Procházet zdrojové kódy

Update text to be version-agnostic

Suraj Subramanian před 8 měsíci
rodič
revize
54ee333ed2
2 změnil soubory, kde provedl 8 přidání a 8 odebrání
  1. 4 4
      recipes/README.md
  2. 4 4
      recipes/quickstart/README.md

+ 4 - 4
recipes/README.md

@@ -4,8 +4,8 @@ This folder contains examples organized by topic:
 
 | Subfolder | Description |
 |---|---|
-[quickstart](./quickstart)|The "Hello World" of using Llama 3, start here if you are new to using Llama 3
-[use_cases](./use_cases)|Scripts showing common applications of Llama 3
-[3p_integrations](./3p_integrations)|Partner-owned folder showing Meta Llama 3 usage along with third-party tools 
+[quickstart](./quickstart)|The "Hello World" of using Llama, start here if you are new to using Llama
+[use_cases](./use_cases)|Scripts showing common applications of Llama
+[3p_integrations](./3p_integrations)|Partner-owned folder showing Llama usage along with third-party tools
 [responsible_ai](./responsible_ai)|Scripts to use PurpleLlama for safeguarding model outputs
-[experimental](./experimental)|Meta Llama implementations of experimental LLM techniques
+[experimental](./experimental)| Llama implementations of experimental LLM techniques

+ 4 - 4
recipes/quickstart/README.md

@@ -2,11 +2,11 @@
 
 If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.
 
-* The [Running_Llama3_Anywhere](./Running_Llama3_Anywhere/) notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
-* The [Prompt_Engineering_with_Llama_3](./Prompt_Engineering_with_Llama_3.ipynb) notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
+* The [Running_Llama_Anywhere](./Running_Llama3_Anywhere/) notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
+* The [Prompt_Engineering_with_Llama](./Prompt_Engineering_with_Llama_3.ipynb) notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
 * The [inference](./inference/) folder contains scripts to deploy Llama for inference on server and mobile. See also [3p_integrations/vllm](../3p_integrations/vllm/) and [3p_integrations/tgi](../3p_integrations/tgi/) for hosting Llama on open-source model servers.
-* The [RAG](./RAG/) folder contains a simple Retrieval-Augmented Generation application using Llama 3.
-* The [finetuning](./finetuning/) folder contains resources to help you finetune Llama 3 on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in [finetuning.py](../../src/llama_recipes/finetuning.py) which supports these features:
+* The [RAG](./RAG/) folder contains a simple Retrieval-Augmented Generation application using Llama.
+* The [finetuning](./finetuning/) folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in [finetuning.py](../../src/llama_recipes/finetuning.py) which supports these features:
 
 | Feature                                        |   |
 | ---------------------------------------------- | - |