Pārlūkot izejas kodu

Update utils_llama.py

Allen 1 gadu atpakaļ
vecāks
revīzija
603cf5c425
1 mainītis faili ar 0 papildinājumiem un 312 dzēšanām
  1. 0 312
      research/long-context-llama/H2O/utils_llama.py

+ 0 - 312
research/long-context-llama/H2O/utils_llama.py

@@ -369,9 +369,6 @@ def enable_h2ocache_forward(
     all_self_attns = () if output_attentions else None
     next_decoder_cache = None
 
-    import pdb;pdb.set_trace()
-
-
     for decoder_layer in self.layers:
         if output_hidden_states:
             all_hidden_states += (hidden_states,)
@@ -427,313 +424,6 @@ def enable_h2ocache_forward(
         attentions=all_self_attns,
     )
 
-def prepare_inputs_for_generation_w_h2o(
-    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
-):
-    # With static cache, the `past_key_values` is None
-    # TODO joao: standardize interface for the different Cache classes and remove of this if
-
-    import pdb; pdb.set_trace()
-
-    has_static_cache = False
-    if past_key_values is None:
-        past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)
-        has_static_cache = past_key_values is not None
-
-    past_length = 0
-    if past_key_values is not None:
-        if isinstance(past_key_values, Cache):
-            past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
-            max_cache_length = (
-                torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
-                if past_key_values.get_max_length() is not None
-                else None
-            )
-            cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
-        # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
-        else:
-            cache_length = past_length = past_key_values[0][0].shape[2]
-            max_cache_length = None
-
-        # Keep only the unprocessed tokens:
-        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
-        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
-        # input)
-        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
-            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
-        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
-        # input_ids based on the past_length.
-        elif past_length < input_ids.shape[1]:
-            input_ids = input_ids[:, past_length:]
-        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
-
-        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
-        if (
-            max_cache_length is not None
-            and attention_mask is not None
-            and cache_length + input_ids.shape[1] > max_cache_length
-        ):
-            attention_mask = attention_mask[:, -max_cache_length:]
-
-    position_ids = kwargs.get("position_ids", None)
-    if attention_mask is not None and position_ids is None:
-        # create position_ids on the fly for batch generation
-        position_ids = attention_mask.long().cumsum(-1) - 1
-        position_ids.masked_fill_(attention_mask == 0, 1)
-        if past_key_values:
-            position_ids = position_ids[:, -input_ids.shape[1] :]
-
-    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
-    if inputs_embeds is not None and past_key_values is None:
-        model_inputs = {"inputs_embeds": inputs_embeds}
-    else:
-        # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
-        # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
-        # TODO: use `next_tokens` directly instead.
-        model_inputs = {"input_ids": input_ids.contiguous()}
-
-    input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
-    if cache_position is None:
-        cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
-    else:
-        cache_position = cache_position[-input_length:]
-
-    if has_static_cache:
-        past_key_values = None
-
-    model_inputs.update(
-        {
-            "position_ids": position_ids,
-            "cache_position": cache_position,
-            "past_key_values": past_key_values,
-            "use_cache": kwargs.get("use_cache"),
-            "attention_mask": attention_mask,
-        }
-    )
-    return model_inputs
-
-
-
-
-
-# class H2OLlamaAttention(nn.Module):
-#     """Multi-headed attention from 'Attention Is All You Need' paper"""
-
-#     def __init__(self, config: LlamaConfig):
-#         super().__init__()
-#         self.config = config
-#         self.hidden_size = config.hidden_size
-#         self.num_heads = config.num_attention_heads
-#         self.head_dim = self.hidden_size // self.num_heads
-#         self.num_key_value_heads = config.num_key_value_heads
-#         self.num_key_value_groups = self.num_heads // self.num_key_value_heads
-#         self.max_position_embeddings = config.max_position_embeddings
-#         self.rope_theta = config.rope_theta
-
-#         if (self.head_dim * self.num_heads) != self.hidden_size:
-#             raise ValueError(
-#                 f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
-#                 f" and `num_heads`: {self.num_heads})."
-#             )
-#         self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
-#         self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
-#         self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
-#         self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
-#         self._init_rope()
-
-#         self.kv_cache = H2OKVCache_LayerWise(
-#             hh_size=config.hh_size,
-#             recent_size=config.recent_size,
-#             k_seq_dim=2,
-#             v_seq_dim=2,
-#         )
-
-#     def _init_rope(self):
-#         if self.config.rope_scaling is None:
-#             self.rotary_emb = LlamaRotaryEmbedding(
-#                 self.head_dim,
-#                 max_position_embeddings=self.max_position_embeddings,
-#                 base=self.rope_theta,
-#             )
-#         else:
-#             scaling_type = self.config.rope_scaling["type"]
-#             scaling_factor = self.config.rope_scaling["factor"]
-#             if scaling_type == "linear":
-#                 self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
-#                     self.head_dim,
-#                     max_position_embeddings=self.max_position_embeddings,
-#                     scaling_factor=scaling_factor,
-#                     base=self.rope_theta,
-#                 )
-#             elif scaling_type == "dynamic":
-#                 self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
-#                     self.head_dim,
-#                     max_position_embeddings=self.max_position_embeddings,
-#                     scaling_factor=scaling_factor,
-#                     base=self.rope_theta,
-#                 )
-#             else:
-#                 raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
-
-#     def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
-#         return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
-
-#     def _clean_cache(self):
-#         self.kv_cache._clean_scores()
-
-#     def forward(
-#         self,
-#         hidden_states: torch.Tensor,
-#         attention_mask: Optional[torch.Tensor] = None,
-#         position_ids: Optional[torch.LongTensor] = None,
-#         past_key_value: Optional[Tuple[torch.Tensor]] = None,
-#         output_attentions: bool = False,
-#         use_cache: bool = False,
-#         cache_position: Optional[torch.LongTensor] = None,
-#     ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
-
-#         bsz, q_len, _ = hidden_states.size()
-
-#         if self.config.pretraining_tp > 1:
-#             key_value_slicing = (
-#                 self.num_key_value_heads * self.head_dim
-#             ) // self.config.pretraining_tp
-#             query_slices = self.q_proj.weight.split(
-#                 (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
-#             )
-#             key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
-#             value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
-
-#             query_states = [
-#                 F.linear(hidden_states, query_slices[i])
-#                 for i in range(self.config.pretraining_tp)
-#             ]
-#             query_states = torch.cat(query_states, dim=-1)
-
-#             key_states = [
-#                 F.linear(hidden_states, key_slices[i])
-#                 for i in range(self.config.pretraining_tp)
-#             ]
-#             key_states = torch.cat(key_states, dim=-1)
-
-#             value_states = [
-#                 F.linear(hidden_states, value_slices[i])
-#                 for i in range(self.config.pretraining_tp)
-#             ]
-#             value_states = torch.cat(value_states, dim=-1)
-
-#         else:
-#             query_states = self.q_proj(hidden_states)
-#             key_states = self.k_proj(hidden_states)
-#             value_states = self.v_proj(hidden_states)
-
-#         query_states = query_states.view(
-#             bsz, q_len, self.num_heads, self.head_dim
-#         ).transpose(1, 2)
-#         key_states = key_states.view(
-#             bsz, q_len, self.num_key_value_heads, self.head_dim
-#         ).transpose(1, 2)
-#         value_states = value_states.view(
-#             bsz, q_len, self.num_key_value_heads, self.head_dim
-#         ).transpose(1, 2)
-
-#         # remake causal mask
-#         attention_mask = _make_causal_mask(
-#             bsz=bsz,
-#             tgt_len=q_len,
-#             past_key_values_length=past_key_value[0].shape[-2] if past_key_value is not None else 0,
-#             dtype=query_states.dtype,
-#             device=query_states.device,
-#         )
-
-#         kv_seq_len = key_states.shape[-2]
-#         if past_key_value is not None:
-#             kv_seq_len += past_key_value[0].shape[-2]
-
-#         if not position_ids.nelement() > 1:
-#             position_ids[0][0] = kv_seq_len - 1
-
-#         cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
-#         ### Shift Pos: query pos is min(cache_size, idx)
-#         # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
-#         query_states = apply_rotary_pos_emb_single(query_states, cos, sin, position_ids)
-#         ###
-
-#         if past_key_value is not None:
-#             # reuse k, v, self_attention
-#             key_states = torch.cat([past_key_value[0], key_states], dim=2)
-#             value_states = torch.cat([past_key_value[1], value_states], dim=2)
-
-#         past_key_value = (key_states, value_states) if use_cache else None
-
-#         ### Shift Pos: key pos is the pos in cache (Rolling KV Cache and using relative pos emb)
-#         key_position_ids = torch.arange(kv_seq_len, device=position_ids.device).unsqueeze(0)
-#         key_states = apply_rotary_pos_emb_single(key_states, cos, sin, key_position_ids)
-#         ###
-
-#         # repeat k/v heads if n_kv_heads < n_heads
-#         key_states = repeat_kv(key_states, self.num_key_value_groups)
-#         value_states = repeat_kv(value_states, self.num_key_value_groups)
-
-#         attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(
-#             self.head_dim
-#         )
-
-#         if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
-#             raise ValueError(
-#                 f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
-#                 f" {attn_weights.size()}"
-#             )
-
-#         if attention_mask is not None:
-#             if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
-#                 raise ValueError(
-#                     f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
-#                 )
-#             attn_weights = attn_weights + attention_mask
-
-#         # upcast attention to fp32
-#         attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
-#             query_states.dtype
-#         )
-
-#         past_key_value = self.kv_cache(past_key_value, attn_weights.detach().clone())
-
-#         attn_output = torch.matmul(attn_weights, value_states)
-
-#         if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
-#             raise ValueError(
-#                 f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
-#                 f" {attn_output.size()}"
-#             )
-
-#         attn_output = attn_output.transpose(1, 2).contiguous()
-#         attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
-
-#         if self.config.pretraining_tp > 1:
-#             attn_output = attn_output.split(
-#                 self.hidden_size // self.config.pretraining_tp, dim=2
-#             )
-#             o_proj_slices = self.o_proj.weight.split(
-#                 self.hidden_size // self.config.pretraining_tp, dim=1
-#             )
-#             attn_output = sum(
-#                 [
-#                     F.linear(attn_output[i], o_proj_slices[i])
-#                     for i in range(self.config.pretraining_tp)
-#                 ]
-#             )
-#         else:
-#             attn_output = self.o_proj(attn_output)
-
-#         if not output_attentions:
-#             attn_weights = None
-
-#         return attn_output, attn_weights, past_key_value
-
-
-
-
 class H2OLlamaForCausalLM(LlamaForCausalLM):
     def __init__(self, config):
         super().__init__(config)
@@ -751,8 +441,6 @@ class H2OLlamaForCausalLM(LlamaForCausalLM):
         # With static cache, the `past_key_values` is None
         # TODO joao: standardize interface for the different Cache classes and remove of this if
 
-        import pdb; pdb.set_trace()
-
         has_static_cache = False
         if past_key_values is None:
             past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)