Pārlūkot izejas kodu

Update label_script.py

Added corrupt image handling
Sanyam Bhutani 8 mēneši atpakaļ
vecāks
revīzija
6dd384cb5f
1 mainītis faili ar 43 papildinājumiem un 17 dzēšanām
  1. 43 17
      recipes/quickstart/Multi-Modal-RAG/label_script.py

+ 43 - 17
recipes/quickstart/Multi-Modal-RAG/label_script.py

@@ -1,12 +1,3 @@
-import os
-import argparse
-import torch
-from transformers import MllamaForConditionalGeneration, MllamaProcessor
-from tqdm import tqdm
-import csv
-from PIL import Image
-import torch.multiprocessing as mp
-
 USER_TEXT = """
 You are an expert fashion captioner, we are writing descriptions of clothes, look at the image closely and write a caption for it.
 
@@ -29,25 +20,57 @@ Remember-DO NOT SAY ANYTHING ELSE ABOUT WHAT IS GOING ON, just the opening brace
 
 Example: ALWAYS RETURN ANSWERS IN THE DICTIONARY FORMAT BELOW OK?
 
-{"Title": "Casual White pant with logo on it", "size": "L", "Category": "Jeans", "Gender": "U", "Type": "Work Casual", "Description": "Write it here, this is where your stuff goes"} 
+{"Title": "Casual White pant with logo on it", "size": "L", "Category": "Jeans", "Gender": "U", "Type": "Work Casual", "Description": "Write it here, this is where your stuff goes"} "
 """
 
+import os
+import argparse
+import torch
+from transformers import MllamaForConditionalGeneration, MllamaProcessor
+from tqdm import tqdm
+import csv
+from PIL import Image
+import torch.multiprocessing as mp
+from concurrent.futures import ProcessPoolExecutor
+import shutil
+
+def is_image_corrupt(image_path):
+    try:
+        with Image.open(image_path) as img:
+            img.verify()
+        return False
+    except (IOError, SyntaxError, Image.UnidentifiedImageError):
+        return True
+
+def find_and_move_corrupt_images(folder_path, corrupt_folder):
+    image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) 
+                   if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
+    
+    num_cores = mp.cpu_count()
+    with ProcessPoolExecutor(max_workers=num_cores) as executor:
+        results = executor.map(is_image_corrupt, image_files)
+    
+    corrupt_images = [img for img, is_corrupt in zip(image_files, results) if is_corrupt]
+    
+    os.makedirs(corrupt_folder, exist_ok=True)
+    for img in corrupt_images:
+        shutil.move(img, os.path.join(corrupt_folder, os.path.basename(img)))
+    
+    print(f"Moved {len(corrupt_images)} corrupt images to {corrupt_folder}")
+
 def get_image(image_path):
     return Image.open(image_path).convert('RGB')
 
 def process_images(rank, world_size, args, model_name, input_files, output_csv):
-    # Set up the model and processor for this GPU
     model = MllamaForConditionalGeneration.from_pretrained(model_name, device_map=f"cuda:{rank}", torch_dtype=torch.bfloat16, token=args.hf_token)
     processor = MllamaProcessor.from_pretrained(model_name, token=args.hf_token)
 
-    # Calculate the chunk of files this GPU will process
     chunk_size = len(input_files) // world_size
     start_idx = rank * chunk_size
     end_idx = start_idx + chunk_size if rank < world_size - 1 else len(input_files)
     
     results = []
     
-    # Process files with TQDM
     for filename in tqdm(input_files[start_idx:end_idx], desc=f"GPU {rank} processing", position=rank):
         image_path = os.path.join(args.input_path, filename)
         image = get_image(image_path)
@@ -64,7 +87,6 @@ def process_images(rank, world_size, args, model_name, input_files, output_csv):
 
         results.append((filename, decoded_output))
 
-    # Write results to CSV
     with open(output_csv, 'w', newline='', encoding='utf-8') as f:
         writer = csv.writer(f)
         writer.writerow(['Filename', 'Caption'])
@@ -76,14 +98,18 @@ def main():
     parser.add_argument("--input_path", required=True, help="Path to input image folder")
     parser.add_argument("--output_path", required=True, help="Path to output CSV folder")
     parser.add_argument("--num_gpus", type=int, required=True, help="Number of GPUs to use")
+    parser.add_argument("--corrupt_folder", default="corrupt_images", help="Folder to move corrupt images")
     args = parser.parse_args()
 
     model_name = "meta-llama/Llama-3.2-11b-Vision-Instruct"
 
-    # Get list of image files
-    input_files = [f for f in os.listdir(args.input_path) if f.endswith(('.jpg', '.jpeg', '.png'))]
+    # Find and move corrupt images
+    corrupt_folder = os.path.join(args.input_path, args.corrupt_folder)
+    find_and_move_corrupt_images(args.input_path, corrupt_folder)
+
+    # Get list of remaining (non-corrupt) image files
+    input_files = [f for f in os.listdir(args.input_path) if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
 
-    # Set up multi-processing
     mp.set_start_method('spawn', force=True)
     processes = []