|
@@ -92,7 +92,6 @@ if __name__ == '__main__':
|
|
|
|
|
|
input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').input_ids.to(model.device)
|
|
|
|
|
|
- print(input_ids)
|
|
|
output_sequences = model.generate(
|
|
|
input_ids=input_ids,
|
|
|
max_length=request['max_tokens'] + len(input_ids[0]),
|
|
@@ -103,11 +102,6 @@ if __name__ == '__main__':
|
|
|
return_dict_in_generate=True, output_scores=True,
|
|
|
)
|
|
|
|
|
|
- print('Finish')
|
|
|
-
|
|
|
- # if args.enable_h2o_generation:
|
|
|
- # self._clean_cache()
|
|
|
-
|
|
|
tokens = tokenizer.convert_ids_to_tokens(output_sequences['sequences'].squeeze(0))[len(input_ids[0]):]
|
|
|
logprobs = [logits.log_softmax(dim=-1).max().item() for logits in output_sequences['scores']]
|
|
|
top_logprobs = [{i: v for i, v in zip(tokens, logprobs)}]
|