Sanyam Bhutani пре 6 месеци
родитељ
комит
5d430e3e8f

+ 0 - 1
recipes/quickstart/NotebookLlama/README.md

@@ -77,5 +77,4 @@ The speakers and the prompt for parler model were decided based on experimentati
 - https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing#scrollTo=NyYQ--3YksJY
 - https://replicate.com/suno-ai/bark?prediction=zh8j6yddxxrge0cjp9asgzd534
 - https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c
-- 
 

+ 85 - 1
recipes/quickstart/NotebookLlama/Step-2-Transcript-Writer.ipynb

@@ -1,6 +1,26 @@
 {
  "cells": [
   {
+   "cell_type": "markdown",
+   "id": "de42c49d",
+   "metadata": {},
+   "source": [
+    "## Notebook 2: Transcript Writer\n",
+    "\n",
+    "This notebook uses the `Llama-3.1-70B-Instruct` model to take the cleaned up text from previous notebook and convert it into a podcast transcript\n",
+    "\n",
+    "`SYSTEM_PROMPT` is used for setting the model context or profile for working on a task. Here we prompt it to be a great podcast transcript writer to assist with our task"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2e576ea9",
+   "metadata": {},
+   "source": [
+    "Experimentation with the `SYSTEM_PROMPT` below  is encouraged, this worked best for the few examples the flow was tested with:"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 1,
    "id": "69395317-ad78-47b6-a533-2e8a01313e82",
@@ -36,6 +56,16 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "id": "549aaccb",
+   "metadata": {},
+   "source": [
+    "For those of the readers that want to flex their money, please feel free to try using the 405B model here. \n",
+    "\n",
+    "For our GPU poor friends, you're encouraged to test with a smaller model as well. 8B should work well out of the box for this example:"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 2,
    "id": "08c30139-ff2f-4203-8194-d1b5c50acac5",
@@ -46,6 +76,14 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "id": "fadc7eda",
+   "metadata": {},
+   "source": [
+    "Import the necessary framework"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 3,
    "id": "1641060a-d86d-4137-bbbc-ab05cbb1a888",
@@ -65,6 +103,16 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "id": "7865ff7e",
+   "metadata": {},
+   "source": [
+    "Read in the file generated from earlier. \n",
+    "\n",
+    "The encoding details are to avoid issues with generic PDF(s) that might be ingested"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 4,
    "id": "522fbf7f-8c00-412c-90c7-5cfe2fc94e4c",
@@ -100,6 +148,14 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "id": "66093561",
+   "metadata": {},
+   "source": [
+    "Since we have defined the System role earlier, we can now pass the entire file as `INPUT_PROMPT` to the model and have it use that to generate the podcast"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 5,
    "id": "8119803c-18f9-47cb-b719-2b34ccc5cc41",
@@ -110,6 +166,16 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "id": "9be8dd2c",
+   "metadata": {},
+   "source": [
+    "Hugging Face has a great `pipeline()` method which makes our life easy for generating text from LLMs. \n",
+    "\n",
+    "We will set the `temperature` to 1 to encourage creativity and `max_new_tokens` to 8126"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 6,
    "id": "8915d017-2eab-4256-943c-1f15d937d5dc",
@@ -159,6 +225,14 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "id": "6349e7f3",
+   "metadata": {},
+   "source": [
+    "This is awesome, we can now save and verify the output generated from the model before moving to the next notebook"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 7,
    "id": "606ceb10-4f3e-44bb-9277-9bbe3eefd09c",
@@ -210,6 +284,14 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "id": "1e1414fe",
+   "metadata": {},
+   "source": [
+    "Let's save the output as pickle file and continue further to Notebook 3"
+   ]
+  },
+  {
    "cell_type": "code",
    "execution_count": 8,
    "id": "2130b683-be37-4dae-999b-84eff15c687d",
@@ -226,7 +308,9 @@
    "id": "d9bab2f2-f539-435a-ae6a-3c9028489628",
    "metadata": {},
    "outputs": [],
-   "source": []
+   "source": [
+    "#fin"
+   ]
   }
  ],
  "metadata": {