Procházet zdrojové kódy

Purge last remaining llama_finetuning.py doc refs

Matthias Reso před 1 rokem
rodič
revize
5446ea7999
2 změnil soubory, kde provedl 3 přidání a 3 odebrání
  1. 2 2
      docs/Dataset.md
  2. 1 1
      docs/multi_gpu.md

+ 2 - 2
docs/Dataset.md

@@ -1,6 +1,6 @@
 # Datasets and Evaluation Metrics
 # Datasets and Evaluation Metrics
 
 
-The provided fine tuning script allows you to select between three datasets by passing the `dataset` arg to the `llama_recipes.finetuning` module or `llama_finetuning.py` script. The current options are `grammar_dataset`, `alpaca_dataset`and `samsum_dataset`. Note: Use of any of the datasets should be in compliance with the dataset's underlying licenses (including but not limited to non-commercial uses)
+The provided fine tuning script allows you to select between three datasets by passing the `dataset` arg to the `llama_recipes.finetuning` module or `examples/finetuning.py` script. The current options are `grammar_dataset`, `alpaca_dataset`and `samsum_dataset`. Note: Use of any of the datasets should be in compliance with the dataset's underlying licenses (including but not limited to non-commercial uses)
 
 
 * [grammar_dataset](https://huggingface.co/datasets/jfleg) contains 150K pairs of english sentences and possible corrections.
 * [grammar_dataset](https://huggingface.co/datasets/jfleg) contains 150K pairs of english sentences and possible corrections.
 * [alpaca_dataset](https://github.com/tatsu-lab/stanford_alpaca) provides 52K instruction-response pairs as generated by `text-davinci-003`.
 * [alpaca_dataset](https://github.com/tatsu-lab/stanford_alpaca) provides 52K instruction-response pairs as generated by `text-davinci-003`.
@@ -21,7 +21,7 @@ To add a custom dataset the following steps need to be performed.
 1. Create a dataset configuration after the schema described above. Examples can be found in [configs/datasets.py](../src/llama_recipes/configs/datasets.py).
 1. Create a dataset configuration after the schema described above. Examples can be found in [configs/datasets.py](../src/llama_recipes/configs/datasets.py).
 2. Create a preprocessing routine which loads the data and returns a PyTorch style dataset. The signature for the preprocessing function needs to be (dataset_config, tokenizer, split_name) where split_name will be the string for train/validation split as defined in the dataclass.
 2. Create a preprocessing routine which loads the data and returns a PyTorch style dataset. The signature for the preprocessing function needs to be (dataset_config, tokenizer, split_name) where split_name will be the string for train/validation split as defined in the dataclass.
 3. Register the dataset name and preprocessing function by inserting it as key and value into the DATASET_PREPROC dictionary in [utils/dataset_utils.py](../src/llama_recipes/utils/dataset_utils.py)
 3. Register the dataset name and preprocessing function by inserting it as key and value into the DATASET_PREPROC dictionary in [utils/dataset_utils.py](../src/llama_recipes/utils/dataset_utils.py)
-4. Set dataset field in training config to dataset name or use --dataset option of the `llama_recipes.finetuning` module or llama_finetuning.py training script.
+4. Set dataset field in training config to dataset name or use --dataset option of the `llama_recipes.finetuning` module or examples/finetuning.py training script.
 
 
 ## Application
 ## Application
 Below we list other datasets and their main use cases that can be used for fine tuning.
 Below we list other datasets and their main use cases that can be used for fine tuning.

+ 1 - 1
docs/multi_gpu.md

@@ -9,7 +9,7 @@ To run fine-tuning on multi-GPUs, we will  make use of two packages:
 Given the combination of PEFT and FSDP, we would be able to fine tune a Llama 2 model on multiple GPUs in one node or multi-node.
 Given the combination of PEFT and FSDP, we would be able to fine tune a Llama 2 model on multiple GPUs in one node or multi-node.
 
 
 ## Requirements 
 ## Requirements 
-To run the examples, make sure to install the llama-recipes package and clone the github repository in order to use the provided [`llama_finetuning.py`](../llama_finetuning.py) script with torchrun (See [README.md](../README.md) for details).
+To run the examples, make sure to install the llama-recipes package and clone the github repository in order to use the provided [`examples/finetuning.py`](../examples/finetuning.py) script with torchrun (See [README.md](../README.md) for details).
 
 
 **Please note that the llama_recipes package will install PyTorch 2.0.1 version, in case you want to run FSDP + PEFT, please make sure to install PyTorch nightlies.**
 **Please note that the llama_recipes package will install PyTorch 2.0.1 version, in case you want to run FSDP + PEFT, please make sure to install PyTorch nightlies.**