|
@@ -1,460 +0,0 @@
|
|
|
-"""Benchmark offline inference throughput."""
|
|
|
-import argparse
|
|
|
-import json
|
|
|
-import random
|
|
|
-import time
|
|
|
-from typing import List, Optional, Tuple
|
|
|
-
|
|
|
-import torch
|
|
|
-from tqdm import tqdm
|
|
|
-from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
|
|
- PreTrainedTokenizerBase)
|
|
|
-
|
|
|
-from vllm.engine.arg_utils import EngineArgs
|
|
|
-from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
|
|
|
-from vllm.utils import FlexibleArgumentParser
|
|
|
-
|
|
|
-
|
|
|
-def sample_requests(
|
|
|
- dataset_path: str,
|
|
|
- num_requests: int,
|
|
|
- tokenizer: PreTrainedTokenizerBase,
|
|
|
- fixed_output_len: Optional[int],
|
|
|
-) -> List[Tuple[str, int, int]]:
|
|
|
- if fixed_output_len is not None and fixed_output_len < 4:
|
|
|
- raise ValueError("output_len too small")
|
|
|
-
|
|
|
- # Load the dataset.
|
|
|
- with open(dataset_path) as f:
|
|
|
- dataset = json.load(f)
|
|
|
- # Filter out the conversations with less than 2 turns.
|
|
|
- dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
|
|
- # Only keep the first two turns of each conversation.
|
|
|
- dataset = [(data["conversations"][0]["value"],
|
|
|
- data["conversations"][1]["value"]) for data in dataset]
|
|
|
-
|
|
|
- # Shuffle the dataset.
|
|
|
- random.shuffle(dataset)
|
|
|
-
|
|
|
- # Filter out sequences that are too long or too short
|
|
|
- filtered_dataset: List[Tuple[str, int, int]] = []
|
|
|
- for i in range(len(dataset)):
|
|
|
- if len(filtered_dataset) == num_requests:
|
|
|
- break
|
|
|
-
|
|
|
- # Tokenize the prompts and completions.
|
|
|
- prompt = dataset[i][0]
|
|
|
- prompt_token_ids = tokenizer(prompt).input_ids
|
|
|
- completion = dataset[i][1]
|
|
|
- completion_token_ids = tokenizer(completion).input_ids
|
|
|
- prompt_len = len(prompt_token_ids)
|
|
|
- output_len = len(completion_token_ids
|
|
|
- ) if fixed_output_len is None else fixed_output_len
|
|
|
- if prompt_len < 4 or output_len < 4:
|
|
|
- # Prune too short sequences.
|
|
|
- continue
|
|
|
- if prompt_len > 1024 or prompt_len + output_len > 2048:
|
|
|
- # Prune too long sequences.
|
|
|
- continue
|
|
|
- filtered_dataset.append((prompt, prompt_len, output_len))
|
|
|
-
|
|
|
- return filtered_dataset
|
|
|
-
|
|
|
-
|
|
|
-def run_vllm(
|
|
|
- requests: List[Tuple[str, int, int]],
|
|
|
- model: str,
|
|
|
- tokenizer: str,
|
|
|
- quantization: Optional[str],
|
|
|
- tensor_parallel_size: int,
|
|
|
- seed: int,
|
|
|
- n: int,
|
|
|
- use_beam_search: bool,
|
|
|
- trust_remote_code: bool,
|
|
|
- dtype: str,
|
|
|
- max_model_len: Optional[int],
|
|
|
- enforce_eager: bool,
|
|
|
- kv_cache_dtype: str,
|
|
|
- quantization_param_path: Optional[str],
|
|
|
- device: str,
|
|
|
- enable_prefix_caching: bool,
|
|
|
- enable_chunked_prefill: bool,
|
|
|
- max_num_batched_tokens: int,
|
|
|
- distributed_executor_backend: Optional[str],
|
|
|
- gpu_memory_utilization: float = 0.9,
|
|
|
- num_scheduler_steps: int = 1,
|
|
|
- use_v2_block_manager: bool = False,
|
|
|
- download_dir: Optional[str] = None,
|
|
|
- load_format: str = EngineArgs.load_format,
|
|
|
- disable_async_output_proc: bool = False,
|
|
|
-) -> float:
|
|
|
- from vllm import LLM, SamplingParams
|
|
|
- llm = LLM(
|
|
|
- model=model,
|
|
|
- tokenizer=tokenizer,
|
|
|
- quantization=quantization,
|
|
|
- tensor_parallel_size=tensor_parallel_size,
|
|
|
- seed=seed,
|
|
|
- trust_remote_code=trust_remote_code,
|
|
|
- dtype=dtype,
|
|
|
- max_model_len=max_model_len,
|
|
|
- gpu_memory_utilization=gpu_memory_utilization,
|
|
|
- enforce_eager=enforce_eager,
|
|
|
- kv_cache_dtype=kv_cache_dtype,
|
|
|
- quantization_param_path=quantization_param_path,
|
|
|
- device=device,
|
|
|
- enable_prefix_caching=enable_prefix_caching,
|
|
|
- download_dir=download_dir,
|
|
|
- enable_chunked_prefill=enable_chunked_prefill,
|
|
|
- max_num_batched_tokens=max_num_batched_tokens,
|
|
|
- distributed_executor_backend=distributed_executor_backend,
|
|
|
- load_format=load_format,
|
|
|
- num_scheduler_steps=num_scheduler_steps,
|
|
|
- use_v2_block_manager=use_v2_block_manager,
|
|
|
- disable_async_output_proc=disable_async_output_proc,
|
|
|
- )
|
|
|
-
|
|
|
- # Add the requests to the engine.
|
|
|
- prompts: List[str] = []
|
|
|
- sampling_params: List[SamplingParams] = []
|
|
|
- for prompt, _, output_len in requests:
|
|
|
- prompts.append(prompt)
|
|
|
- sampling_params.append(
|
|
|
- SamplingParams(
|
|
|
- n=n,
|
|
|
- temperature=0.0 if use_beam_search else 1.0,
|
|
|
- top_p=1.0,
|
|
|
- use_beam_search=use_beam_search,
|
|
|
- ignore_eos=True,
|
|
|
- max_tokens=output_len,
|
|
|
- ))
|
|
|
-
|
|
|
- start = time.perf_counter()
|
|
|
- llm.generate(prompts, sampling_params, use_tqdm=True)
|
|
|
- end = time.perf_counter()
|
|
|
- return end - start
|
|
|
-
|
|
|
-
|
|
|
-def run_hf(
|
|
|
- requests: List[Tuple[str, int, int]],
|
|
|
- model: str,
|
|
|
- tokenizer: PreTrainedTokenizerBase,
|
|
|
- n: int,
|
|
|
- use_beam_search: bool,
|
|
|
- max_batch_size: int,
|
|
|
- trust_remote_code: bool,
|
|
|
-) -> float:
|
|
|
- assert not use_beam_search
|
|
|
- llm = AutoModelForCausalLM.from_pretrained(
|
|
|
- model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
|
|
|
- if llm.config.model_type == "llama":
|
|
|
- # To enable padding in the HF backend.
|
|
|
- tokenizer.pad_token = tokenizer.eos_token
|
|
|
- llm = llm.cuda()
|
|
|
-
|
|
|
- pbar = tqdm(total=len(requests))
|
|
|
- start = time.perf_counter()
|
|
|
- batch: List[str] = []
|
|
|
- max_prompt_len = 0
|
|
|
- max_output_len = 0
|
|
|
- for i in range(len(requests)):
|
|
|
- prompt, prompt_len, output_len = requests[i]
|
|
|
- # Add the prompt to the batch.
|
|
|
- batch.append(prompt)
|
|
|
- max_prompt_len = max(max_prompt_len, prompt_len)
|
|
|
- max_output_len = max(max_output_len, output_len)
|
|
|
- if len(batch) < max_batch_size and i != len(requests) - 1:
|
|
|
- # Check if we can add more requests to the batch.
|
|
|
- _, next_prompt_len, next_output_len = requests[i + 1]
|
|
|
- if (max(max_prompt_len, next_prompt_len) +
|
|
|
- max(max_output_len, next_output_len)) <= 2048:
|
|
|
- # We can add more requests to the batch.
|
|
|
- continue
|
|
|
-
|
|
|
- # Generate the sequences.
|
|
|
- input_ids = tokenizer(batch, return_tensors="pt",
|
|
|
- padding=True).input_ids
|
|
|
- llm_outputs = llm.generate(
|
|
|
- input_ids=input_ids.cuda(),
|
|
|
- do_sample=not use_beam_search,
|
|
|
- num_return_sequences=n,
|
|
|
- temperature=1.0,
|
|
|
- top_p=1.0,
|
|
|
- use_cache=True,
|
|
|
- max_new_tokens=max_output_len,
|
|
|
- )
|
|
|
- # Include the decoding time.
|
|
|
- tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
|
|
|
- pbar.update(len(batch))
|
|
|
-
|
|
|
- # Clear the batch.
|
|
|
- batch = []
|
|
|
- max_prompt_len = 0
|
|
|
- max_output_len = 0
|
|
|
- end = time.perf_counter()
|
|
|
- return end - start
|
|
|
-
|
|
|
-
|
|
|
-def run_mii(
|
|
|
- requests: List[Tuple[str, int, int]],
|
|
|
- model: str,
|
|
|
- tensor_parallel_size: int,
|
|
|
- output_len: int,
|
|
|
-) -> float:
|
|
|
- from mii import client, serve
|
|
|
- llm = serve(model, tensor_parallel=tensor_parallel_size)
|
|
|
- prompts = [prompt for prompt, _, _ in requests]
|
|
|
-
|
|
|
- start = time.perf_counter()
|
|
|
- llm.generate(prompts, max_new_tokens=output_len)
|
|
|
- end = time.perf_counter()
|
|
|
- client = client(model)
|
|
|
- client.terminate_server()
|
|
|
- return end - start
|
|
|
-
|
|
|
-
|
|
|
-def main(args: argparse.Namespace):
|
|
|
- print(args)
|
|
|
- random.seed(args.seed)
|
|
|
-
|
|
|
- # Sample the requests.
|
|
|
- tokenizer = AutoTokenizer.from_pretrained(
|
|
|
- args.tokenizer, trust_remote_code=args.trust_remote_code)
|
|
|
- if args.dataset is None:
|
|
|
- # Synthesize a prompt with the given input length.
|
|
|
- prompt = "hi" * (args.input_len - 1)
|
|
|
- requests = [(prompt, args.input_len, args.output_len)
|
|
|
- for _ in range(args.num_prompts)]
|
|
|
- else:
|
|
|
- requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
|
|
|
- args.output_len)
|
|
|
-
|
|
|
- if args.backend == "vllm":
|
|
|
- elapsed_time = run_vllm(
|
|
|
- requests, args.model, args.tokenizer, args.quantization,
|
|
|
- args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
|
|
|
- args.trust_remote_code, args.dtype, args.max_model_len,
|
|
|
- args.enforce_eager, args.kv_cache_dtype,
|
|
|
- args.quantization_param_path, args.device,
|
|
|
- args.enable_prefix_caching, args.enable_chunked_prefill,
|
|
|
- args.max_num_batched_tokens, args.distributed_executor_backend,
|
|
|
- args.gpu_memory_utilization, args.num_scheduler_steps,
|
|
|
- args.use_v2_block_manager, args.download_dir, args.load_format,
|
|
|
- args.disable_async_output_proc)
|
|
|
- elif args.backend == "hf":
|
|
|
- assert args.tensor_parallel_size == 1
|
|
|
- elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
|
|
|
- args.use_beam_search, args.hf_max_batch_size,
|
|
|
- args.trust_remote_code)
|
|
|
- elif args.backend == "mii":
|
|
|
- elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
|
|
|
- args.output_len)
|
|
|
- else:
|
|
|
- raise ValueError(f"Unknown backend: {args.backend}")
|
|
|
- total_num_tokens = sum(prompt_len + output_len
|
|
|
- for _, prompt_len, output_len in requests)
|
|
|
- print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
|
|
|
- f"{total_num_tokens / elapsed_time:.2f} tokens/s")
|
|
|
-
|
|
|
- # Output JSON results if specified
|
|
|
- if args.output_json:
|
|
|
- results = {
|
|
|
- "elapsed_time": elapsed_time,
|
|
|
- "num_requests": len(requests),
|
|
|
- "total_num_tokens": total_num_tokens,
|
|
|
- "requests_per_second": len(requests) / elapsed_time,
|
|
|
- "tokens_per_second": total_num_tokens / elapsed_time,
|
|
|
- }
|
|
|
- with open(args.output_json, "w") as f:
|
|
|
- json.dump(results, f, indent=4)
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == "__main__":
|
|
|
- parser = FlexibleArgumentParser(description="Benchmark the throughput.")
|
|
|
- parser.add_argument("--backend",
|
|
|
- type=str,
|
|
|
- choices=["vllm", "hf", "mii"],
|
|
|
- default="vllm")
|
|
|
- parser.add_argument("--dataset",
|
|
|
- type=str,
|
|
|
- default=None,
|
|
|
- help="Path to the dataset.")
|
|
|
- parser.add_argument("--input-len",
|
|
|
- type=int,
|
|
|
- default=None,
|
|
|
- help="Input prompt length for each request")
|
|
|
- parser.add_argument("--output-len",
|
|
|
- type=int,
|
|
|
- default=None,
|
|
|
- help="Output length for each request. Overrides the "
|
|
|
- "output length from the dataset.")
|
|
|
- parser.add_argument("--model", type=str, default="facebook/opt-125m")
|
|
|
- parser.add_argument("--tokenizer", type=str, default=None)
|
|
|
- parser.add_argument('--quantization',
|
|
|
- '-q',
|
|
|
- choices=[*QUANTIZATION_METHODS, None],
|
|
|
- default=None)
|
|
|
- parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
|
|
|
- parser.add_argument("--n",
|
|
|
- type=int,
|
|
|
- default=1,
|
|
|
- help="Number of generated sequences per prompt.")
|
|
|
- parser.add_argument("--use-beam-search", action="store_true")
|
|
|
- parser.add_argument("--num-prompts",
|
|
|
- type=int,
|
|
|
- default=1000,
|
|
|
- help="Number of prompts to process.")
|
|
|
- parser.add_argument("--seed", type=int, default=0)
|
|
|
- parser.add_argument("--hf-max-batch-size",
|
|
|
- type=int,
|
|
|
- default=None,
|
|
|
- help="Maximum batch size for HF backend.")
|
|
|
- parser.add_argument('--trust-remote-code',
|
|
|
- action='store_true',
|
|
|
- help='trust remote code from huggingface')
|
|
|
- parser.add_argument(
|
|
|
- '--max-model-len',
|
|
|
- type=int,
|
|
|
- default=None,
|
|
|
- help='Maximum length of a sequence (including prompt and output). '
|
|
|
- 'If None, will be derived from the model.')
|
|
|
- parser.add_argument(
|
|
|
- '--dtype',
|
|
|
- type=str,
|
|
|
- default='auto',
|
|
|
- choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
|
|
|
- help='data type for model weights and activations. '
|
|
|
- 'The "auto" option will use FP16 precision '
|
|
|
- 'for FP32 and FP16 models, and BF16 precision '
|
|
|
- 'for BF16 models.')
|
|
|
- parser.add_argument('--gpu-memory-utilization',
|
|
|
- type=float,
|
|
|
- default=0.9,
|
|
|
- help='the fraction of GPU memory to be used for '
|
|
|
- 'the model executor, which can range from 0 to 1.'
|
|
|
- 'If unspecified, will use the default value of 0.9.')
|
|
|
- parser.add_argument("--enforce-eager",
|
|
|
- action="store_true",
|
|
|
- help="enforce eager execution")
|
|
|
- parser.add_argument(
|
|
|
- '--kv-cache-dtype',
|
|
|
- type=str,
|
|
|
- choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
|
|
|
- default="auto",
|
|
|
- help='Data type for kv cache storage. If "auto", will use model '
|
|
|
- 'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
|
|
|
- 'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
|
|
|
- parser.add_argument(
|
|
|
- '--quantization-param-path',
|
|
|
- type=str,
|
|
|
- default=None,
|
|
|
- help='Path to the JSON file containing the KV cache scaling factors. '
|
|
|
- 'This should generally be supplied, when KV cache dtype is FP8. '
|
|
|
- 'Otherwise, KV cache scaling factors default to 1.0, which may cause '
|
|
|
- 'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
|
|
|
- 'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
|
|
|
- 'instead supported for common inference criteria.')
|
|
|
- parser.add_argument(
|
|
|
- "--device",
|
|
|
- type=str,
|
|
|
- default="auto",
|
|
|
- choices=["auto", "cuda", "cpu", "openvino", "tpu", "xpu"],
|
|
|
- help='device type for vLLM execution, supporting CUDA, OpenVINO and '
|
|
|
- 'CPU.')
|
|
|
- parser.add_argument(
|
|
|
- "--num-scheduler-steps",
|
|
|
- type=int,
|
|
|
- default=1,
|
|
|
- help="Maximum number of forward steps per scheduler call.")
|
|
|
- parser.add_argument("--use-v2-block-manager",
|
|
|
- action='store_true',
|
|
|
- help="Enable block manager v2.")
|
|
|
- parser.add_argument(
|
|
|
- "--enable-prefix-caching",
|
|
|
- action='store_true',
|
|
|
- help="Enable automatic prefix caching for vLLM backend.")
|
|
|
- parser.add_argument("--enable-chunked-prefill",
|
|
|
- action='store_true',
|
|
|
- help="enable chunked prefill for vLLM backend.")
|
|
|
- parser.add_argument('--max-num-batched-tokens',
|
|
|
- type=int,
|
|
|
- default=None,
|
|
|
- help='maximum number of batched tokens per '
|
|
|
- 'iteration')
|
|
|
- parser.add_argument('--download-dir',
|
|
|
- type=str,
|
|
|
- default=None,
|
|
|
- help='directory to download and load the weights, '
|
|
|
- 'default to the default cache dir of huggingface')
|
|
|
- parser.add_argument(
|
|
|
- '--output-json',
|
|
|
- type=str,
|
|
|
- default=None,
|
|
|
- help='Path to save the throughput results in JSON format.')
|
|
|
- parser.add_argument(
|
|
|
- '--distributed-executor-backend',
|
|
|
- choices=['ray', 'mp'],
|
|
|
- default=None,
|
|
|
- help='Backend to use for distributed serving. When more than 1 GPU '
|
|
|
- 'is used, will be automatically set to "ray" if installed '
|
|
|
- 'or "mp" (multiprocessing) otherwise.')
|
|
|
- parser.add_argument(
|
|
|
- '--load-format',
|
|
|
- type=str,
|
|
|
- default=EngineArgs.load_format,
|
|
|
- choices=[
|
|
|
- 'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
|
|
|
- 'bitsandbytes'
|
|
|
- ],
|
|
|
- help='The format of the model weights to load.\n\n'
|
|
|
- '* "auto" will try to load the weights in the safetensors format '
|
|
|
- 'and fall back to the pytorch bin format if safetensors format '
|
|
|
- 'is not available.\n'
|
|
|
- '* "pt" will load the weights in the pytorch bin format.\n'
|
|
|
- '* "safetensors" will load the weights in the safetensors format.\n'
|
|
|
- '* "npcache" will load the weights in pytorch format and store '
|
|
|
- 'a numpy cache to speed up the loading.\n'
|
|
|
- '* "dummy" will initialize the weights with random values, '
|
|
|
- 'which is mainly for profiling.\n'
|
|
|
- '* "tensorizer" will load the weights using tensorizer from '
|
|
|
- 'CoreWeave. See the Tensorize vLLM Model script in the Examples'
|
|
|
- 'section for more information.\n'
|
|
|
- '* "bitsandbytes" will load the weights using bitsandbytes '
|
|
|
- 'quantization.\n')
|
|
|
- parser.add_argument(
|
|
|
- "--disable-async-output-proc",
|
|
|
- action='store_true',
|
|
|
- default=False,
|
|
|
- help="Disable async output processor for vLLM backend.")
|
|
|
- args = parser.parse_args()
|
|
|
- if args.tokenizer is None:
|
|
|
- args.tokenizer = args.model
|
|
|
- if args.dataset is None:
|
|
|
- assert args.input_len is not None
|
|
|
- assert args.output_len is not None
|
|
|
- else:
|
|
|
- assert args.input_len is None
|
|
|
-
|
|
|
- if args.backend == "vllm":
|
|
|
- if args.hf_max_batch_size is not None:
|
|
|
- raise ValueError("HF max batch size is only for HF backend.")
|
|
|
- elif args.backend == "hf":
|
|
|
- if args.hf_max_batch_size is None:
|
|
|
- raise ValueError("HF max batch size is required for HF backend.")
|
|
|
- if args.quantization is not None:
|
|
|
- raise ValueError("Quantization is only for vLLM backend.")
|
|
|
- elif args.backend == "mii":
|
|
|
- if args.dtype != "auto":
|
|
|
- raise ValueError("dtype must be auto for MII backend.")
|
|
|
- if args.n != 1:
|
|
|
- raise ValueError("n must be 1 for MII backend.")
|
|
|
- if args.use_beam_search:
|
|
|
- raise ValueError("Beam search is not supported for MII backend.")
|
|
|
- if args.quantization is not None:
|
|
|
- raise ValueError("Quantization is only for vLLM backend.")
|
|
|
- if args.hf_max_batch_size is not None:
|
|
|
- raise ValueError("HF max batch size is only for HF backend.")
|
|
|
- if args.tokenizer != args.model:
|
|
|
- raise ValueError("Tokenizer must be the same as the model for MII "
|
|
|
- "backend.")
|
|
|
- main(args)
|