Sanyam Bhutani 7 月之前
父節點
當前提交
3adf2110c2
共有 1 個文件被更改,包括 18 次插入679 次删除
  1. 18 679
      recipes/quickstart/Multi-Modal-RAG/notebooks/Part_2_Cleaning_Data_and_DB.ipynb

+ 18 - 679
recipes/quickstart/Multi-Modal-RAG/notebooks/Part_2_Cleaning_Data_and_DB.ipynb

@@ -5,7 +5,16 @@
    "id": "98cc49e3-6669-4a7a-be02-a2025d397a4c",
    "metadata": {},
    "source": [
-    "## Cleaning up the Annotations and Creating Vector DB"
+    "## Cleaning up the Annotations and Creating Vector DB\n",
+    "\n",
+    "This notebook 2 in the workshop/course series. Like most readers, you can skip the recap but here it is regardless-so far:\n",
+    "\n",
+    "- We used a dataset of 5000 images with some meta-data\n",
+    "- Cleaned up corrupt images\n",
+    "- Pre-processed categories to reduce complexity\n",
+    "- Balanced categories by random sampling\n",
+    "- Iterated and prompted 11B to label images\n",
+    "- Created Script to label images"
    ]
   },
   {
@@ -13,7 +22,8 @@
    "id": "6c6b84dd-ac69-49b5-9f4b-3c22d60c585c",
    "metadata": {},
    "source": [
-    "### Cleaning up Annotations"
+    "### Cleaning up Annotations\n",
+    "\n"
    ]
   },
   {
@@ -41,7 +51,9 @@
     "import pandas as pd\n",
     "import numpy as np\n",
     "import json\n",
-    "import re"
+    "import re\n",
+    "import matplotlib.pyplot as plt\n",
+    "import seaborn as sns"
    ]
   },
   {
@@ -522,9 +534,6 @@
     "        print(f\"Problematic caption: {caption[:50]}...\")\n",
     "        return {}\n",
     "\n",
-    "# List of your CSV files\n",
-    "#csv_files = ['file1.csv', 'file2.csv', ..., 'file8.csv']\n",
-    "\n",
     "# Read and process each CSV\n",
     "dataframes = []\n",
     "for file in csv_files:\n",
@@ -1252,17 +1261,6 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 70,
-   "id": "d3837323-a815-4337-b5e2-24322fec6b08",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import matplotlib.pyplot as plt\n",
-    "import seaborn as sns"
-   ]
-  },
-  {
-   "cell_type": "code",
    "execution_count": 73,
    "id": "f8476f83-a0ec-408d-a471-5bab4e4e330b",
    "metadata": {},
@@ -1708,673 +1706,14 @@
    ]
   },
   {
-   "cell_type": "markdown",
-   "id": "9577f9f6-23e7-4fde-a162-2fa633265399",
-   "metadata": {},
-   "source": [
-    "### Creating a Vector DB"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 86,
-   "id": "5e7d968d-bf1b-4a43-ad9f-7f2ca6736c1d",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#!pip install lancedb rerankers\n",
-    "#!pip install sentence-transformers"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "id": "a0db3c93-a0f2-4f49-908a-181b63b5847e",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "a176716866754071b3f28533a0b5db10",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "modules.json:   0%|          | 0.00/349 [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "ac21a9a40c6f410e84bd46137de72cf2",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "config_sentence_transformers.json:   0%|          | 0.00/124 [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "33a4b93a6e4d4ed2a6212b9bb3177f97",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "README.md:   0%|          | 0.00/94.8k [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1884e2f091dc42e8bc0199f16542bfd9",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "sentence_bert_config.json:   0%|          | 0.00/52.0 [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "f9dfd32a6a964b33bfb7dcb2ff8a5770",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "config.json:   0%|          | 0.00/743 [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "2f16f57b26544e4d9c7aabfc9e6ec7e3",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "model.safetensors:   0%|          | 0.00/133M [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "50deb4679796404d8ea10c53c6da2d92",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "tokenizer_config.json:   0%|          | 0.00/366 [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "2c8ccaf41b4e4fe8a8dbfa3f90fd760c",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "vocab.txt:   0%|          | 0.00/232k [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1bf4bcb6c2c5482d827f72131f6719ce",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "tokenizer.json:   0%|          | 0.00/711k [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "25402e266bf04a138f31c8dfea9e3d16",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "special_tokens_map.json:   0%|          | 0.00/125 [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "ae377bce030646a2a5823c9d1bbaf481",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "1_Pooling/config.json:   0%|          | 0.00/190 [00:00<?, ?B/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "[2024-10-02T21:22:52Z WARN  lance::dataset] No existing dataset at /home/sanyambhutani/.lancedb/clothes.lance, it will be created\n"
-     ]
-    }
-   ],
-   "source": [
-    "import lancedb\n",
-    "from lancedb.pydantic import LanceModel, Vector\n",
-    "from lancedb.embeddings import get_registry\n",
-    "from lancedb.rerankers import ColbertReranker\n",
-    "\n",
-    "model = get_registry().get(\"sentence-transformers\").create(name=\"BAAI/bge-small-en-v1.5\", device=\"cuda\")\n",
-    "\n",
-    "\n",
-    "class Schema(LanceModel):\n",
-    "    Filename: str\n",
-    "    Title: str\n",
-    "    Size: str\n",
-    "    Gender: str\n",
-    "    Description: str = model.SourceField()\n",
-    "    vector: Vector(model.ndims()) = model.VectorField()\n",
-    "    Category: str\n",
-    "    Type: str\n",
-    "    \n",
-    "db = lancedb.connect(\"~/.lancedb\")\n",
-    "tbl = db.create_table(name=\"clothes\", schema=Schema, mode=\"overwrite\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "id": "a3341568-d835-4c80-8e90-de651657bcca",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df = pd.read_csv(\"./final_balanced_sample_dataset.csv\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "id": "47976e72-6093-4314-a7d9-fedba7316e56",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>Filename</th>\n",
-       "      <th>Title</th>\n",
-       "      <th>Size</th>\n",
-       "      <th>Gender</th>\n",
-       "      <th>Description</th>\n",
-       "      <th>Category</th>\n",
-       "      <th>Type</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg</td>\n",
-       "      <td>Stylish and Trendy Tank Top with Celestial Design</td>\n",
-       "      <td>M</td>\n",
-       "      <td>F</td>\n",
-       "      <td>This white tank top is a stylish and trendy pi...</td>\n",
-       "      <td>Tops</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg</td>\n",
-       "      <td>Classic White Sweatshirt</td>\n",
-       "      <td>M</td>\n",
-       "      <td>F</td>\n",
-       "      <td>This classic white sweatshirt is a timeless pi...</td>\n",
-       "      <td>Tops</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg</td>\n",
-       "      <td>Grey T-shirt</td>\n",
-       "      <td>M</td>\n",
-       "      <td>Unisex</td>\n",
-       "      <td>This is a short-sleeved, crew neck t-shirt tha...</td>\n",
-       "      <td>T-Shirt</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>87846aa9-86cc-404a-af2c-7e8fe941081d.jpg</td>\n",
-       "      <td>Long-Sleeved V-Neck Shirt</td>\n",
-       "      <td>L</td>\n",
-       "      <td>U</td>\n",
-       "      <td>A long-sleeved, V-neck shirt with a solid purp...</td>\n",
-       "      <td>Tops</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>04fa06fb-d71a-4293-9804-fe799375a682.jpg</td>\n",
-       "      <td>Silver Metallic Buckle Sandals</td>\n",
-       "      <td>L</td>\n",
-       "      <td>F</td>\n",
-       "      <td>These silver metallic buckle sandals feature a...</td>\n",
-       "      <td>Shoes</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>...</th>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3112</th>\n",
-       "      <td>c1fafe22-a65b-4ce4-9383-dbd470a205e6.jpg</td>\n",
-       "      <td>Pink Bird Printed Long Sleeved T-Shirt</td>\n",
-       "      <td>L</td>\n",
-       "      <td>F</td>\n",
-       "      <td>A long-sleeved t-shirt with a crew neck and pi...</td>\n",
-       "      <td>Tops</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3113</th>\n",
-       "      <td>4cc0a79e-aa26-4afc-aabc-5612f8515bf8.jpg</td>\n",
-       "      <td>Blue and Gold Top</td>\n",
-       "      <td>L</td>\n",
-       "      <td>F</td>\n",
-       "      <td>This sleeveless top features a beautiful blue ...</td>\n",
-       "      <td>Tops</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3114</th>\n",
-       "      <td>ae9cec7a-dd1d-49bc-adae-6446429c03d8.jpg</td>\n",
-       "      <td>Men's Light Blue and White Striped Long-Sleeve...</td>\n",
-       "      <td>M</td>\n",
-       "      <td>M</td>\n",
-       "      <td>This men's light blue and white striped long-s...</td>\n",
-       "      <td>Tops</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3115</th>\n",
-       "      <td>de853711-0b97-45a6-a794-3c424246db03.jpg</td>\n",
-       "      <td>Black Sneakers</td>\n",
-       "      <td>S</td>\n",
-       "      <td>U</td>\n",
-       "      <td>These sleek and versatile black sneakers are a...</td>\n",
-       "      <td>Shoes</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3116</th>\n",
-       "      <td>d4b0b957-5632-4df1-aba6-e562e2a84687.jpg</td>\n",
-       "      <td>Gray T-Shirt with Hood and Graphic</td>\n",
-       "      <td>M</td>\n",
-       "      <td>M</td>\n",
-       "      <td>The gray t-shirt with a hood and graphic is a ...</td>\n",
-       "      <td>T-Shirt</td>\n",
-       "      <td>Casual</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "<p>3117 rows × 7 columns</p>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "                                      Filename  \\\n",
-       "0     d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg   \n",
-       "1     5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg   \n",
-       "2     b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg   \n",
-       "3     87846aa9-86cc-404a-af2c-7e8fe941081d.jpg   \n",
-       "4     04fa06fb-d71a-4293-9804-fe799375a682.jpg   \n",
-       "...                                        ...   \n",
-       "3112  c1fafe22-a65b-4ce4-9383-dbd470a205e6.jpg   \n",
-       "3113  4cc0a79e-aa26-4afc-aabc-5612f8515bf8.jpg   \n",
-       "3114  ae9cec7a-dd1d-49bc-adae-6446429c03d8.jpg   \n",
-       "3115  de853711-0b97-45a6-a794-3c424246db03.jpg   \n",
-       "3116  d4b0b957-5632-4df1-aba6-e562e2a84687.jpg   \n",
-       "\n",
-       "                                                  Title Size  Gender  \\\n",
-       "0     Stylish and Trendy Tank Top with Celestial Design    M       F   \n",
-       "1                              Classic White Sweatshirt    M       F   \n",
-       "2                                          Grey T-shirt    M  Unisex   \n",
-       "3                             Long-Sleeved V-Neck Shirt    L       U   \n",
-       "4                        Silver Metallic Buckle Sandals    L       F   \n",
-       "...                                                 ...  ...     ...   \n",
-       "3112             Pink Bird Printed Long Sleeved T-Shirt    L       F   \n",
-       "3113                                  Blue and Gold Top    L       F   \n",
-       "3114  Men's Light Blue and White Striped Long-Sleeve...    M       M   \n",
-       "3115                                     Black Sneakers    S       U   \n",
-       "3116                 Gray T-Shirt with Hood and Graphic    M       M   \n",
-       "\n",
-       "                                            Description Category    Type  \n",
-       "0     This white tank top is a stylish and trendy pi...     Tops  Casual  \n",
-       "1     This classic white sweatshirt is a timeless pi...     Tops  Casual  \n",
-       "2     This is a short-sleeved, crew neck t-shirt tha...  T-Shirt  Casual  \n",
-       "3     A long-sleeved, V-neck shirt with a solid purp...     Tops  Casual  \n",
-       "4     These silver metallic buckle sandals feature a...    Shoes  Casual  \n",
-       "...                                                 ...      ...     ...  \n",
-       "3112  A long-sleeved t-shirt with a crew neck and pi...     Tops  Casual  \n",
-       "3113  This sleeveless top features a beautiful blue ...     Tops  Casual  \n",
-       "3114  This men's light blue and white striped long-s...     Tops  Casual  \n",
-       "3115  These sleek and versatile black sneakers are a...    Shoes  Casual  \n",
-       "3116  The gray t-shirt with a hood and graphic is a ...  T-Shirt  Casual  \n",
-       "\n",
-       "[3117 rows x 7 columns]"
-      ]
-     },
-     "execution_count": 9,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "df"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "id": "9470c102-781d-4888-a373-efc184115cc8",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def fix_unescaped_quotes(json_string):\n",
-    "    # Find the \"Description\" field and its content\n",
-    "    pattern = r'\"Description\"\\s*:\\s*\"(.*?)\"(?=\\s*[,}])'\n",
-    "    \n",
-    "    def escape_quotes(match):\n",
-    "        # Escape any unescaped quotes in the description content\n",
-    "        content = match.group(1)\n",
-    "        escaped_content = re.sub(r'(?<!\\\\)\"', r'\\\"', content)\n",
-    "        return f'\"Description\":\"{escaped_content}\"'\n",
-    "    \n",
-    "    # Replace the Description field with properly escaped content\n",
-    "    fixed_json = re.sub(pattern, escape_quotes, json_string)\n",
-    "    # Now we can safely parse the JSON\n",
-    "    try:\n",
-    "        fixed_json = \"{\" + fixed_json.split(\"{\")[1].split(\"}\")[0] + \"}\"\n",
-    "        return json.loads(fixed_json)\n",
-    "    except:\n",
-    "        return {\n",
-    "        'Title': \"\", 'Size': \"\" , 'Category': \"\" , 'Gender': \"\" , 'Type': \"\" , 'Description': \"\"\n",
-    "        }"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "id": "3c9ce7f4-9c8d-4631-88b8-796a9c97ffdd",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "data = [{\"Filename\": row[\"Filename\"],**fix_unescaped_quotes(row[\"Description\"])} for index, row in df.iterrows()]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "id": "8b0402c2-ee14-4bb3-bc0b-1854a6aac72a",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# automatically generate vectors\n",
-    "tbl.add(data)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "id": "7a278c8f-17de-47a7-9f90-a8d68ea4e6aa",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>Filename</th>\n",
-       "      <th>Title</th>\n",
-       "      <th>Size</th>\n",
-       "      <th>Gender</th>\n",
-       "      <th>Description</th>\n",
-       "      <th>vector</th>\n",
-       "      <th>Category</th>\n",
-       "      <th>Type</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>87846aa9-86cc-404a-af2c-7e8fe941081d.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>04fa06fb-d71a-4293-9804-fe799375a682.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>5</th>\n",
-       "      <td>8f576f1a-839d-4fb2-a224-a4700b2d05da.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>6</th>\n",
-       "      <td>e976a8f6-6731-485f-8a9a-2872a5208818.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>7</th>\n",
-       "      <td>bbf0d9c7-663d-46d1-a9f8-66e8e5678541.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>8</th>\n",
-       "      <td>e25a7faa-7a49-4e72-a7ef-e74427f77784.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>9</th>\n",
-       "      <td>d995ac1f-fbd0-482c-a308-dafb6a93cfd0.jpg</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "      <td>[0.04846169, -0.0012961391, 0.016879003, -0.04...</td>\n",
-       "      <td></td>\n",
-       "      <td></td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "                                   Filename Title Size Gender Description  \\\n",
-       "0  d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg                                 \n",
-       "1  5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg                                 \n",
-       "2  b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg                                 \n",
-       "3  87846aa9-86cc-404a-af2c-7e8fe941081d.jpg                                 \n",
-       "4  04fa06fb-d71a-4293-9804-fe799375a682.jpg                                 \n",
-       "5  8f576f1a-839d-4fb2-a224-a4700b2d05da.jpg                                 \n",
-       "6  e976a8f6-6731-485f-8a9a-2872a5208818.jpg                                 \n",
-       "7  bbf0d9c7-663d-46d1-a9f8-66e8e5678541.jpg                                 \n",
-       "8  e25a7faa-7a49-4e72-a7ef-e74427f77784.jpg                                 \n",
-       "9  d995ac1f-fbd0-482c-a308-dafb6a93cfd0.jpg                                 \n",
-       "\n",
-       "                                              vector Category Type  \n",
-       "0  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "1  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "2  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "3  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "4  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "5  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "6  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "7  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "8  [0.04846169, -0.0012961391, 0.016879003, -0.04...                \n",
-       "9  [0.04846169, -0.0012961391, 0.016879003, -0.04...                "
-      ]
-     },
-     "execution_count": 15,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "tbl.search().to_pandas()"
-   ]
-  },
-  {
    "cell_type": "code",
    "execution_count": null,
    "id": "ee854540-3908-4428-a063-72c8997a2540",
    "metadata": {},
    "outputs": [],
-   "source": []
+   "source": [
+    "#fin"
+   ]
   }
  ],
  "metadata": {