Jelajahi Sumber

Fix more tests

Matthias Reso 2 bulan lalu
induk
melakukan
901a8cafe1

+ 14 - 14
src/tests/datasets/test_custom_dataset.py

@@ -36,13 +36,13 @@ def check_padded_entry(batch, tokenizer):
 
 @pytest.mark.skip(reason="Flakey due to random dataset order @todo fix order")
 @pytest.mark.skip_missing_tokenizer
-@patch('llama_recipes.finetuning.train')
-@patch('llama_recipes.finetuning.AutoTokenizer')
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
-@patch('llama_recipes.finetuning.optim.AdamW')
-@patch('llama_recipes.finetuning.StepLR')
+@patch('llama_cookbook.finetuning.train')
+@patch('llama_cookbook.finetuning.AutoTokenizer')
+@patch('llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_cookbook.finetuning.optim.AdamW')
+@patch('llama_cookbook.finetuning.StepLR')
 def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
-    from llama_recipes.finetuning import main
+    from llama_cookbook.finetuning import main
 
     setup_tokenizer(tokenizer)
 
@@ -96,14 +96,14 @@ def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker,
 
 
 
-@patch('llama_recipes.finetuning.train')
-@patch('llama_recipes.finetuning.AutoConfig.from_pretrained')
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
-@patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')
-@patch('llama_recipes.finetuning.optim.AdamW')
-@patch('llama_recipes.finetuning.StepLR')
+@patch('llama_cookbook.finetuning.train')
+@patch('llama_cookbook.finetuning.AutoConfig.from_pretrained')
+@patch('llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_cookbook.finetuning.AutoTokenizer.from_pretrained')
+@patch('llama_cookbook.finetuning.optim.AdamW')
+@patch('llama_cookbook.finetuning.StepLR')
 def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, get_config, train, mocker, llama_version):
-    from llama_recipes.finetuning import main
+    from llama_cookbook.finetuning import main
 
     tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
@@ -119,7 +119,7 @@ def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, get_con
         main(**kwargs)
 
 @pytest.mark.skip_missing_tokenizer
-@patch('llama_recipes.finetuning.AutoTokenizer')
+@patch('llama_cookbook.finetuning.AutoTokenizer')
 def test_tokenize_dialog(tokenizer, monkeypatch, setup_tokenizer, llama_version):
     monkeypatch.syspath_prepend("getting-started/finetuning/datasets/")
     from custom_dataset import tokenize_dialog

+ 8 - 8
src/tests/datasets/test_grammar_datasets.py

@@ -5,19 +5,19 @@ from pathlib import Path
 import pytest
 from unittest.mock import patch
 
-DATA_DIR = Path(__file__).parents[2] / "llama_recipes/datasets/grammar_dataset/"
+DATA_DIR = Path(__file__).parents[2] / "llama_cookbook/datasets/grammar_dataset/"
 
 @pytest.mark.skip_missing_tokenizer
 @pytest.mark.skipif(not Path(DATA_DIR / "grammar_validation.csv").exists(), reason="grammar_validation.csv not found")
 @pytest.mark.skipif(not Path(DATA_DIR / "gtrain_10k.csv").exists(), reason="gtrain_10k.csv not found")
-@patch('llama_recipes.finetuning.train')
-@patch('llama_recipes.finetuning.AutoTokenizer')
-@patch('llama_recipes.finetuning.AutoConfig.from_pretrained')
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
-@patch('llama_recipes.finetuning.optim.AdamW')
-@patch('llama_recipes.finetuning.StepLR')
+@patch('llama_cookbook.finetuning.train')
+@patch('llama_cookbook.finetuning.AutoTokenizer')
+@patch('llama_cookbook.finetuning.AutoConfig.from_pretrained')
+@patch('llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_cookbook.finetuning.optim.AdamW')
+@patch('llama_cookbook.finetuning.StepLR')
 def test_grammar_dataset(step_lr, optimizer, get_model, get_config, tokenizer, train, setup_tokenizer, llama_version):
-    from llama_recipes.finetuning import main
+    from llama_cookbook.finetuning import main
 
     setup_tokenizer(tokenizer)
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]

+ 9 - 9
src/tests/datasets/test_samsum_datasets.py

@@ -19,14 +19,14 @@ except ValueError:
 
 @pytest.mark.skipif(SAMSUM_UNAVAILABLE, reason="Samsum dataset is unavailable")
 @pytest.mark.skip_missing_tokenizer
-@patch('llama_recipes.finetuning.train')
-@patch('llama_recipes.finetuning.AutoTokenizer')
-@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
-@patch("llama_recipes.finetuning.AutoProcessor")
-@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
-@patch('llama_recipes.finetuning.optim.AdamW')
-@patch('llama_recipes.finetuning.StepLR')
+@patch('llama_cookbook.finetuning.train')
+@patch('llama_cookbook.finetuning.AutoTokenizer')
+@patch("llama_cookbook.finetuning.AutoConfig.from_pretrained")
+@patch("llama_cookbook.finetuning.AutoProcessor")
+@patch("llama_cookbook.finetuning.MllamaForConditionalGeneration.from_pretrained")
+@patch('llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_cookbook.finetuning.optim.AdamW')
+@patch('llama_cookbook.finetuning.StepLR')
 def test_samsum_dataset(
     step_lr,
     optimizer,
@@ -40,7 +40,7 @@ def test_samsum_dataset(
     setup_tokenizer,
     llama_version,
     ):
-    from llama_recipes.finetuning import main
+    from llama_cookbook.finetuning import main
 
     setup_tokenizer(tokenizer)
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]