|
@@ -94,8 +94,9 @@ It let us specify the training settings, everything from `model_name` to `datase
|
|
|
mixed_precision: bool=True
|
|
|
val_batch_size: int=1
|
|
|
dataset = "samsum_dataset"
|
|
|
- peft_method: str = "lora" # None,llama_adapter, prefix
|
|
|
+ peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP)
|
|
|
use_peft: bool=False
|
|
|
+ from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint
|
|
|
output_dir: str = "PATH/to/save/PEFT/model"
|
|
|
freeze_layers: bool = False
|
|
|
num_freeze_layers: int = 1
|
|
@@ -112,6 +113,7 @@ It let us specify the training settings, everything from `model_name` to `datase
|
|
|
flop_counter_start: int = 3 # The step to start profiling, default is 3, which means after 3 steps of warmup stage, the profiler will start to count flops.
|
|
|
use_profiler: bool = False # Enable pytorch profiler, can not be used with flop counter at the same time.
|
|
|
profiler_dir: str = "PATH/to/save/profiler/results" # will be used if using profiler
|
|
|
+
|
|
|
```
|
|
|
|
|
|
* [Datasets config file](../src/llama_recipes/configs/datasets.py) provides the available options for datasets.
|