deloitte/us/Documents/consulting/us-ai-institute-generative-ai-agents-multiagent-systems.pdf)
|
|
|
5. Letta's blog [The AI agents stack](https://www.letta.com/blog/ai-agents-stack)
|
|
|
6. Microsoft's multi-agent system [Magentic-One](https://www.microsoft.com/en-us/research/articles/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks)
|
|
|
7. Amazon's [Multi-Agent Orchestrator framework](https://awslabs.github.io/multi-agent-orchestrator/)
|
|
|
-8. Deeplearning.ai's [agent related courses](https://www.deeplearning.ai/courses/?courses_date_desc%5Bquery%5D=agents) (Meta, AWS, Microsoft, LangChain, LlamaIndex, crewAI, AutoGen) and some [lessons ported to using Llama](https://github.com/meta-llama/llama-recipes/tree/main/recipes/quickstart/agents/DeepLearningai_Course_Notebooks).
|
|
|
+8. Deeplearning.ai's [agent related courses](https://www.deeplearning.ai/courses/?courses_date_desc%5Bquery%5D=agents) (Meta, AWS, Microsoft, LangChain, LlamaIndex, crewAI, AutoGen, Letta) and some [lessons ported to using Llama](https://github.com/meta-llama/llama-recipes/tree/main/recipes/quickstart/agents/DeepLearningai_Course_Notebooks).
|
|
|
9. Felicis's [The Agentic Web](https://www.felicis.com/insight/the-agentic-web)
|
|
|
10. A pretty complete [list of AI agents](https://github.com/e2b-dev/awesome-ai-agents), not including [/dev/agents](https://sdsa.ai/), a very new startup building the next-gen OS for AI agents, though.
|