| 
					
				 | 
			
			
				@@ -46,10 +46,11 @@ torchrun --nnodes 1 --nproc_per_node 8  llama_finetuning.py --enable_fsdp --mode 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 ``` 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 Then convert your FSDP checkpoint to HuggingFace checkpoints using: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 ```bash 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- python checkpoint_converter_fsdp_hf.py --fsdp_checkpoint_path  PATH/to/FSDP/Checkpoints --consolidated_model_path PATH/to/save/checkpoints --HF_model_path PATH/or/HF/model_name 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ python checkpoint_converter_fsdp_hf.py --fsdp_checkpoint_path  PATH/to/FSDP/Checkpoints --consolidated_model_path PATH/to/save/checkpoints --HF_model_path_or_name PATH/or/HF/model_name 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				- # --HF_model_path specifies the HF Llama model name or path where it has config.json and tokenizer.json 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ # --HF_model_path_or_name specifies the HF Llama model name or path where it has config.json and tokenizer.json 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  ``` 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+By default, training parameter are saved in train_params.yaml in the path where FSDP checkpoints are saved, in the converter script we frist try to find the HugingFace model name used in the fine-tuning to load the model with configs from there, if not found user need to provide it. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 Then run inference using: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 |