|
@@ -1,6 +1,6 @@
|
|
|
import sys
|
|
|
from pathlib import Path
|
|
|
-from typing import List, Literal, TypedDict
|
|
|
+from typing import List, TypedDict
|
|
|
from unittest.mock import patch
|
|
|
|
|
|
import pytest
|
|
@@ -8,46 +8,37 @@ import torch
|
|
|
from llama_recipes.inference.chat_utils import read_dialogs_from_file
|
|
|
|
|
|
ROOT_DIR = Path(__file__).parents[2]
|
|
|
-CHAT_COMPLETION_DIR = ROOT_DIR / "recipes/inference/local_inference/chat_completion/"
|
|
|
+CHAT_COMPLETION_DIR = ROOT_DIR / "recipes/quickstart/inference/local_inference/chat_completion/"
|
|
|
|
|
|
sys.path = [CHAT_COMPLETION_DIR.as_posix()] + sys.path
|
|
|
|
|
|
-Role = Literal["user", "assistant"]
|
|
|
-
|
|
|
-
|
|
|
-class Message(TypedDict):
|
|
|
- role: Role
|
|
|
- content: str
|
|
|
-
|
|
|
-
|
|
|
-Dialog = List[Message]
|
|
|
-
|
|
|
-B_INST, E_INST = "[INST]", "[/INST]"
|
|
|
-B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
|
|
-
|
|
|
+default_system_prompt = [{"role": "system", "content": "Cutting Knowledge Date: December 2023\nToday Date: 26 Jul 2024\n\n"}]
|
|
|
|
|
|
def _encode_header(message, tokenizer):
|
|
|
tokens = []
|
|
|
- tokens.extend(tokenizer.encode("<|start_header_id|>"))
|
|
|
- tokens.extend(tokenizer.encode(message["role"]))
|
|
|
- tokens.extend(tokenizer.encode("<|end_header_id|>"))
|
|
|
- tokens.extend(tokenizer.encode("\n\n"))
|
|
|
+ tokens.extend(tokenizer.encode("<|start_header_id|>", add_special_tokens=False))
|
|
|
+ tokens.extend(tokenizer.encode(message["role"], add_special_tokens=False))
|
|
|
+ tokens.extend(tokenizer.encode("<|end_header_id|>", add_special_tokens=False))
|
|
|
+ tokens.extend(tokenizer.encode("\n\n", add_special_tokens=False))
|
|
|
return tokens
|
|
|
|
|
|
|
|
|
def _encode_message(message, tokenizer):
|
|
|
tokens = _encode_header(message, tokenizer)
|
|
|
- tokens.extend(tokenizer.encode(message["content"].strip()))
|
|
|
- tokens.extend(tokenizer.encode("<|eot_id|>"))
|
|
|
+ tokens.extend(tokenizer.encode(message["content"], add_special_tokens=False))
|
|
|
+ tokens.extend(tokenizer.encode("<|eot_id|>", add_special_tokens=False))
|
|
|
return tokens
|
|
|
|
|
|
|
|
|
def _format_dialog(dialog, tokenizer):
|
|
|
tokens = []
|
|
|
- tokens.extend(tokenizer.encode("<|begin_of_text|>"))
|
|
|
+ tokens.extend(tokenizer.encode("<|begin_of_text|>", add_special_tokens=False))
|
|
|
+ if dialog[0]["role"] == "system":
|
|
|
+ dialog[0]["content"] = default_system_prompt[0]["content"] + dialog[0]["content"]
|
|
|
+ else:
|
|
|
+ dialog = default_system_prompt + dialog
|
|
|
for msg in dialog:
|
|
|
tokens.extend(_encode_message(msg, tokenizer))
|
|
|
- tokens.extend(_encode_header({"role": "assistant", "content": ""}, tokenizer))
|
|
|
return tokens
|
|
|
|
|
|
|
|
@@ -55,59 +46,19 @@ def _format_tokens_llama3(dialogs, tokenizer):
|
|
|
return [_format_dialog(dialog, tokenizer) for dialog in dialogs]
|
|
|
|
|
|
|
|
|
-def _format_tokens_llama2(dialogs, tokenizer):
|
|
|
- prompt_tokens = []
|
|
|
- for dialog in dialogs:
|
|
|
- if dialog[0]["role"] == "system":
|
|
|
- dialog = [
|
|
|
- {
|
|
|
- "role": dialog[1]["role"],
|
|
|
- "content": B_SYS
|
|
|
- + dialog[0]["content"]
|
|
|
- + E_SYS
|
|
|
- + dialog[1]["content"],
|
|
|
- }
|
|
|
- ] + dialog[2:]
|
|
|
- assert all([msg["role"] == "user" for msg in dialog[::2]]) and all(
|
|
|
- [msg["role"] == "assistant" for msg in dialog[1::2]]
|
|
|
- ), (
|
|
|
- "model only supports 'system','user' and 'assistant' roles, "
|
|
|
- "starting with user and alternating (u/a/u/a/u...)"
|
|
|
- )
|
|
|
- """
|
|
|
- Please verify that your tokenizer support adding "[INST]", "[/INST]" to your inputs.
|
|
|
- Here, we are adding it manually.
|
|
|
- """
|
|
|
- dialog_tokens: List[int] = sum(
|
|
|
- [
|
|
|
- tokenizer.encode(
|
|
|
- f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",
|
|
|
- )
|
|
|
- + [tokenizer.eos_token_id]
|
|
|
- for prompt, answer in zip(dialog[::2], dialog[1::2])
|
|
|
- ],
|
|
|
- [],
|
|
|
- )
|
|
|
- assert (
|
|
|
- dialog[-1]["role"] == "user"
|
|
|
- ), f"Last message must be from user, got {dialog[-1]['role']}"
|
|
|
- dialog_tokens += tokenizer.encode(
|
|
|
- f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",
|
|
|
- )
|
|
|
- prompt_tokens.append(dialog_tokens)
|
|
|
- return prompt_tokens
|
|
|
-
|
|
|
-
|
|
|
@pytest.mark.skip_missing_tokenizer
|
|
|
@patch("chat_completion.AutoTokenizer")
|
|
|
@patch("chat_completion.load_model")
|
|
|
def test_chat_completion(
|
|
|
load_model, tokenizer, setup_tokenizer, llama_tokenizer, llama_version
|
|
|
):
|
|
|
+ if "Llama-2" in llama_version:
|
|
|
+ pytest.skip("skipping test for Llama-2")
|
|
|
+
|
|
|
from chat_completion import main
|
|
|
|
|
|
setup_tokenizer(tokenizer)
|
|
|
- load_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
|
|
|
+ load_model.return_value.get_input_embeddings.return_value.weight.shape = [128256]
|
|
|
|
|
|
kwargs = {
|
|
|
"prompt_file": (CHAT_COMPLETION_DIR / "chats.json").as_posix(),
|
|
@@ -116,13 +67,8 @@ def test_chat_completion(
|
|
|
main(llama_version, **kwargs)
|
|
|
|
|
|
dialogs = read_dialogs_from_file(kwargs["prompt_file"])
|
|
|
- format_tokens = (
|
|
|
- _format_tokens_llama2
|
|
|
- if llama_version == "meta-llama/Llama-2-7b-hf"
|
|
|
- else _format_tokens_llama3
|
|
|
- )
|
|
|
|
|
|
- REF_RESULT = format_tokens(dialogs, llama_tokenizer[llama_version])
|
|
|
+ REF_RESULT = _format_tokens_llama3(dialogs, llama_tokenizer[llama_version])
|
|
|
|
|
|
assert all(
|
|
|
(
|