|
@@ -0,0 +1,644 @@
|
|
|
+from dataclasses import dataclass
|
|
|
+from typing import Any, Dict, List, Optional, Tuple
|
|
|
+
|
|
|
+import torch
|
|
|
+
|
|
|
+from transformers.configuration_utils import PretrainedConfig
|
|
|
+from transformers.utils import logging
|
|
|
+
|
|
|
+logger = logging.get_logger(__name__)
|
|
|
+
|
|
|
+@dataclass
|
|
|
+class Cache:
|
|
|
+ """
|
|
|
+ Base, abstract class for all caches. The actual data structure is specific to each subclass.
|
|
|
+ """
|
|
|
+
|
|
|
+ def update(
|
|
|
+ self,
|
|
|
+ key_states: torch.Tensor,
|
|
|
+ value_states: torch.Tensor,
|
|
|
+ layer_idx: int,
|
|
|
+ cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """
|
|
|
+ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ key_states (`torch.Tensor`):
|
|
|
+ The new key states to cache.
|
|
|
+ value_states (`torch.Tensor`):
|
|
|
+ The new value states to cache.
|
|
|
+ layer_idx (`int`):
|
|
|
+ The index of the layer to cache the states for.
|
|
|
+ cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
|
+ Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
|
|
+ cache to be created.
|
|
|
+
|
|
|
+ Return:
|
|
|
+ A tuple containing the updated key and value states.
|
|
|
+ """
|
|
|
+ raise NotImplementedError("Make sure to implement `update` in a subclass.")
|
|
|
+
|
|
|
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
|
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
|
+ raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
|
|
|
+
|
|
|
+ def get_max_length(self) -> Optional[int]:
|
|
|
+ """Returns the maximum sequence length of the cached states, if there is any."""
|
|
|
+ raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
|
|
|
+
|
|
|
+ def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
|
|
+ """Given the sequence length of the new inputs, returns the usable length of the cache."""
|
|
|
+ # Cache without size limit -> all cache is usable
|
|
|
+ # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
|
|
+ # length, we will need to evict part of the cache (and thus not all cache is usable)
|
|
|
+ max_length = self.get_max_length()
|
|
|
+ previous_seq_length = self.get_seq_length(layer_idx)
|
|
|
+ if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
|
|
+ return max_length - new_seq_length
|
|
|
+ return previous_seq_length
|
|
|
+
|
|
|
+ @property
|
|
|
+ def seen_tokens(self):
|
|
|
+ logger.warning_once(
|
|
|
+ "The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
|
|
|
+ "model input instead."
|
|
|
+ )
|
|
|
+ if hasattr(self, "_seen_tokens"):
|
|
|
+ return self._seen_tokens
|
|
|
+ else:
|
|
|
+ return None
|
|
|
+
|
|
|
+
|
|
|
+class DynamicCache(Cache):
|
|
|
+ """
|
|
|
+ A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
|
|
+
|
|
|
+ It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
|
|
+ `[batch_size, num_heads, seq_len, head_dim]`.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self) -> None:
|
|
|
+ self.key_cache: List[torch.Tensor] = []
|
|
|
+ self.value_cache: List[torch.Tensor] = []
|
|
|
+ self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
|
|
+
|
|
|
+ def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
|
|
+ sequence length.
|
|
|
+ """
|
|
|
+ if layer_idx < len(self):
|
|
|
+ return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
|
+ else:
|
|
|
+ raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
|
|
+ keys and values
|
|
|
+ """
|
|
|
+ for layer_idx in range(len(self)):
|
|
|
+ yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
|
|
+ to the number of layers in the model.
|
|
|
+ """
|
|
|
+ return len(self.key_cache)
|
|
|
+
|
|
|
+ def update(
|
|
|
+ self,
|
|
|
+ key_states: torch.Tensor,
|
|
|
+ value_states: torch.Tensor,
|
|
|
+ layer_idx: int,
|
|
|
+ cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """
|
|
|
+ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ key_states (`torch.Tensor`):
|
|
|
+ The new key states to cache.
|
|
|
+ value_states (`torch.Tensor`):
|
|
|
+ The new value states to cache.
|
|
|
+ layer_idx (`int`):
|
|
|
+ The index of the layer to cache the states for.
|
|
|
+ cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
|
+ Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
+
|
|
|
+ Return:
|
|
|
+ A tuple containing the updated key and value states.
|
|
|
+ """
|
|
|
+ # Update the number of seen tokens
|
|
|
+ if layer_idx == 0:
|
|
|
+ self._seen_tokens += key_states.shape[-2]
|
|
|
+
|
|
|
+ # Update the cache
|
|
|
+ if len(self.key_cache) <= layer_idx:
|
|
|
+ self.key_cache.append(key_states)
|
|
|
+ self.value_cache.append(value_states)
|
|
|
+ else:
|
|
|
+ self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
|
|
+ self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
|
|
+
|
|
|
+ return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
+
|
|
|
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
|
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
|
+ if len(self.key_cache) <= layer_idx:
|
|
|
+ return 0
|
|
|
+ return self.key_cache[layer_idx].shape[-2]
|
|
|
+
|
|
|
+ def get_max_length(self) -> Optional[int]:
|
|
|
+ """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
|
|
+ return None
|
|
|
+
|
|
|
+ def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
|
+ """Reorders the cache for beam search, given the selected beam indices."""
|
|
|
+ for layer_idx in range(len(self.key_cache)):
|
|
|
+ device = self.key_cache[layer_idx].device
|
|
|
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
+ device = self.value_cache[layer_idx].device
|
|
|
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
+
|
|
|
+ def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
|
|
+ """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
|
|
|
+ legacy_cache = ()
|
|
|
+ for layer_idx in range(len(self)):
|
|
|
+ legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
|
|
+ return legacy_cache
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
|
|
+ """Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
|
|
|
+ cache = cls()
|
|
|
+ if past_key_values is not None:
|
|
|
+ for layer_idx in range(len(past_key_values)):
|
|
|
+ key_states, value_states = past_key_values[layer_idx]
|
|
|
+ cache.update(key_states, value_states, layer_idx)
|
|
|
+ return cache
|
|
|
+
|
|
|
+
|
|
|
+class SinkCache(Cache):
|
|
|
+ """
|
|
|
+ A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
|
|
|
+ generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
|
|
|
+ tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
|
|
|
+
|
|
|
+ It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
|
|
+ `[batch_size, num_heads, seq_len, head_dim]`.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ window_length (`int`):
|
|
|
+ The length of the context window.
|
|
|
+ num_sink_tokens (`int`):
|
|
|
+ The number of sink tokens. See the original paper for more information.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, window_length: int, num_sink_tokens: int) -> None:
|
|
|
+ self.key_cache: List[torch.Tensor] = []
|
|
|
+ self.value_cache: List[torch.Tensor] = []
|
|
|
+ self.window_length = window_length
|
|
|
+ self.num_sink_tokens = num_sink_tokens
|
|
|
+ self.cos_sin_cache = {}
|
|
|
+ self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def _rotate_half(x):
|
|
|
+ x1 = x[..., : x.shape[-1] // 2]
|
|
|
+ x2 = x[..., x.shape[-1] // 2 :]
|
|
|
+ return torch.cat((-x2, x1), dim=-1)
|
|
|
+
|
|
|
+ def _apply_key_rotary_pos_emb(
|
|
|
+ self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
|
|
+ ) -> torch.Tensor:
|
|
|
+ rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
|
|
|
+ return rotated_key_states
|
|
|
+
|
|
|
+ def _get_rerotation_cos_sin(
|
|
|
+ self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ if key_states.shape[-2] not in self.cos_sin_cache:
|
|
|
+ # Upcast to float32 temporarily for better accuracy
|
|
|
+ cos = cos.to(torch.float32)
|
|
|
+ sin = sin.to(torch.float32)
|
|
|
+
|
|
|
+ # Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
|
|
|
+ original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
|
|
|
+ shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
|
|
|
+ original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
|
|
|
+ shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
|
|
|
+ rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
|
|
|
+ rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
|
|
|
+
|
|
|
+ self.cos_sin_cache[key_states.shape[-2]] = (
|
|
|
+ rerotation_cos.to(key_states.dtype).unsqueeze(0),
|
|
|
+ rerotation_sin.to(key_states.dtype).unsqueeze(0),
|
|
|
+ )
|
|
|
+ return self.cos_sin_cache[key_states.shape[-2]]
|
|
|
+
|
|
|
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
|
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
|
+ # Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
|
|
+ if len(self.key_cache) <= layer_idx:
|
|
|
+ return 0
|
|
|
+ return self.key_cache[layer_idx].shape[-2]
|
|
|
+
|
|
|
+ def get_max_length(self) -> Optional[int]:
|
|
|
+ """Returns the maximum sequence length of the cached states."""
|
|
|
+ return self.window_length
|
|
|
+
|
|
|
+ def update(
|
|
|
+ self,
|
|
|
+ key_states: torch.Tensor,
|
|
|
+ value_states: torch.Tensor,
|
|
|
+ layer_idx: int,
|
|
|
+ cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """
|
|
|
+ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ key_states (`torch.Tensor`):
|
|
|
+ The new key states to cache.
|
|
|
+ value_states (`torch.Tensor`):
|
|
|
+ The new value states to cache.
|
|
|
+ layer_idx (`int`):
|
|
|
+ The index of the layer to cache the states for.
|
|
|
+ cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
|
+ Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
|
|
|
+ `cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
|
|
|
+ rotation as the tokens are shifted.
|
|
|
+
|
|
|
+ Return:
|
|
|
+ A tuple containing the updated key and value states.
|
|
|
+ """
|
|
|
+ # Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
|
|
|
+ # with partially rotated position embeddings, like Phi or Persimmon.
|
|
|
+ sin = cache_kwargs.get("sin")
|
|
|
+ cos = cache_kwargs.get("cos")
|
|
|
+ partial_rotation_size = cache_kwargs.get("partial_rotation_size")
|
|
|
+ using_rope = cos is not None and sin is not None
|
|
|
+
|
|
|
+ # Update the number of seen tokens
|
|
|
+ if layer_idx == 0:
|
|
|
+ self._seen_tokens += key_states.shape[-2]
|
|
|
+
|
|
|
+ # [bsz, num_heads, seq_len, head_dim]
|
|
|
+ if len(self.key_cache) <= layer_idx:
|
|
|
+ # Empty cache
|
|
|
+ self.key_cache.append(key_states)
|
|
|
+ self.value_cache.append(value_states)
|
|
|
+
|
|
|
+ elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
|
|
|
+ # Growing cache
|
|
|
+ self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
|
|
+ self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
|
|
+
|
|
|
+ else:
|
|
|
+ # Shifting cache
|
|
|
+ keys_to_keep = self.key_cache[layer_idx][
|
|
|
+ :, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
|
|
|
+ ]
|
|
|
+
|
|
|
+ # On RoPE models, we need to recompute the Key rotation as the tokens are shifted
|
|
|
+ if using_rope:
|
|
|
+ rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
|
|
|
+ key_states, cos[: self.window_length], sin[: self.window_length]
|
|
|
+ )
|
|
|
+ if partial_rotation_size is not None:
|
|
|
+ keys_to_keep, keys_pass = (
|
|
|
+ keys_to_keep[..., :partial_rotation_size],
|
|
|
+ keys_to_keep[..., partial_rotation_size:],
|
|
|
+ )
|
|
|
+ keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
|
|
|
+ if partial_rotation_size is not None:
|
|
|
+ keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
|
|
|
+
|
|
|
+ # Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
|
|
|
+ sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
|
|
|
+ self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
|
|
|
+
|
|
|
+ sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
|
|
|
+ values_to_keep = self.value_cache[layer_idx][
|
|
|
+ :, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
|
|
|
+ ]
|
|
|
+ self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
|
|
|
+
|
|
|
+ return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
+
|
|
|
+ def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
|
+ """Reorders the cache for beam search, given the selected beam indices."""
|
|
|
+ for layer_idx in range(len(self.key_cache)):
|
|
|
+ device = self.key_cache[layer_idx].device
|
|
|
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
+ device = self.value_cache[layer_idx].device
|
|
|
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
+
|
|
|
+
|
|
|
+class HHCache(Cache):
|
|
|
+ """
|
|
|
+ A cache that apply heavy-hitter oracle (https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf).
|
|
|
+ Only the heavy-hitter and the recent tokens are stored in the cache.
|
|
|
+
|
|
|
+ It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
|
|
+ `[batch_size, num_heads, seq_len, head_dim]`.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ window_length (`int`):
|
|
|
+ The length of the context window.
|
|
|
+ num_hh_tokens (`int`):
|
|
|
+ The number of heavy hitter tokens. See the original paper for more information.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, window_length: int, num_hh_tokens: int) -> None:
|
|
|
+ self.key_cache: List[torch.Tensor] = []
|
|
|
+ self.value_cache: List[torch.Tensor] = []
|
|
|
+ self.window_length = window_length
|
|
|
+ self.num_hh_tokens = num_hh_tokens
|
|
|
+ self.accumulated_attention_scores: List[torch.Tensor] = []
|
|
|
+ self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
|
|
+
|
|
|
+ def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
|
|
+ sequence length.
|
|
|
+ """
|
|
|
+ if layer_idx < len(self):
|
|
|
+ return (self.key_cache[layer_idx], self.value_cache[layer_idx], self.accumulated_attention_scores[layer_idx])
|
|
|
+ else:
|
|
|
+ raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
|
|
+ keys and values
|
|
|
+ """
|
|
|
+ for layer_idx in range(len(self)):
|
|
|
+ yield (self.key_cache[layer_idx], self.value_cache[layer_idx], self.accumulated_attention_scores[layer_idx])
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ """
|
|
|
+ Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
|
|
+ to the number of layers in the model.
|
|
|
+ """
|
|
|
+ return len(self.key_cache)
|
|
|
+
|
|
|
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
|
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
|
+ # Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
|
|
+ if len(self.key_cache) <= layer_idx:
|
|
|
+ return 0
|
|
|
+ return self.key_cache[layer_idx].shape[-2]
|
|
|
+
|
|
|
+ def get_max_length(self) -> Optional[int]:
|
|
|
+ """Returns the maximum sequence length of the cached states."""
|
|
|
+ return self.window_length
|
|
|
+
|
|
|
+ def update(
|
|
|
+ self,
|
|
|
+ key_states: torch.Tensor,
|
|
|
+ value_states: torch.Tensor,
|
|
|
+ layer_idx: int,
|
|
|
+ cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
+ accumulated_attention_scores: Optional[torch.Tensor] = None,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """
|
|
|
+ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ key_states (`torch.Tensor`):
|
|
|
+ The new key states to cache.
|
|
|
+ value_states (`torch.Tensor`):
|
|
|
+ The new value states to cache.
|
|
|
+ layer_idx (`int`):
|
|
|
+ The index of the layer to cache the states for.
|
|
|
+ cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
|
+ Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
+
|
|
|
+ Return:
|
|
|
+ A tuple containing the updated key and value states.
|
|
|
+ """
|
|
|
+ # Update the number of seen tokens
|
|
|
+
|
|
|
+ if accumulated_attention_scores is not None:
|
|
|
+ self.accumulated_attention_scores.append(accumulated_attention_scores)
|
|
|
+
|
|
|
+ if layer_idx == 0:
|
|
|
+ self._seen_tokens += key_states.shape[-2]
|
|
|
+
|
|
|
+ # Update the cache
|
|
|
+ if len(self.key_cache) <= layer_idx:
|
|
|
+ self.key_cache.append(key_states)
|
|
|
+ self.value_cache.append(value_states)
|
|
|
+ else:
|
|
|
+ self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
|
|
+ self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
|
|
+
|
|
|
+ return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
|
|
+
|
|
|
+ def update_slimming(
|
|
|
+ self,
|
|
|
+ attention_scores: torch.Tensor,
|
|
|
+ num_kv_groups: int,
|
|
|
+ layer_idx: int,
|
|
|
+ cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """
|
|
|
+ Slimming the cache based on accumulated attention scores, only keep heavy-hitters + local tokens.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ attention_scores (`torch.Tensor`):
|
|
|
+ Attention_scores for current steps.
|
|
|
+ num_kv_groups (`int`):
|
|
|
+ The number of kv groups in repeat kv.
|
|
|
+ layer_idx (`int`):
|
|
|
+ The index of the layer to cache the states for.
|
|
|
+ cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
|
+ Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
|
|
+ Return:
|
|
|
+ A tuple containing the updated key and value states.
|
|
|
+ """
|
|
|
+
|
|
|
+ # Update score metrics (Accumulated attention scores)
|
|
|
+ if len(self.accumulated_attention_scores) <= layer_idx:
|
|
|
+ self.accumulated_attention_scores.append(attention_scores.sum(2)[:,::num_kv_groups, :]) # [bs, num_heads, key_len]
|
|
|
+ else:
|
|
|
+ num_new_tokens = attention_scores.shape[2]
|
|
|
+ updated_attention_scores = attention_scores.sum(2)[:,::num_kv_groups, :] # [bs, num_heads, key_len]
|
|
|
+ updated_attention_scores[:, :, :-num_new_tokens] += self.accumulated_attention_scores[layer_idx]
|
|
|
+ self.accumulated_attention_scores[layer_idx] = updated_attention_scores
|
|
|
+
|
|
|
+ # Update KV Cache
|
|
|
+ if self.get_seq_length(layer_idx) > self.window_length:
|
|
|
+
|
|
|
+ seq_scores = self.accumulated_attention_scores[layer_idx][:, :, :-self.window_length + self.num_hh_tokens]
|
|
|
+ _, keep_hh_index = torch.topk(seq_scores, self.num_hh_tokens, dim=-1)
|
|
|
+ keep_hh_index = keep_hh_index.sort().values
|
|
|
+
|
|
|
+ keep_local_index = torch.arange(self.get_seq_length(layer_idx) - self.window_length + self.num_hh_tokens, self.get_seq_length(layer_idx), device=keep_hh_index.device).repeat(keep_hh_index.shape[0], keep_hh_index.shape[1], 1)
|
|
|
+ keep_index = torch.cat([keep_hh_index, keep_local_index], dim=-1)
|
|
|
+
|
|
|
+ mask = torch.zeros(self.accumulated_attention_scores[layer_idx].shape, dtype=torch.bool).to(keep_hh_index.device)
|
|
|
+ mask = mask.scatter(-1, keep_index, 1)
|
|
|
+
|
|
|
+ bsz, num_heads, _, head_dim = self.key_cache[layer_idx].shape
|
|
|
+ self.key_cache[layer_idx] = self.key_cache[layer_idx][mask].view(bsz, num_heads, -1, head_dim)
|
|
|
+ self.value_cache[layer_idx] = self.value_cache[layer_idx][mask].view(bsz, num_heads, -1, head_dim)
|
|
|
+ self.accumulated_attention_scores[layer_idx] = self.accumulated_attention_scores[layer_idx][mask].view(bsz, num_heads, -1)
|
|
|
+
|
|
|
+
|
|
|
+ def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
|
+ """Reorders the cache for beam search, given the selected beam indices."""
|
|
|
+ for layer_idx in range(len(self.key_cache)):
|
|
|
+ device = self.key_cache[layer_idx].device
|
|
|
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
+ device = self.value_cache[layer_idx].device
|
|
|
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
|
|
+
|
|
|
+ def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
|
|
+ """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
|
|
|
+ legacy_cache = ()
|
|
|
+ for layer_idx in range(len(self)):
|
|
|
+ legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx], self.accumulated_attention_scores[layer_idx],))
|
|
|
+ return legacy_cache
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_legacy_cache(cls, window_length: int, num_hh_tokens: int, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
|
|
+ """Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
|
|
|
+ cache = cls(window_length, num_hh_tokens)
|
|
|
+ if past_key_values is not None:
|
|
|
+ for layer_idx in range(len(past_key_values) // 3):
|
|
|
+ key_states = past_key_values[layer_idx * 3]
|
|
|
+ value_states = past_key_values[layer_idx * 3 + 1]
|
|
|
+ accumulated_attention_scores = past_key_values[layer_idx * 3 + 2]
|
|
|
+ cache.update(key_states, value_states, layer_idx, accumulated_attention_scores=accumulated_attention_scores)
|
|
|
+ return cache
|
|
|
+
|
|
|
+ def evict_for_space(self, space_needed: int):
|
|
|
+ num_layers = len(self.key_cache)
|
|
|
+
|
|
|
+ # Update score metrics (Accumulated attention scores)
|
|
|
+ if len(self.accumulated_attention_scores) < num_layers:
|
|
|
+ raise ValueError("The accumulated_attention_scores should be updated before evicting the cache.")
|
|
|
+
|
|
|
+ for layer_idx in range(num_layers):
|
|
|
+ # Update KV Cache, Evict for new coming prompts
|
|
|
+ if self.get_seq_length(layer_idx) + space_needed > self.window_length:
|
|
|
+ if self.window_length - self.num_hh_tokens <= space_needed:
|
|
|
+ raise ValueError("The space_needed should be less than the window_length - num_hh_tokens.")
|
|
|
+
|
|
|
+ seq_scores = self.accumulated_attention_scores[layer_idx][:, :, :-self.window_length + self.num_hh_tokens + space_needed]
|
|
|
+ _, keep_hh_index = torch.topk(seq_scores, self.num_hh_tokens, dim=-1)
|
|
|
+ keep_hh_index = keep_hh_index.sort().values
|
|
|
+
|
|
|
+ keep_local_index = torch.arange(self.get_seq_length(layer_idx) - self.window_length + self.num_hh_tokens + space_needed, self.get_seq_length(layer_idx), device=keep_hh_index.device).repeat(keep_hh_index.shape[0], keep_hh_index.shape[1], 1)
|
|
|
+ keep_index = torch.cat([keep_hh_index, keep_local_index], dim=-1)
|
|
|
+
|
|
|
+ mask = torch.zeros(self.accumulated_attention_scores[layer_idx].shape, dtype=torch.bool).to(keep_hh_index.device)
|
|
|
+ mask = mask.scatter(-1, keep_index, 1)
|
|
|
+
|
|
|
+ bsz, num_heads, _, head_dim = self.key_cache[layer_idx].shape
|
|
|
+ self.key_cache[layer_idx] = self.key_cache[layer_idx][mask].view(bsz, num_heads, -1, head_dim)
|
|
|
+ self.value_cache[layer_idx] = self.value_cache[layer_idx][mask].view(bsz, num_heads, -1, head_dim)
|
|
|
+ self.accumulated_attention_scores[layer_idx] = self.accumulated_attention_scores[layer_idx][mask].view(bsz, num_heads, -1)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+class StaticCache(Cache):
|
|
|
+ """
|
|
|
+ Static Cache class to be used with `torch.compile(model)`.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ config (`PretrainedConfig):
|
|
|
+ The configuration file defining the `max_position_embeddings`, `hidden_size` and `num_attention_heads`
|
|
|
+ required to initialize the static cache.
|
|
|
+ max_batch_size (`int`):
|
|
|
+ The maximum batch size with which the model will be used.
|
|
|
+ max_cache_len (`int`):
|
|
|
+ The maximum sequence length with which the model will be used.
|
|
|
+ device (`torch.device`):
|
|
|
+ The device on which the cache should be initialized. Should be the same as the layer.
|
|
|
+ dtype (*optional*, defaults to `torch.float32`):
|
|
|
+ The default `dtype` to use when initializing the layer.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
|
|
+ super().__init__()
|
|
|
+ self.max_batch_size = max_batch_size
|
|
|
+ self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
|
|
+ # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
|
|
+ self.head_dim = (
|
|
|
+ config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
|
|
+ )
|
|
|
+
|
|
|
+ self.dtype = dtype if dtype is not None else torch.float32
|
|
|
+ self.num_key_value_heads = (
|
|
|
+ config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
|
|
+ )
|
|
|
+
|
|
|
+ cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
|
|
|
+ self.key_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
|
|
+ self.value_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
|
|
+
|
|
|
+ def update(
|
|
|
+ self,
|
|
|
+ key_states: torch.Tensor,
|
|
|
+ value_states: torch.Tensor,
|
|
|
+ layer_idx: int,
|
|
|
+ cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """
|
|
|
+ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
|
|
+ It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ key_states (`torch.Tensor`):
|
|
|
+ The new key states to cache.
|
|
|
+ value_states (`torch.Tensor`):
|
|
|
+ The new value states to cache.
|
|
|
+ layer_idx (`int`):
|
|
|
+ The index of the layer to cache the states for. Kept for backward compatibility
|
|
|
+ cache_kwargs (`Dict[str, Any]`, `optional`):
|
|
|
+ Additional arguments for the cache subclass. The `StaticCache` just needs the `q_len`
|
|
|
+ to know how much of the cache it should overwrite.
|
|
|
+
|
|
|
+ Return:
|
|
|
+ A tuple containing the updated key and value states.
|
|
|
+ """
|
|
|
+ new_cache_positions = cache_kwargs.get("cache_position")
|
|
|
+ k_out = self.key_cache
|
|
|
+ v_out = self.value_cache
|
|
|
+
|
|
|
+ k_out[:, :, new_cache_positions] = key_states
|
|
|
+ v_out[:, :, new_cache_positions] = value_states
|
|
|
+
|
|
|
+ return k_out, v_out
|
|
|
+
|
|
|
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
|
|
+ """Returns the sequence length of the cached states that were seen by the model. `layer_idx` kept for BC"""
|
|
|
+ # Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
|
|
+ # limit the check to the first batch member and head dimension.
|
|
|
+ # TODO: This is error prone, a filled cache may be `0.0`. Let's use a stateless integer instead, after
|
|
|
+ # https://github.com/pytorch/pytorch/issues/120248 is fixed
|
|
|
+ return (self.key_cache[0, 0].any(dim=-1)).sum()
|
|
|
+
|
|
|
+ def get_max_length(self) -> Optional[int]:
|
|
|
+ """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
|
|
+ return self.max_cache_len
|
|
|
+
|
|
|
+ def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
|
+ """Reorders the cache for beam search, given the selected beam indices."""
|
|
|
+ device = self.key_cache.device
|
|
|
+ self.key_cache = self.key_cache.index_select(0, beam_idx.to(device))
|
|
|
+ device = self.value_cache.device
|
|
|
+ self.value_cache = self.value_cache.index_select(0, beam_idx.to(device))
|
|
|
+
|
|
|
+ def to_legacy_cache(self):
|
|
|
+ """Dummy function for BC. We have to keep it because otherwise the call in the forward of models will break it"""
|
|
|
+ return None
|
|
|
+
|