|
@@ -0,0 +1,289 @@
|
|
|
+import argparse
|
|
|
+import json
|
|
|
+import os
|
|
|
+import re
|
|
|
+import sqlite3
|
|
|
+from typing import Dict, List, Tuple
|
|
|
+
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+from vllm import LLM, EngineArgs, SamplingParams
|
|
|
+
|
|
|
+DEFAULT_MAX_TOKENS=10240
|
|
|
+SYSTEM_PROMPT = "You are a text to SQL query translator. Using the SQLite DB Schema and the External Knowledge, translate the following text question into a SQLite SQL select statement."
|
|
|
+# UNCOMMENT TO USE THE FINE_TUNED MODEL WITH REASONING DATASET
|
|
|
+# SYSTEM_PROMPT = "You are a text to SQL query translator. Using the SQLite DB Schema and the External Knowledge, generate the step-by-step reasoning and the final SQLite SQL select statement from the text question."
|
|
|
+
|
|
|
+
|
|
|
+def inference(llm, sampling_params, user_prompt):
|
|
|
+ messages = [
|
|
|
+ {"content": SYSTEM_PROMPT, "role": "system"},
|
|
|
+ {"role": "user", "content": user_prompt},
|
|
|
+ ]
|
|
|
+
|
|
|
+ print(f"{messages=}")
|
|
|
+
|
|
|
+ response = llm.chat(messages, sampling_params, use_tqdm=False)
|
|
|
+ print(f"{response=}")
|
|
|
+ response_text = response[0].outputs[0].text
|
|
|
+ pattern = re.compile(r"```sql\n*(.*?)```", re.DOTALL)
|
|
|
+ matches = pattern.findall(response_text)
|
|
|
+ if matches != []:
|
|
|
+ result = matches[0]
|
|
|
+ else:
|
|
|
+ result = response_text
|
|
|
+ print(f"{result=}")
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+def new_directory(path):
|
|
|
+ if not os.path.exists(path):
|
|
|
+ os.makedirs(path)
|
|
|
+
|
|
|
+
|
|
|
+def get_db_schemas(bench_root: str, db_name: str) -> Dict[str, str]:
|
|
|
+ """
|
|
|
+ Read an sqlite file, and return the CREATE commands for each of the tables in the database.
|
|
|
+ """
|
|
|
+ asdf = "database" if bench_root == "spider" else "databases"
|
|
|
+ with sqlite3.connect(
|
|
|
+ f"file:{bench_root}/{asdf}/{db_name}/{db_name}.sqlite?mode=ro", uri=True
|
|
|
+ ) as conn:
|
|
|
+ # conn.text_factory = bytes
|
|
|
+ cursor = conn.cursor()
|
|
|
+ cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
|
|
|
+ tables = cursor.fetchall()
|
|
|
+ schemas = {}
|
|
|
+ for table in tables:
|
|
|
+ cursor.execute(
|
|
|
+ "SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(
|
|
|
+ table[0]
|
|
|
+ )
|
|
|
+ )
|
|
|
+ schemas[table[0]] = cursor.fetchone()[0]
|
|
|
+
|
|
|
+ return schemas
|
|
|
+
|
|
|
+
|
|
|
+def nice_look_table(column_names: list, values: list):
|
|
|
+ rows = []
|
|
|
+ # Determine the maximum width of each column
|
|
|
+ widths = [
|
|
|
+ max(len(str(value[i])) for value in values + [column_names])
|
|
|
+ for i in range(len(column_names))
|
|
|
+ ]
|
|
|
+
|
|
|
+ # Print the column names
|
|
|
+ header = "".join(
|
|
|
+ f"{column.rjust(width)} " for column, width in zip(column_names, widths)
|
|
|
+ )
|
|
|
+ # print(header)
|
|
|
+ # Print the values
|
|
|
+ for value in values:
|
|
|
+ row = "".join(f"{str(v).rjust(width)} " for v, width in zip(value, widths))
|
|
|
+ rows.append(row)
|
|
|
+ rows = "\n".join(rows)
|
|
|
+ final_output = header + "\n" + rows
|
|
|
+ return final_output
|
|
|
+
|
|
|
+
|
|
|
+def generate_schema_prompt(db_path, num_rows=None):
|
|
|
+ # extract create ddls
|
|
|
+ """
|
|
|
+ :param root_place:
|
|
|
+ :param db_name:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ full_schema_prompt_list = []
|
|
|
+ conn = sqlite3.connect(db_path)
|
|
|
+ # Create a cursor object
|
|
|
+ cursor = conn.cursor()
|
|
|
+ cursor.execute("SELECT name FROM sqlite_master WHERE type='table'")
|
|
|
+ tables = cursor.fetchall()
|
|
|
+ schemas = {}
|
|
|
+ for table in tables:
|
|
|
+ if table == "sqlite_sequence":
|
|
|
+ continue
|
|
|
+ cursor.execute(
|
|
|
+ "SELECT sql FROM sqlite_master WHERE type='table' AND name='{}';".format(
|
|
|
+ table[0]
|
|
|
+ )
|
|
|
+ )
|
|
|
+ create_prompt = cursor.fetchone()[0]
|
|
|
+ schemas[table[0]] = create_prompt
|
|
|
+ if num_rows:
|
|
|
+ cur_table = table[0]
|
|
|
+ if cur_table in ["order", "by", "group"]:
|
|
|
+ cur_table = "`{}`".format(cur_table)
|
|
|
+
|
|
|
+ cursor.execute("SELECT * FROM {} LIMIT {}".format(cur_table, num_rows))
|
|
|
+ column_names = [description[0] for description in cursor.description]
|
|
|
+ values = cursor.fetchall()
|
|
|
+ rows_prompt = nice_look_table(column_names=column_names, values=values)
|
|
|
+ verbose_prompt = "/* \n {} example rows: \n SELECT * FROM {} LIMIT {}; \n {} \n */".format(
|
|
|
+ num_rows, cur_table, num_rows, rows_prompt
|
|
|
+ )
|
|
|
+ schemas[table[0]] = "{} \n {}".format(create_prompt, verbose_prompt)
|
|
|
+
|
|
|
+ for k, v in schemas.items():
|
|
|
+ full_schema_prompt_list.append(v)
|
|
|
+
|
|
|
+ schema_prompt = "-- DB Schema: " + "\n\n".join(full_schema_prompt_list)
|
|
|
+
|
|
|
+ return schema_prompt
|
|
|
+
|
|
|
+
|
|
|
+def generate_comment_prompt(question, knowledge=None):
|
|
|
+ knowledge_prompt = "-- External Knowledge: {}".format(knowledge)
|
|
|
+ question_prompt = "-- Question: {}".format(question)
|
|
|
+
|
|
|
+ result_prompt = knowledge_prompt + "\n\n" + question_prompt
|
|
|
+
|
|
|
+ return result_prompt
|
|
|
+
|
|
|
+
|
|
|
+def generate_combined_prompts_one(db_path, question, knowledge=None):
|
|
|
+ schema_prompt = generate_schema_prompt(db_path, num_rows=None)
|
|
|
+ comment_prompt = generate_comment_prompt(question, knowledge)
|
|
|
+
|
|
|
+ combined_prompts = schema_prompt + "\n\n" + comment_prompt
|
|
|
+
|
|
|
+ return combined_prompts
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def collect_response_from_llama(
|
|
|
+ llm, sampling_params, db_path_list, question_list, knowledge_list=None
|
|
|
+):
|
|
|
+ response_list = []
|
|
|
+
|
|
|
+ for i, question in tqdm(enumerate(question_list)):
|
|
|
+ print(
|
|
|
+ "--------------------- processing question #{}---------------------".format(
|
|
|
+ i + 1
|
|
|
+ )
|
|
|
+ )
|
|
|
+ print("the question is: {}".format(question))
|
|
|
+
|
|
|
+ if knowledge_list:
|
|
|
+ cur_prompt = generate_combined_prompts_one(
|
|
|
+ db_path=db_path_list[i], question=question, knowledge=knowledge_list[i]
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ cur_prompt = generate_combined_prompts_one(
|
|
|
+ db_path=db_path_list[i], question=question
|
|
|
+ )
|
|
|
+
|
|
|
+ plain_result = inference(llm, sampling_params, cur_prompt)
|
|
|
+ if type(plain_result) == str:
|
|
|
+ sql = plain_result
|
|
|
+ else:
|
|
|
+ sql = "SELECT" + plain_result["choices"][0]["text"]
|
|
|
+
|
|
|
+ # responses_dict[i] = sql
|
|
|
+ db_id = db_path_list[i].split("/")[-1].split(".sqlite")[0]
|
|
|
+ sql = (
|
|
|
+ sql + "\t----- bird -----\t" + db_id
|
|
|
+ ) # to avoid unpredicted \t appearing in codex results
|
|
|
+ response_list.append(sql)
|
|
|
+
|
|
|
+ return response_list
|
|
|
+
|
|
|
+
|
|
|
+def question_package(data_json, knowledge=False):
|
|
|
+ question_list = []
|
|
|
+ for data in data_json:
|
|
|
+ question_list.append(data["question"])
|
|
|
+
|
|
|
+ return question_list
|
|
|
+
|
|
|
+
|
|
|
+def knowledge_package(data_json, knowledge=False):
|
|
|
+ knowledge_list = []
|
|
|
+ for data in data_json:
|
|
|
+ knowledge_list.append(data["evidence"])
|
|
|
+
|
|
|
+ return knowledge_list
|
|
|
+
|
|
|
+
|
|
|
+def decouple_question_schema(datasets, db_root_path):
|
|
|
+ question_list = []
|
|
|
+ db_path_list = []
|
|
|
+ knowledge_list = []
|
|
|
+ for i, data in enumerate(datasets):
|
|
|
+ question_list.append(data["question"])
|
|
|
+ cur_db_path = db_root_path + data["db_id"] + "/" + data["db_id"] + ".sqlite"
|
|
|
+ db_path_list.append(cur_db_path)
|
|
|
+ knowledge_list.append(data["evidence"])
|
|
|
+
|
|
|
+ return question_list, db_path_list, knowledge_list
|
|
|
+
|
|
|
+
|
|
|
+def generate_sql_file(sql_lst, output_path=None):
|
|
|
+ result = {}
|
|
|
+ for i, sql in enumerate(sql_lst):
|
|
|
+ result[i] = sql
|
|
|
+
|
|
|
+ if output_path:
|
|
|
+ directory_path = os.path.dirname(output_path)
|
|
|
+ new_directory(directory_path)
|
|
|
+ json.dump(result, open(output_path, "w"), indent=4)
|
|
|
+
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ args_parser = argparse.ArgumentParser()
|
|
|
+ args_parser.add_argument("--eval_path", type=str, default="")
|
|
|
+ args_parser.add_argument("--mode", type=str, default="dev")
|
|
|
+ args_parser.add_argument("--test_path", type=str, default="")
|
|
|
+ args_parser.add_argument("--use_knowledge", type=str, default="True")
|
|
|
+ args_parser.add_argument("--db_root_path", type=str, default="")
|
|
|
+ args_parser.add_argument("--model", type=str, default="meta-llama/Llama-3.1-8B-Instruct")
|
|
|
+ args_parser.add_argument("--data_output_path", type=str)
|
|
|
+ args_parser.add_argument("--max_tokens", type=int, default=DEFAULT_MAX_TOKENS)
|
|
|
+ args_parser.add_argument("--temperature", type=float, default=0.0)
|
|
|
+ args_parser.add_argument("--top_k", type=int, default=50)
|
|
|
+ args_parser.add_argument("--top_p", type=float, default=0.1)
|
|
|
+ args = args_parser.parse_args()
|
|
|
+
|
|
|
+ eval_data = json.load(open(args.eval_path, "r"))
|
|
|
+ # '''for debug'''
|
|
|
+ # eval_data = eval_data[:3]
|
|
|
+ # '''for debug'''
|
|
|
+
|
|
|
+ question_list, db_path_list, knowledge_list = decouple_question_schema(
|
|
|
+ datasets=eval_data, db_root_path=args.db_root_path
|
|
|
+ )
|
|
|
+ assert len(question_list) == len(db_path_list) == len(knowledge_list)
|
|
|
+
|
|
|
+ llm = LLM(model=args.model, download_dir="/opt/hpcaas/.mounts/fs-06ad2f76a5ad0b18f/shared/amiryo/.cache/vllm")
|
|
|
+ sampling_params = llm.get_default_sampling_params()
|
|
|
+ sampling_params.max_tokens = args.max_tokens
|
|
|
+ sampling_params.temperature = args.temperature
|
|
|
+ sampling_params.top_p = args.top_p
|
|
|
+ sampling_params.top_k = args.top_k
|
|
|
+
|
|
|
+
|
|
|
+ if args.use_knowledge == "True":
|
|
|
+ responses = collect_response_from_llama(
|
|
|
+ llm=llm,
|
|
|
+ sampling_params=sampling_params,
|
|
|
+ db_path_list=db_path_list,
|
|
|
+ question_list=question_list,
|
|
|
+ knowledge_list=knowledge_list,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ responses = collect_response_from_llama(
|
|
|
+ llm=llm,
|
|
|
+ sampling_params=sampling_params,
|
|
|
+ db_path_list=db_path_list,
|
|
|
+ question_list=question_list,
|
|
|
+ knowledge_list=None,
|
|
|
+ )
|
|
|
+
|
|
|
+ output_name = args.data_output_path + "predict_" + args.mode + ".json"
|
|
|
+
|
|
|
+ generate_sql_file(sql_lst=responses, output_path=output_name)
|
|
|
+
|
|
|
+ print("successfully collect results from {}".format(args.model))
|