|
@@ -1,68 +1,46 @@
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
|
|
|
-# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
|
|
-
|
|
|
-import fire
|
|
|
import os
|
|
|
import sys
|
|
|
import time
|
|
|
+
|
|
|
+import fire
|
|
|
import gradio as gr
|
|
|
|
|
|
import torch
|
|
|
-from transformers import AutoTokenizer
|
|
|
|
|
|
-from llama_recipes.inference.safety_utils import get_safety_checker, AgentType
|
|
|
+from accelerate.utils import is_xpu_available
|
|
|
from llama_recipes.inference.model_utils import load_model, load_peft_model
|
|
|
|
|
|
-from accelerate.utils import is_xpu_available
|
|
|
+from llama_recipes.inference.safety_utils import AgentType, get_safety_checker
|
|
|
+from transformers import AutoTokenizer
|
|
|
+
|
|
|
|
|
|
def main(
|
|
|
model_name,
|
|
|
- peft_model: str=None,
|
|
|
- quantization: bool=False,
|
|
|
- max_new_tokens =100, #The maximum numbers of tokens to generate
|
|
|
- prompt_file: str=None,
|
|
|
- seed: int=42, #seed value for reproducibility
|
|
|
- do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
|
|
|
- min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
|
|
|
- use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
|
|
|
- top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
|
- temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
|
|
|
- top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
|
|
- repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
|
|
|
- length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
|
|
|
- enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
|
|
|
- enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
|
|
|
- enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
|
|
|
- enable_llamaguard_content_safety: bool=False,
|
|
|
- max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts.
|
|
|
- use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
|
|
|
- **kwargs
|
|
|
+ peft_model: str = None,
|
|
|
+ quantization: str = None, # Options: 4bit, 8bit
|
|
|
+ max_new_tokens=100, # The maximum numbers of tokens to generate
|
|
|
+ prompt_file: str = None,
|
|
|
+ seed: int = 42, # seed value for reproducibility
|
|
|
+ do_sample: bool = True, # Whether or not to use sampling ; use greedy decoding otherwise.
|
|
|
+ min_length: int = None, # The minimum length of the sequence to be generated, input prompt + min_new_tokens
|
|
|
+ use_cache: bool = True, # [optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
|
|
|
+ top_p: float = 1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
|
+ temperature: float = 1.0, # [optional] The value used to modulate the next token probabilities.
|
|
|
+ top_k: int = 50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
|
|
+ repetition_penalty: float = 1.0, # The parameter for repetition penalty. 1.0 means no penalty.
|
|
|
+ length_penalty: int = 1, # [optional] Exponential penalty to the length that is used with beam-based generation.
|
|
|
+ enable_azure_content_safety: bool = False, # Enable safety check with Azure content safety api
|
|
|
+ enable_sensitive_topics: bool = False, # Enable check for sensitive topics using AuditNLG APIs
|
|
|
+ enable_salesforce_content_safety: bool = True, # Enable safety check with Salesforce safety flan t5
|
|
|
+ enable_llamaguard_content_safety: bool = False,
|
|
|
+ max_padding_length: int = None, # the max padding length to be used with tokenizer padding the prompts.
|
|
|
+ use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
|
|
|
+ share_gradio: bool = False, # Enable endpoint creation for gradio.live
|
|
|
+ **kwargs,
|
|
|
):
|
|
|
-
|
|
|
- def inference(user_prompt, temperature, top_p, top_k, max_new_tokens, **kwargs,):
|
|
|
- safety_checker = get_safety_checker(enable_azure_content_safety,
|
|
|
- enable_sensitive_topics,
|
|
|
- enable_salesforce_content_safety,
|
|
|
- enable_llamaguard_content_safety
|
|
|
- )
|
|
|
-
|
|
|
- # Safety check of the user prompt
|
|
|
- safety_results = [check(user_prompt) for check in safety_checker]
|
|
|
- are_safe = all([r[1] for r in safety_results])
|
|
|
- if are_safe:
|
|
|
- print("User prompt deemed safe.")
|
|
|
- print(f"User prompt:\n{user_prompt}")
|
|
|
- else:
|
|
|
- print("User prompt deemed unsafe.")
|
|
|
- for method, is_safe, report in safety_results:
|
|
|
- if not is_safe:
|
|
|
- print(method)
|
|
|
- print(report)
|
|
|
- print("Skipping the inference as the prompt is not safe.")
|
|
|
- sys.exit(1) # Exit the program with an error status
|
|
|
-
|
|
|
# Set the seeds for reproducibility
|
|
|
if is_xpu_available():
|
|
|
torch.xpu.manual_seed(seed)
|
|
@@ -70,7 +48,7 @@ def main(
|
|
|
torch.cuda.manual_seed(seed)
|
|
|
torch.manual_seed(seed)
|
|
|
|
|
|
- model = load_model(model_name, quantization, use_fast_kernels)
|
|
|
+ model = load_model(model_name, quantization, use_fast_kernels, **kwargs)
|
|
|
if peft_model:
|
|
|
model = load_peft_model(model, peft_model)
|
|
|
|
|
@@ -79,86 +57,125 @@ def main(
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
- batch = tokenizer(user_prompt, padding='max_length', truncation=True, max_length=max_padding_length, return_tensors="pt")
|
|
|
- if is_xpu_available():
|
|
|
- batch = {k: v.to("xpu") for k, v in batch.items()}
|
|
|
- else:
|
|
|
- batch = {k: v.to("cuda") for k, v in batch.items()}
|
|
|
-
|
|
|
- start = time.perf_counter()
|
|
|
- with torch.no_grad():
|
|
|
- outputs = model.generate(
|
|
|
- **batch,
|
|
|
- max_new_tokens=max_new_tokens,
|
|
|
- do_sample=do_sample,
|
|
|
- top_p=top_p,
|
|
|
- temperature=temperature,
|
|
|
- min_length=min_length,
|
|
|
- use_cache=use_cache,
|
|
|
- top_k=top_k,
|
|
|
- repetition_penalty=repetition_penalty,
|
|
|
- length_penalty=length_penalty,
|
|
|
- **kwargs
|
|
|
+ def inference(
|
|
|
+ user_prompt,
|
|
|
+ temperature,
|
|
|
+ top_p,
|
|
|
+ top_k,
|
|
|
+ max_new_tokens,
|
|
|
+ **kwargs,
|
|
|
+ ):
|
|
|
+ safety_checker = get_safety_checker(
|
|
|
+ enable_azure_content_safety,
|
|
|
+ enable_sensitive_topics,
|
|
|
+ enable_salesforce_content_safety,
|
|
|
+ enable_llamaguard_content_safety,
|
|
|
)
|
|
|
- e2e_inference_time = (time.perf_counter()-start)*1000
|
|
|
- print(f"the inference time is {e2e_inference_time} ms")
|
|
|
- output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
-
|
|
|
- # Safety check of the model output
|
|
|
- safety_results = [check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt) for check in safety_checker]
|
|
|
- are_safe = all([r[1] for r in safety_results])
|
|
|
- if are_safe:
|
|
|
- print("User input and model output deemed safe.")
|
|
|
- print(f"Model output:\n{output_text}")
|
|
|
- else:
|
|
|
- print("Model output deemed unsafe.")
|
|
|
- for method, is_safe, report in safety_results:
|
|
|
- if not is_safe:
|
|
|
- print(method)
|
|
|
- print(report)
|
|
|
- return output_text
|
|
|
-
|
|
|
- if prompt_file is not None:
|
|
|
- assert os.path.exists(
|
|
|
- prompt_file
|
|
|
- ), f"Provided Prompt file does not exist {prompt_file}"
|
|
|
- with open(prompt_file, "r") as f:
|
|
|
- user_prompt = "\n".join(f.readlines())
|
|
|
- inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
|
|
|
- elif not sys.stdin.isatty():
|
|
|
- user_prompt = "\n".join(sys.stdin.readlines())
|
|
|
- inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
|
|
|
- else:
|
|
|
- gr.Interface(
|
|
|
- fn=inference,
|
|
|
- inputs=[
|
|
|
- gr.components.Textbox(
|
|
|
- lines=9,
|
|
|
- label="User Prompt",
|
|
|
- placeholder="none",
|
|
|
- ),
|
|
|
- gr.components.Slider(
|
|
|
- minimum=0, maximum=1, value=1.0, label="Temperature"
|
|
|
- ),
|
|
|
- gr.components.Slider(
|
|
|
- minimum=0, maximum=1, value=1.0, label="Top p"
|
|
|
- ),
|
|
|
- gr.components.Slider(
|
|
|
- minimum=0, maximum=100, step=1, value=50, label="Top k"
|
|
|
- ),
|
|
|
- gr.components.Slider(
|
|
|
- minimum=1, maximum=2000, step=1, value=200, label="Max tokens"
|
|
|
- ),
|
|
|
- ],
|
|
|
- outputs=[
|
|
|
- gr.components.Textbox(
|
|
|
- lines=5,
|
|
|
- label="Output",
|
|
|
+
|
|
|
+ # Safety check of the user prompt
|
|
|
+ safety_results = [check(user_prompt) for check in safety_checker]
|
|
|
+ are_safe = all([r[1] for r in safety_results])
|
|
|
+ if are_safe:
|
|
|
+ print("User prompt deemed safe.")
|
|
|
+ print(f"User prompt:\n{user_prompt}")
|
|
|
+ else:
|
|
|
+ print("User prompt deemed unsafe.")
|
|
|
+ for method, is_safe, report in safety_results:
|
|
|
+ if not is_safe:
|
|
|
+ print(method)
|
|
|
+ print(report)
|
|
|
+ print("Skipping the inference as the prompt is not safe.")
|
|
|
+ return # Exit the program with an error status
|
|
|
+
|
|
|
+ batch = tokenizer(
|
|
|
+ user_prompt,
|
|
|
+ padding="max_length",
|
|
|
+ truncation=True,
|
|
|
+ max_length=max_padding_length,
|
|
|
+ return_tensors="pt",
|
|
|
+ )
|
|
|
+ if is_xpu_available():
|
|
|
+ batch = {k: v.to("xpu") for k, v in batch.items()}
|
|
|
+ else:
|
|
|
+ batch = {k: v.to("cuda") for k, v in batch.items()}
|
|
|
+
|
|
|
+ start = time.perf_counter()
|
|
|
+ with torch.no_grad():
|
|
|
+ outputs = model.generate(
|
|
|
+ **batch,
|
|
|
+ max_new_tokens=max_new_tokens,
|
|
|
+ do_sample=do_sample,
|
|
|
+ top_p=top_p,
|
|
|
+ temperature=temperature,
|
|
|
+ min_length=min_length,
|
|
|
+ use_cache=use_cache,
|
|
|
+ top_k=top_k,
|
|
|
+ repetition_penalty=repetition_penalty,
|
|
|
+ length_penalty=length_penalty,
|
|
|
+ **kwargs,
|
|
|
)
|
|
|
- ],
|
|
|
- title="Meta Llama3 Playground",
|
|
|
- description="https://github.com/facebookresearch/llama-recipes",
|
|
|
- ).queue().launch(server_name="0.0.0.0", share=True)
|
|
|
+ e2e_inference_time = (time.perf_counter() - start) * 1000
|
|
|
+ print(f"the inference time is {e2e_inference_time} ms")
|
|
|
+ output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
+
|
|
|
+ # Safety check of the model output
|
|
|
+ safety_results = [
|
|
|
+ check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt)
|
|
|
+ for check in safety_checker
|
|
|
+ ]
|
|
|
+ are_safe = all([r[1] for r in safety_results])
|
|
|
+ if are_safe:
|
|
|
+ print("User input and model output deemed safe.")
|
|
|
+ print(f"Model output:\n{output_text}")
|
|
|
+ return output_text
|
|
|
+ else:
|
|
|
+ print("Model output deemed unsafe.")
|
|
|
+ for method, is_safe, report in safety_results:
|
|
|
+ if not is_safe:
|
|
|
+ print(method)
|
|
|
+ print(report)
|
|
|
+ return None
|
|
|
+
|
|
|
+ if prompt_file is not None:
|
|
|
+ assert os.path.exists(
|
|
|
+ prompt_file
|
|
|
+ ), f"Provided Prompt file does not exist {prompt_file}"
|
|
|
+ with open(prompt_file, "r") as f:
|
|
|
+ user_prompt = "\n".join(f.readlines())
|
|
|
+ inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
|
|
|
+ elif not sys.stdin.isatty():
|
|
|
+ user_prompt = "\n".join(sys.stdin.readlines())
|
|
|
+ inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
|
|
|
+ else:
|
|
|
+ gr.Interface(
|
|
|
+ fn=inference,
|
|
|
+ inputs=[
|
|
|
+ gr.components.Textbox(
|
|
|
+ lines=9,
|
|
|
+ label="User Prompt",
|
|
|
+ placeholder="none",
|
|
|
+ ),
|
|
|
+ gr.components.Slider(
|
|
|
+ minimum=0, maximum=1, value=1.0, label="Temperature"
|
|
|
+ ),
|
|
|
+ gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Top p"),
|
|
|
+ gr.components.Slider(
|
|
|
+ minimum=0, maximum=100, step=1, value=50, label="Top k"
|
|
|
+ ),
|
|
|
+ gr.components.Slider(
|
|
|
+ minimum=1, maximum=2000, step=1, value=200, label="Max tokens"
|
|
|
+ ),
|
|
|
+ ],
|
|
|
+ outputs=[
|
|
|
+ gr.components.Textbox(
|
|
|
+ lines=5,
|
|
|
+ label="Output",
|
|
|
+ )
|
|
|
+ ],
|
|
|
+ title="Meta Llama3 Playground",
|
|
|
+ description="https://github.com/meta-llama/llama-recipes",
|
|
|
+ ).queue().launch(server_name="0.0.0.0", share=share_gradio)
|
|
|
+
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
fire.Fire(main)
|