|
@@ -1,13 +1,15 @@
|
|
|
import argparse
|
|
|
import os
|
|
|
import sys
|
|
|
+
|
|
|
+import gradio as gr
|
|
|
import torch
|
|
|
from accelerate import Accelerator
|
|
|
+from huggingface_hub import HfFolder
|
|
|
+from peft import PeftModel
|
|
|
from PIL import Image as PIL_Image
|
|
|
from transformers import MllamaForConditionalGeneration, MllamaProcessor
|
|
|
-from peft import PeftModel
|
|
|
-import gradio as gr
|
|
|
-from huggingface_hub import HfFolder
|
|
|
+
|
|
|
# Initialize accelerator
|
|
|
accelerator = Accelerator()
|
|
|
device = accelerator.device
|
|
@@ -43,24 +45,24 @@ def load_model_and_processor(model_name: str, finetuning_path: str = None):
|
|
|
torch_dtype=torch.bfloat16,
|
|
|
use_safetensors=True,
|
|
|
device_map=device,
|
|
|
- token=hf_token
|
|
|
+ token=hf_token,
|
|
|
+ )
|
|
|
+ processor = MllamaProcessor.from_pretrained(
|
|
|
+ model_name, token=hf_token, use_safetensors=True
|
|
|
)
|
|
|
- processor = MllamaProcessor.from_pretrained(model_name, token=hf_token, use_safetensors=True)
|
|
|
|
|
|
if finetuning_path and os.path.exists(finetuning_path):
|
|
|
print(f"Loading LoRA adapter from '{finetuning_path}'...")
|
|
|
model = PeftModel.from_pretrained(
|
|
|
- model,
|
|
|
- finetuning_path,
|
|
|
- is_adapter=True,
|
|
|
- torch_dtype=torch.bfloat16
|
|
|
+ model, finetuning_path, is_adapter=True, torch_dtype=torch.bfloat16
|
|
|
)
|
|
|
print("LoRA adapter merged successfully")
|
|
|
-
|
|
|
+
|
|
|
model, processor = accelerator.prepare(model, processor)
|
|
|
return model, processor
|
|
|
|
|
|
-def process_image(image_path: str = None, image = None) -> PIL_Image.Image:
|
|
|
+
|
|
|
+def process_image(image_path: str = None, image=None) -> PIL_Image.Image:
|
|
|
"""Process and validate image input"""
|
|
|
if image is not None:
|
|
|
return image.convert("RGB")
|
|
@@ -68,29 +70,44 @@ def process_image(image_path: str = None, image = None) -> PIL_Image.Image:
|
|
|
return PIL_Image.open(image_path).convert("RGB")
|
|
|
raise ValueError("No valid image provided")
|
|
|
|
|
|
-def generate_text_from_image(model, processor, image, prompt_text: str, temperature: float, top_p: float):
|
|
|
+
|
|
|
+def generate_text_from_image(
|
|
|
+ model, processor, image, prompt_text: str, temperature: float, top_p: float
|
|
|
+):
|
|
|
"""Generate text from image using model"""
|
|
|
conversation = [
|
|
|
- {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
|
|
|
+ {
|
|
|
+ "role": "user",
|
|
|
+ "content": [{"type": "image"}, {"type": "text", "text": prompt_text}],
|
|
|
+ }
|
|
|
]
|
|
|
- prompt = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
|
|
- inputs = processor(image, prompt, return_tensors="pt").to(device)
|
|
|
- output = model.generate(**inputs, temperature=temperature, top_p=top_p, max_new_tokens=MAX_OUTPUT_TOKENS)
|
|
|
- return processor.decode(output[0])[len(prompt):]
|
|
|
+ prompt = processor.apply_chat_template(
|
|
|
+ conversation, add_generation_prompt=True, tokenize=False
|
|
|
+ )
|
|
|
+ inputs = processor(
|
|
|
+ image, prompt, text_kwargs={"add_special_tokens": False}, return_tensors="pt"
|
|
|
+ ).to(device)
|
|
|
+ print("Input Prompt:\n", processor.tokenizer.decode(inputs.input_ids[0]))
|
|
|
+ output = model.generate(
|
|
|
+ **inputs, temperature=temperature, top_p=top_p, max_new_tokens=MAX_OUTPUT_TOKENS
|
|
|
+ )
|
|
|
+ return processor.decode(output[0])[len(prompt) :]
|
|
|
+
|
|
|
|
|
|
def gradio_interface(model_name: str):
|
|
|
"""Create Gradio UI with LoRA support"""
|
|
|
# Initialize model state
|
|
|
current_model = {"model": None, "processor": None}
|
|
|
-
|
|
|
+
|
|
|
def load_or_reload_model(enable_lora: bool, lora_path: str = None):
|
|
|
current_model["model"], current_model["processor"] = load_model_and_processor(
|
|
|
- model_name,
|
|
|
- lora_path if enable_lora else None
|
|
|
+ model_name, lora_path if enable_lora else None
|
|
|
)
|
|
|
return "Model loaded successfully" + (" with LoRA" if enable_lora else "")
|
|
|
|
|
|
- def describe_image(image, user_prompt, temperature, top_k, top_p, max_tokens, history):
|
|
|
+ def describe_image(
|
|
|
+ image, user_prompt, temperature, top_k, top_p, max_tokens, history
|
|
|
+ ):
|
|
|
if image is not None:
|
|
|
try:
|
|
|
processed_image = process_image(image=image)
|
|
@@ -100,7 +117,7 @@ def gradio_interface(model_name: str):
|
|
|
processed_image,
|
|
|
user_prompt,
|
|
|
temperature,
|
|
|
- top_p
|
|
|
+ top_p,
|
|
|
)
|
|
|
history.append((user_prompt, result))
|
|
|
except Exception as e:
|
|
@@ -112,7 +129,7 @@ def gradio_interface(model_name: str):
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
|
gr.HTML("<h1 style='text-align: center'>Llama Vision Model Interface</h1>")
|
|
|
-
|
|
|
+
|
|
|
with gr.Row():
|
|
|
with gr.Column(scale=1):
|
|
|
# Model loading controls
|
|
@@ -121,58 +138,74 @@ def gradio_interface(model_name: str):
|
|
|
lora_path = gr.Textbox(
|
|
|
label="LoRA Weights Path",
|
|
|
placeholder="Path to LoRA weights folder",
|
|
|
- visible=False
|
|
|
+ visible=False,
|
|
|
)
|
|
|
load_status = gr.Textbox(label="Load Status", interactive=False)
|
|
|
load_button = gr.Button("Load/Reload Model")
|
|
|
|
|
|
# Image and parameter controls
|
|
|
- image_input = gr.Image(label="Image", type="pil", image_mode="RGB", height=512, width=512)
|
|
|
- temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.6, step=0.1)
|
|
|
- top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, value=50, step=1)
|
|
|
- top_p = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.1)
|
|
|
- max_tokens = gr.Slider(label="Max Tokens", minimum=50, maximum=MAX_OUTPUT_TOKENS, value=100, step=50)
|
|
|
+ image_input = gr.Image(
|
|
|
+ label="Image", type="pil", image_mode="RGB", height=512, width=512
|
|
|
+ )
|
|
|
+ temperature = gr.Slider(
|
|
|
+ label="Temperature", minimum=0.1, maximum=1.0, value=0.6, step=0.1
|
|
|
+ )
|
|
|
+ top_k = gr.Slider(
|
|
|
+ label="Top-k", minimum=1, maximum=100, value=50, step=1
|
|
|
+ )
|
|
|
+ top_p = gr.Slider(
|
|
|
+ label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.1
|
|
|
+ )
|
|
|
+ max_tokens = gr.Slider(
|
|
|
+ label="Max Tokens",
|
|
|
+ minimum=50,
|
|
|
+ maximum=MAX_OUTPUT_TOKENS,
|
|
|
+ value=100,
|
|
|
+ step=50,
|
|
|
+ )
|
|
|
|
|
|
with gr.Column(scale=2):
|
|
|
chat_history = gr.Chatbot(label="Chat", height=512)
|
|
|
user_prompt = gr.Textbox(
|
|
|
- show_label=False,
|
|
|
- placeholder="Enter your prompt",
|
|
|
- lines=2
|
|
|
+ show_label=False, placeholder="Enter your prompt", lines=2
|
|
|
)
|
|
|
-
|
|
|
+
|
|
|
with gr.Row():
|
|
|
generate_button = gr.Button("Generate")
|
|
|
clear_button = gr.Button("Clear")
|
|
|
|
|
|
# Event handlers
|
|
|
enable_lora.change(
|
|
|
- fn=lambda x: gr.update(visible=x),
|
|
|
- inputs=[enable_lora],
|
|
|
- outputs=[lora_path]
|
|
|
+ fn=lambda x: gr.update(visible=x), inputs=[enable_lora], outputs=[lora_path]
|
|
|
)
|
|
|
-
|
|
|
+
|
|
|
load_button.click(
|
|
|
fn=load_or_reload_model,
|
|
|
inputs=[enable_lora, lora_path],
|
|
|
- outputs=[load_status]
|
|
|
+ outputs=[load_status],
|
|
|
)
|
|
|
|
|
|
generate_button.click(
|
|
|
fn=describe_image,
|
|
|
inputs=[
|
|
|
- image_input, user_prompt, temperature,
|
|
|
- top_k, top_p, max_tokens, chat_history
|
|
|
+ image_input,
|
|
|
+ user_prompt,
|
|
|
+ temperature,
|
|
|
+ top_k,
|
|
|
+ top_p,
|
|
|
+ max_tokens,
|
|
|
+ chat_history,
|
|
|
],
|
|
|
- outputs=[chat_history]
|
|
|
+ outputs=[chat_history],
|
|
|
)
|
|
|
-
|
|
|
+
|
|
|
clear_button.click(fn=clear_chat, outputs=[chat_history])
|
|
|
|
|
|
# Initial model load
|
|
|
load_or_reload_model(False)
|
|
|
return demo
|
|
|
|
|
|
+
|
|
|
def main(args):
|
|
|
"""Main execution flow"""
|
|
|
if args.gradio_ui:
|
|
@@ -180,27 +213,30 @@ def main(args):
|
|
|
demo.launch()
|
|
|
else:
|
|
|
model, processor = load_model_and_processor(
|
|
|
- args.model_name,
|
|
|
- args.finetuning_path
|
|
|
+ args.model_name, args.finetuning_path
|
|
|
)
|
|
|
image = process_image(image_path=args.image_path)
|
|
|
result = generate_text_from_image(
|
|
|
- model, processor, image,
|
|
|
- args.prompt_text,
|
|
|
- args.temperature,
|
|
|
- args.top_p
|
|
|
+ model, processor, image, args.prompt_text, args.temperature, args.top_p
|
|
|
)
|
|
|
print("Generated Text:", result)
|
|
|
|
|
|
+
|
|
|
if __name__ == "__main__":
|
|
|
- parser = argparse.ArgumentParser(description="Multi-modal inference with optional Gradio UI and LoRA support")
|
|
|
+ parser = argparse.ArgumentParser(
|
|
|
+ description="Multi-modal inference with optional Gradio UI and LoRA support"
|
|
|
+ )
|
|
|
parser.add_argument("--image_path", type=str, help="Path to the input image")
|
|
|
parser.add_argument("--prompt_text", type=str, help="Prompt text for the image")
|
|
|
- parser.add_argument("--temperature", type=float, default=0.7, help="Sampling temperature")
|
|
|
+ parser.add_argument(
|
|
|
+ "--temperature", type=float, default=0.7, help="Sampling temperature"
|
|
|
+ )
|
|
|
parser.add_argument("--top_p", type=float, default=0.9, help="Top-p sampling")
|
|
|
- parser.add_argument("--model_name", type=str, default=DEFAULT_MODEL, help="Model name")
|
|
|
+ parser.add_argument(
|
|
|
+ "--model_name", type=str, default=DEFAULT_MODEL, help="Model name"
|
|
|
+ )
|
|
|
parser.add_argument("--finetuning_path", type=str, help="Path to LoRA weights")
|
|
|
parser.add_argument("--gradio_ui", action="store_true", help="Launch Gradio UI")
|
|
|
-
|
|
|
+
|
|
|
args = parser.parse_args()
|
|
|
- main(args)
|
|
|
+ main(args)
|