Browse Source

New structure and rename for tools, docs and quickstart folder (#575)

Hamid Shojanazeri 9 months ago
parent
commit
8374ea85d4
100 changed files with 21 additions and 23 deletions
  1. 1 1
      .github/scripts/check_copyright_header.py
  2. 4 1
      .github/scripts/spellcheck_conf/wordlist.txt
  3. 1 6
      README.md
  4. 6 6
      UPDATES.md
  5. 1 1
      docs/FAQ.md
  6. 3 3
      docs/LLM_finetuning.md
  7. 0 0
      docs/img/feature_based_fn.png
  8. 0 0
      docs/img/feature_based_fn_2.png
  9. 0 0
      docs/img/full_param_fn.png
  10. 0 0
      docs/img/llama2_gradio.png
  11. 0 0
      docs/img/llama2_streamlit.png
  12. 0 0
      docs/img/llama2_streamlit2.png
  13. 0 0
      docs/img/messenger_api_settings.png
  14. 0 0
      docs/img/messenger_llama_arch.jpg
  15. 0 0
      docs/img/wandb_screenshot.png
  16. 0 0
      docs/img/whatsapp_dashboard.jpg
  17. 0 0
      docs/img/whatsapp_llama_arch.jpg
  18. 1 1
      docs/multi_gpu.md
  19. 1 1
      recipes/inference/model_servers/README.md
  20. 0 0
      recipes/3p_integration/aws/getting_started_llama_3_on_amazon_bedrock.ipynb
  21. 0 0
      recipes/3p_integration/aws/prompt_engineering_with_llama_2_on_amazon_bedrock.ipynb
  22. 0 0
      recipes/3p_integration/aws/react_llama_3_bedrock_wk.ipynb
  23. 0 0
      recipes/3p_integration/azure/azure_api_example.ipynb
  24. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/Function-Calling-101-Ecommerce.ipynb
  25. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/customers.csv
  26. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/orders.csv
  27. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/products.csv
  28. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/data/employees.csv
  29. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/data/purchases.csv
  30. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/json-mode-function-calling-for-sql.ipynb
  31. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/employees-without-purchases.yaml
  32. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/most-expensive-purchase.yaml
  33. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/most-recent-purchases.yaml
  34. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/number-of-teslas.yaml
  35. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/SDOH-Json-mode.ipynb
  36. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00456321.txt
  37. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00567289.txt
  38. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00678934.txt
  39. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00785642.txt
  40. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00893247.txt
  41. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/llama3-stock-market-function-calling/llama3-stock-market-function-calling.ipynb
  42. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/parallel-tool-use/parallel-tool-use.ipynb
  43. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/parallel-tool-use/requirements.txt
  44. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/rag-langchain-presidential-speeches/presidential_speeches.csv
  45. 0 0
      recipes/3p_integration/groq/groq-api-cookbook/rag-langchain-presidential-speeches/rag-langchain-presidential-speeches.ipynb
  46. 0 0
      recipes/3p_integration/groq/groq-example-templates/conversational-chatbot-langchain/README.md
  47. 0 0
      recipes/3p_integration/groq/groq-example-templates/conversational-chatbot-langchain/main.py
  48. 0 0
      recipes/3p_integration/groq/groq-example-templates/conversational-chatbot-langchain/requirements.txt
  49. 0 0
      recipes/3p_integration/groq/groq-example-templates/crewai-agents/README.md
  50. 0 0
      recipes/3p_integration/groq/groq-example-templates/crewai-agents/main.py
  51. 0 0
      recipes/3p_integration/groq/groq-example-templates/crewai-agents/requirements.txt
  52. 0 0
      recipes/3p_integration/groq/groq-example-templates/groq-quickstart-conversational-chatbot/README.md
  53. 0 0
      recipes/3p_integration/groq/groq-example-templates/groq-quickstart-conversational-chatbot/main.py
  54. 0 0
      recipes/3p_integration/groq/groq-example-templates/groq-quickstart-conversational-chatbot/requirements.txt
  55. 0 0
      recipes/3p_integration/groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/README.md
  56. 0 0
      recipes/3p_integration/groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/main.py
  57. 0 0
      recipes/3p_integration/groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/requirements.txt
  58. 0 0
      recipes/3p_integration/groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/README.md
  59. 0 0
      recipes/3p_integration/groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/main.py
  60. 0 0
      recipes/3p_integration/groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/requirements.txt
  61. 0 0
      recipes/3p_integration/groq/groq-example-templates/presidential-speeches-rag-with-pinecone/README.md
  62. 0 0
      recipes/3p_integration/groq/groq-example-templates/presidential-speeches-rag-with-pinecone/main.py
  63. 0 0
      recipes/3p_integration/groq/groq-example-templates/presidential-speeches-rag-with-pinecone/requirements.txt
  64. 0 0
      recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/README.md
  65. 0 0
      recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/data/employees.csv
  66. 0 0
      recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/data/purchases.csv
  67. 0 0
      recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/main.py
  68. 0 0
      recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/prompts/base_prompt.txt
  69. 0 0
      recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/requirements.txt
  70. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/README.md
  71. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/data/employees.csv
  72. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/data/purchases.csv
  73. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/main.py
  74. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/requirements.txt
  75. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/employees-without-purchases.yaml
  76. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/most-expensive-purchase.yaml
  77. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/most-recent-purchases.yaml
  78. 0 0
      recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/number-of-teslas.yaml
  79. 0 0
      recipes/3p_integration/groq/llama3_cookbook_groq.ipynb
  80. 3 3
      recipes/3p_integrations/lamini/text2sql_memory_tuning/README.md
  81. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/assets/manual_filtering.png
  82. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/assets/website.png
  83. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/gold-test-set-v2.jsonl
  84. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/gold-test-set.jsonl
  85. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/archive/generated_queries_large_filtered_cleaned.jsonl
  86. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/archive/generated_queries_v2_large_filtered_cleaned.jsonl
  87. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries.jsonl
  88. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_large.jsonl
  89. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_large_filtered.jsonl
  90. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2.jsonl
  91. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2_large.jsonl
  92. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2_large_filtered.jsonl
  93. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/meta_lamini.ipynb
  94. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/nba_roster.db
  95. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/util/get_default_finetune_args.py
  96. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/util/get_rubric.py
  97. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/util/get_schema.py
  98. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/util/load_dataset.py
  99. 0 0
      recipes/3p_integration/lamini/text2sql_memory_tuning/util/make_llama_3_prompt.py
  100. 0 0
      recipes/3p_integrations/lamini/text2sql_memory_tuning/util/parse_arguments.py

+ 1 - 1
.github/scripts/check_copyright_header.py

@@ -11,7 +11,7 @@ HEADER = """# Copyright (c) Meta Platforms, Inc. and affiliates.
 # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.\n\n"""
 
 #Files in black list must be relative to main repo folder
-BLACKLIST = ["eval/open_llm_leaderboard/hellaswag_utils.py"]
+BLACKLIST = ["tools/benchmarks/llm_eval_harness/open_llm_leaderboard/hellaswag_utils.py"]
 
 if __name__ == "__main__":
     for ext in ["*.py", "*.sh"]:

+ 4 - 1
.github/scripts/spellcheck_conf/wordlist.txt

@@ -1390,4 +1390,7 @@ chatbot's
 Lamini
 lamini
 nba
-sqlite
+sqlite
+customerservice
+fn
+ExecuTorch

+ 1 - 6
README.md

@@ -136,14 +136,9 @@ Contains examples are organized in folders by topic:
 | Subfolder | Description |
 |---|---|
 [quickstart](./recipes/quickstart) | The "Hello World" of using Llama, start here if you are new to using Llama.
-[finetuning](./recipes/finetuning)|Scripts to finetune Llama on single-GPU and multi-GPU setups
-[inference](./recipes/inference)|Scripts to deploy Llama for inference locally and using model servers
 [use_cases](./recipes/use_cases)|Scripts showing common applications of Meta Llama3
+[3p_integration](./recipes/3p_integration)|Partner owned folder showing common applications of Meta Llama3
 [responsible_ai](./recipes/responsible_ai)|Scripts to use PurpleLlama for safeguarding model outputs
-[llama_api_providers](./recipes/llama_api_providers)|Scripts to run inference on Llama via hosted endpoints
-[benchmarks](./recipes/benchmarks)|Scripts to benchmark Llama models inference on various backends
-[code_llama](./recipes/code_llama)|Scripts to run inference with the Code Llama models
-[evaluation](./recipes/evaluation)|Scripts to evaluate fine-tuned Llama models using `lm-evaluation-harness` from `EleutherAI`
 
 ### `src/`
 

+ 6 - 6
UPDATES.md

@@ -1,19 +1,19 @@
 ## System Prompt Update
 
 ### Observed Issue
-We received feedback from the community on our prompt template and we are providing an update to reduce the false refusal rates seen. False refusals occur when the model incorrectly refuses to answer a question that it should, for example due to overly broad instructions to be cautious in how it provides responses. 
+We received feedback from the community on our prompt template and we are providing an update to reduce the false refusal rates seen. False refusals occur when the model incorrectly refuses to answer a question that it should, for example due to overly broad instructions to be cautious in how it provides responses.
 
 ### Updated approach
-Based on evaluation and analysis, we recommend the removal of the system prompt as the default setting.  Pull request [#626](https://github.com/facebookresearch/llama/pull/626) removes the system prompt as the default option, but still provides an example to help enable experimentation for those using it. 
+Based on evaluation and analysis, we recommend the removal of the system prompt as the default setting.  Pull request [#626](https://github.com/facebookresearch/llama/pull/626) removes the system prompt as the default option, but still provides an example to help enable experimentation for those using it.
 
 ## Token Sanitization Update
 
 ### Observed Issue
-The PyTorch scripts currently provided for tokenization and model inference allow for direct prompt injection via string concatenation. Prompt injections allow for the addition of special system and instruction prompt strings from user-provided prompts. 
+The PyTorch scripts currently provided for tokenization and model inference allow for direct prompt injection via string concatenation. Prompt injections allow for the addition of special system and instruction prompt strings from user-provided prompts.
 
-As noted in the documentation, these strings are required to use the fine-tuned chat models. However, prompt injections have also been used for manipulating or abusing models by bypassing their safeguards, allowing for the creation of content or behaviors otherwise outside the bounds of acceptable use. 
+As noted in the documentation, these strings are required to use the fine-tuned chat models. However, prompt injections have also been used for manipulating or abusing models by bypassing their safeguards, allowing for the creation of content or behaviors otherwise outside the bounds of acceptable use.
 
 ### Updated approach
-We recommend sanitizing [these strings](https://github.com/meta-llama/llama?tab=readme-ov-file#fine-tuned-chat-models) from any user provided prompts. Sanitization of user prompts mitigates malicious or accidental abuse of these strings. The provided scripts have been updated to do this. 
+We recommend sanitizing [these strings](https://github.com/meta-llama/llama?tab=readme-ov-file#fine-tuned-chat-models) from any user provided prompts. Sanitization of user prompts mitigates malicious or accidental abuse of these strings. The provided scripts have been updated to do this.
 
-Note: even with this update safety classifiers should still be applied to catch unsafe behaviors or content produced by the model. An [example](./recipes/inference/local_inference/inference.py) of how to deploy such a classifier can be found in the llama-recipes repository.
+Note: even with this update safety classifiers should still be applied to catch unsafe behaviors or content produced by the model. An [example](./recipes/quickstart/inference/local_inference/inference.py) of how to deploy such a classifier can be found in the llama-recipes repository.

+ 1 - 1
docs/FAQ.md

@@ -16,7 +16,7 @@ Here we discuss frequently asked questions that may occur and we found useful al
 
 4. Can I add custom datasets?
 
-    Yes, you can find more information on how to do that [here](../recipes/finetuning/datasets/README.md).
+    Yes, you can find more information on how to do that [here](../recipes/quickstart/finetuning/datasets/README.md).
 
 5. What are the hardware SKU requirements for deploying these models?
 

+ 3 - 3
docs/LLM_finetuning.md

@@ -35,9 +35,9 @@ Full parameter fine-tuning has its own advantages, in this method there are mult
 You can also keep most of the layers frozen and only fine-tune a few layers. There are many different techniques to choose from to freeze/unfreeze layers based on different criteria.
 
 <div style="display: flex;">
-    <img src="./images/feature-based_FN.png" alt="Image 1" width="250" />
-    <img src="./images/feature-based_FN_2.png" alt="Image 2" width="250" />
-    <img src="./images/full-param-FN.png" alt="Image 3" width="250" />
+    <img src="./img/feature_based_fn.png" alt="Image 1" width="250" />
+    <img src="./img/feature_based_fn_2.png" alt="Image 2" width="250" />
+    <img src="./img/full_param_fn.png" alt="Image 3" width="250" />
 </div>
 
 

docs/images/feature-based_FN.png → docs/img/feature_based_fn.png


docs/images/feature-based_FN_2.png → docs/img/feature_based_fn_2.png


docs/images/full-param-FN.png → docs/img/full_param_fn.png


docs/images/llama2-gradio.png → docs/img/llama2_gradio.png


docs/images/llama2-streamlit.png → docs/img/llama2_streamlit.png


docs/images/llama2-streamlit2.png → docs/img/llama2_streamlit2.png


docs/images/messenger_api_settings.png → docs/img/messenger_api_settings.png


docs/images/messenger_llama_arch.jpg → docs/img/messenger_llama_arch.jpg


docs/images/wandb_screenshot.png → docs/img/wandb_screenshot.png


docs/images/whatsapp_dashboard.jpg → docs/img/whatsapp_dashboard.jpg


docs/images/whatsapp_llama_arch.jpg → docs/img/whatsapp_llama_arch.jpg


+ 1 - 1
docs/multi_gpu.md

@@ -9,7 +9,7 @@ To run fine-tuning on multi-GPUs, we will  make use of two packages:
 Given the combination of PEFT and FSDP, we would be able to fine tune a Meta Llama 3 8B model on multiple GPUs in one node or multi-node.
 
 ## Requirements
-To run the examples, make sure to install the llama-recipes package and clone the github repository in order to use the provided [`finetuning.py`](../recipes/finetuning/finetuning.py) script with torchrun (See [README.md](../README.md) for details).
+To run the examples, make sure to install the llama-recipes package and clone the github repository in order to use the provided [`finetuning.py`](../recipes/quickstart/finetuning/finetuning.py) script with torchrun (See [README.md](../README.md) for details).
 
 **Please note that the llama_recipes package will install PyTorch 2.0.1 version, in case you want to run FSDP + PEFT, please make sure to install PyTorch nightlies.**
 

+ 1 - 1
recipes/inference/model_servers/README.md

@@ -1,2 +1,2 @@
-## [Running Llama 3 On-Prem with vLLM and TGI](llama-on-prem.md)
+## [Running Llama 3 On-Prem with vLLM and TGI](llama_on_prem.md)
 This tutorial shows how to use Llama 3 with [vLLM](https://github.com/vllm-project/vllm) and Hugging Face [TGI](https://github.com/huggingface/text-generation-inference) to build Llama 3 on-prem apps.

recipes/llama_api_providers/examples_with_aws/getting_started_llama_3_on_amazon_bedrock.ipynb → recipes/3p_integration/aws/getting_started_llama_3_on_amazon_bedrock.ipynb


recipes/llama_api_providers/examples_with_aws/Prompt_Engineering_with_Llama_2_On_Amazon_Bedrock.ipynb → recipes/3p_integration/aws/prompt_engineering_with_llama_2_on_amazon_bedrock.ipynb


recipes/llama_api_providers/examples_with_aws/ReAct_Llama_3_Bedrock-WK.ipynb → recipes/3p_integration/aws/react_llama_3_bedrock_wk.ipynb


recipes/llama_api_providers/Azure_API_example/azure_api_example.ipynb → recipes/3p_integration/azure/azure_api_example.ipynb


recipes/llama_api_providers/Groq/groq-api-cookbook/function-calling-101-ecommerce/Function-Calling-101-Ecommerce.ipynb → recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/Function-Calling-101-Ecommerce.ipynb


recipes/llama_api_providers/Groq/groq-api-cookbook/function-calling-101-ecommerce/customers.csv → recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/customers.csv


recipes/llama_api_providers/Groq/groq-api-cookbook/function-calling-101-ecommerce/orders.csv → recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/orders.csv


recipes/llama_api_providers/Groq/groq-api-cookbook/function-calling-101-ecommerce/products.csv → recipes/3p_integration/groq/groq-api-cookbook/function-calling-101-ecommerce/products.csv


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-function-calling-for-sql/data/employees.csv → recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/data/employees.csv


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-function-calling-for-sql/data/purchases.csv → recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/data/purchases.csv


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-function-calling-for-sql/json-mode-function-calling-for-sql.ipynb → recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/json-mode-function-calling-for-sql.ipynb


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/employees-without-purchases.yaml → recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/employees-without-purchases.yaml


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/most-expensive-purchase.yaml → recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/most-expensive-purchase.yaml


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/most-recent-purchases.yaml → recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/most-recent-purchases.yaml


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/number-of-teslas.yaml → recipes/3p_integration/groq/groq-api-cookbook/json-mode-function-calling-for-sql/verified-queries/number-of-teslas.yaml


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-social-determinants-of-health/SDOH-Json-mode.ipynb → recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/SDOH-Json-mode.ipynb


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00456321.txt → recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00456321.txt


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00567289.txt → recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00567289.txt


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00678934.txt → recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00678934.txt


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00785642.txt → recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00785642.txt


recipes/llama_api_providers/Groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00893247.txt → recipes/3p_integration/groq/groq-api-cookbook/json-mode-social-determinants-of-health/clinical_notes/00893247.txt


recipes/llama_api_providers/Groq/groq-api-cookbook/llama3-stock-market-function-calling/llama3-stock-market-function-calling.ipynb → recipes/3p_integration/groq/groq-api-cookbook/llama3-stock-market-function-calling/llama3-stock-market-function-calling.ipynb


recipes/llama_api_providers/Groq/groq-api-cookbook/parallel-tool-use/parallel-tool-use.ipynb → recipes/3p_integration/groq/groq-api-cookbook/parallel-tool-use/parallel-tool-use.ipynb


recipes/llama_api_providers/Groq/groq-api-cookbook/parallel-tool-use/requirements.txt → recipes/3p_integration/groq/groq-api-cookbook/parallel-tool-use/requirements.txt


recipes/llama_api_providers/Groq/groq-api-cookbook/rag-langchain-presidential-speeches/presidential_speeches.csv → recipes/3p_integration/groq/groq-api-cookbook/rag-langchain-presidential-speeches/presidential_speeches.csv


recipes/llama_api_providers/Groq/groq-api-cookbook/rag-langchain-presidential-speeches/rag-langchain-presidential-speeches.ipynb → recipes/3p_integration/groq/groq-api-cookbook/rag-langchain-presidential-speeches/rag-langchain-presidential-speeches.ipynb


recipes/llama_api_providers/Groq/groq-example-templates/conversational-chatbot-langchain/README.md → recipes/3p_integration/groq/groq-example-templates/conversational-chatbot-langchain/README.md


recipes/llama_api_providers/Groq/groq-example-templates/conversational-chatbot-langchain/main.py → recipes/3p_integration/groq/groq-example-templates/conversational-chatbot-langchain/main.py


recipes/llama_api_providers/Groq/groq-example-templates/conversational-chatbot-langchain/requirements.txt → recipes/3p_integration/groq/groq-example-templates/conversational-chatbot-langchain/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/crewai-agents/README.md → recipes/3p_integration/groq/groq-example-templates/crewai-agents/README.md


recipes/llama_api_providers/Groq/groq-example-templates/crewai-agents/main.py → recipes/3p_integration/groq/groq-example-templates/crewai-agents/main.py


recipes/llama_api_providers/Groq/groq-example-templates/crewai-agents/requirements.txt → recipes/3p_integration/groq/groq-example-templates/crewai-agents/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/groq-quickstart-conversational-chatbot/README.md → recipes/3p_integration/groq/groq-example-templates/groq-quickstart-conversational-chatbot/README.md


recipes/llama_api_providers/Groq/groq-example-templates/groq-quickstart-conversational-chatbot/main.py → recipes/3p_integration/groq/groq-example-templates/groq-quickstart-conversational-chatbot/main.py


recipes/llama_api_providers/Groq/groq-example-templates/groq-quickstart-conversational-chatbot/requirements.txt → recipes/3p_integration/groq/groq-example-templates/groq-quickstart-conversational-chatbot/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/README.md → recipes/3p_integration/groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/README.md


recipes/llama_api_providers/Groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/main.py → recipes/3p_integration/groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/main.py


recipes/llama_api_providers/Groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/requirements.txt → recipes/3p_integration/groq/groq-example-templates/groqing-the-stock-market-function-calling-llama3/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/README.md → recipes/3p_integration/groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/README.md


recipes/llama_api_providers/Groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/main.py → recipes/3p_integration/groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/main.py


recipes/llama_api_providers/Groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/requirements.txt → recipes/3p_integration/groq/groq-example-templates/llamachat-conversational-chatbot-with-llamaIndex/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/presidential-speeches-rag-with-pinecone/README.md → recipes/3p_integration/groq/groq-example-templates/presidential-speeches-rag-with-pinecone/README.md


recipes/llama_api_providers/Groq/groq-example-templates/presidential-speeches-rag-with-pinecone/main.py → recipes/3p_integration/groq/groq-example-templates/presidential-speeches-rag-with-pinecone/main.py


recipes/llama_api_providers/Groq/groq-example-templates/presidential-speeches-rag-with-pinecone/requirements.txt → recipes/3p_integration/groq/groq-example-templates/presidential-speeches-rag-with-pinecone/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/text-to-sql-json-mode/README.md → recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/README.md


recipes/llama_api_providers/Groq/groq-example-templates/text-to-sql-json-mode/data/employees.csv → recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/data/employees.csv


recipes/llama_api_providers/Groq/groq-example-templates/text-to-sql-json-mode/data/purchases.csv → recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/data/purchases.csv


recipes/llama_api_providers/Groq/groq-example-templates/text-to-sql-json-mode/main.py → recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/main.py


recipes/llama_api_providers/Groq/groq-example-templates/text-to-sql-json-mode/prompts/base_prompt.txt → recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/prompts/base_prompt.txt


recipes/llama_api_providers/Groq/groq-example-templates/text-to-sql-json-mode/requirements.txt → recipes/3p_integration/groq/groq-example-templates/text-to-sql-json-mode/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/README.md → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/README.md


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/data/employees.csv → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/data/employees.csv


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/data/purchases.csv → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/data/purchases.csv


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/main.py → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/main.py


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/requirements.txt → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/requirements.txt


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/verified-queries/employees-without-purchases.yaml → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/employees-without-purchases.yaml


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/verified-queries/most-expensive-purchase.yaml → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/most-expensive-purchase.yaml


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/verified-queries/most-recent-purchases.yaml → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/most-recent-purchases.yaml


recipes/llama_api_providers/Groq/groq-example-templates/verified-sql-function-calling/verified-queries/number-of-teslas.yaml → recipes/3p_integration/groq/groq-example-templates/verified-sql-function-calling/verified-queries/number-of-teslas.yaml


recipes/llama_api_providers/Groq/llama3_cookbook_groq.ipynb → recipes/3p_integration/groq/llama3_cookbook_groq.ipynb


+ 3 - 3
recipes/3p_integrations/lamini/text2sql_memory_tuning/README.md

@@ -1,10 +1,10 @@
 # Tune Llama 3 for text-to-SQL and improve accuracy from 30% to 95%
 
-This repo and notebook `meta-lamini.ipynb` demonstrate how to tune Llama 3 to generate valid SQL queries and improve accuracy from 30% to 95%.
+This repo and notebook `meta_lamini.ipynb` demonstrate how to tune Llama 3 to generate valid SQL queries and improve accuracy from 30% to 95%.
 
-In this notebook we'll be using Lamini, and more specifically, Lamini Memory Tuning. 
+In this notebook we'll be using Lamini, and more specifically, Lamini Memory Tuning.
 
-Lamini is an integrated platform for LLM inference and tuning for the enterprise. Lamini Memory Tuning is a new tool you can use to embed facts into LLMs that improves factual accuracy and reduces hallucinations. Inspired by information retrieval, this method has set a new standard of accuracy for LLMs with less developer effort. 
+Lamini is an integrated platform for LLM inference and tuning for the enterprise. Lamini Memory Tuning is a new tool you can use to embed facts into LLMs that improves factual accuracy and reduces hallucinations. Inspired by information retrieval, this method has set a new standard of accuracy for LLMs with less developer effort.
 
 Learn more about Lamini Memory Tuning: https://www.lamini.ai/blog/lamini-memory-tuning
 

recipes/3p_integrations/lamini/text2sql_memory_tuning/assets/manual_filtering.png → recipes/3p_integration/lamini/text2sql_memory_tuning/assets/manual_filtering.png


recipes/3p_integrations/lamini/text2sql_memory_tuning/assets/website.png → recipes/3p_integration/lamini/text2sql_memory_tuning/assets/website.png


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/gold-test-set-v2.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/gold-test-set-v2.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/gold-test-set.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/gold-test-set.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/archive/generated_queries_large_filtered_cleaned.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/archive/generated_queries_large_filtered_cleaned.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/archive/generated_queries_v2_large_filtered_cleaned.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/archive/generated_queries_v2_large_filtered_cleaned.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/generated_queries.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/generated_queries_large.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_large.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/generated_queries_large_filtered.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_large_filtered.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2_large.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2_large.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2_large_filtered.jsonl → recipes/3p_integration/lamini/text2sql_memory_tuning/data/training_data/generated_queries_v2_large_filtered.jsonl


recipes/3p_integrations/lamini/text2sql_memory_tuning/meta-lamini.ipynb → recipes/3p_integration/lamini/text2sql_memory_tuning/meta_lamini.ipynb


recipes/3p_integrations/lamini/text2sql_memory_tuning/nba_roster.db → recipes/3p_integration/lamini/text2sql_memory_tuning/nba_roster.db


recipes/3p_integrations/lamini/text2sql_memory_tuning/util/get_default_finetune_args.py → recipes/3p_integration/lamini/text2sql_memory_tuning/util/get_default_finetune_args.py


recipes/3p_integrations/lamini/text2sql_memory_tuning/util/get_rubric.py → recipes/3p_integration/lamini/text2sql_memory_tuning/util/get_rubric.py


recipes/3p_integrations/lamini/text2sql_memory_tuning/util/get_schema.py → recipes/3p_integration/lamini/text2sql_memory_tuning/util/get_schema.py


recipes/3p_integrations/lamini/text2sql_memory_tuning/util/load_dataset.py → recipes/3p_integration/lamini/text2sql_memory_tuning/util/load_dataset.py


recipes/3p_integrations/lamini/text2sql_memory_tuning/util/make_llama_3_prompt.py → recipes/3p_integration/lamini/text2sql_memory_tuning/util/make_llama_3_prompt.py


+ 0 - 0
recipes/3p_integrations/lamini/text2sql_memory_tuning/util/parse_arguments.py


Some files were not shown because too many files changed in this diff