|
@@ -6,6 +6,7 @@ import copy
|
|
|
from datasets import load_dataset
|
|
|
import itertools
|
|
|
import torch
|
|
|
+
|
|
|
# check system prompt token seq or user prompt token seq is in the current token list
|
|
|
def check_header(targets,seq):
|
|
|
for i in range(len(seq)-3):
|
|
@@ -17,78 +18,61 @@ def replace_target(target,seq):
|
|
|
if seq[i:i+3] == target:
|
|
|
seq[i],seq[i+1],seq[i+2] = -100,-100,-100
|
|
|
return seq
|
|
|
-def tokenize_dialog(dialog, images, processor):
|
|
|
+def tokenize_dialogs(dialogs, images, processor):
|
|
|
# If vocab size is above 128000, use the chat template to generate the tokens as it is from Llama 3 family models
|
|
|
- text_prompt = processor.apply_chat_template(dialog)
|
|
|
+ text_prompt = processor.apply_chat_template(dialogs)
|
|
|
#print("text_prompt",text_prompt)
|
|
|
- batch = processor(images=images, text=text_prompt,padding = True, return_tensors="pt")
|
|
|
- labels = copy.copy(batch["input_ids"].tolist()[0])
|
|
|
- eot_indices = [i for i,n in enumerate(labels) if n == 128009]
|
|
|
- last_idx = 0
|
|
|
- # system prompt header "<|start_header_id|>system<|end_header_id|>" has been tokenized to [128006, 9125, 128007]
|
|
|
- # user prompt header "<|start_header_id|>user<|end_header_id|>" has been tokenized to [128006, 882, 128007]
|
|
|
- prompt_header_seqs = [[128006, 9125, 128007],[128006, 882, 128007]]
|
|
|
- for n, idx in enumerate(eot_indices):
|
|
|
- current_seq = labels[last_idx:idx+1]
|
|
|
- if check_header(prompt_header_seqs,current_seq):
|
|
|
- # found prompt header, indicating that this seq should be masked
|
|
|
- labels[last_idx:idx+1] = [-100] * (idx-last_idx+1)
|
|
|
- else:
|
|
|
- last_idx = idx+1
|
|
|
- # Lastly mask all the assistant header prompt <|start_header_id|>assistant<|end_header_id|>, which has been tokenized to [128006, 78191, 128007]
|
|
|
- assistant_header_seq = [128006, 78191, 128007]
|
|
|
- labels = replace_target(assistant_header_seq,labels)
|
|
|
- #print("labels",labels)
|
|
|
- # print("pixel_values .shape",batch["pixel_values"].shape)
|
|
|
- # print("batch_size, num_concurrent_media, num_tiles, num_channels, height, width = pixel_values.shape")
|
|
|
-
|
|
|
- batch["labels"] = torch.tensor(labels)
|
|
|
- #pixel_values .shape torch.Size([1, 1, 4, 3, 560, 560])
|
|
|
- batch["pixel_values"] = torch.squeeze(batch["pixel_values"], 1)
|
|
|
- # pixel_values .shape torch.Size([1, 4, 3, 560, 560])
|
|
|
- print("pixel_values .shape",batch["pixel_values"].shape)
|
|
|
- # exit()
|
|
|
- # combined_tokens = {
|
|
|
- # # "input_ids": list(itertools.chain(*(t for t in dialog_tokens))),
|
|
|
- # # "labels": list(itertools.chain(*(t for t in labels_tokens))),
|
|
|
- # "input_ids": dialog_tokens,
|
|
|
- # "labels": labels,
|
|
|
- # "attention_mask": [1]*len(dialog_tokens),
|
|
|
- # "pixel_values": batch["pixel_values"],
|
|
|
- # "aspect_ratio_ids": batch["aspect_ratio_ids"],
|
|
|
- # "aspect_ratio_mask": batch["aspect_ratio_mask"],
|
|
|
- # "cross_attention_mask": batch["cross_attention_mask"]
|
|
|
- # }
|
|
|
- # input_ids = list(itertools.chain(*(t for t in dialog_tokens))),
|
|
|
- # labels = list(itertools.chain(*(t for t in labels_tokens))),
|
|
|
- # attention_mask = [1]*len(list(itertools.chain(*(t for t in dialog_tokens)))),
|
|
|
- # pixel_values = batch["pixel_values"],
|
|
|
- # image_sizes = batch["image_sizes"]
|
|
|
-# print("combined_tokens",combined_tokens[image_sizes])
|
|
|
-
|
|
|
+ batch = processor(images=images, text=text_prompt,padding = True, return_tensors="pt")
|
|
|
+ batch["labels"] = copy.copy(batch["input_ids"])
|
|
|
+ for i in range(len(batch["input_ids"])):
|
|
|
+ dialog_tokens = batch["input_ids"][i].tolist()
|
|
|
+ labels = copy.copy(dialog_tokens)
|
|
|
+ eot_indices = [i for i,n in enumerate(labels) if n == 128009]
|
|
|
+ last_idx = 0
|
|
|
+ # system prompt header "<|start_header_id|>system<|end_header_id|>" has been tokenized to [128006, 9125, 128007]
|
|
|
+ # user prompt header "<|start_header_id|>user<|end_header_id|>" has been tokenized to [128006, 882, 128007]
|
|
|
+ prompt_header_seqs = [[128006, 9125, 128007],[128006, 882, 128007]]
|
|
|
+ for n, idx in enumerate(eot_indices):
|
|
|
+ current_seq = labels[last_idx:idx+1]
|
|
|
+ if check_header(prompt_header_seqs,current_seq):
|
|
|
+ # found prompt header, indicating that this seq should be masked
|
|
|
+ labels[last_idx:idx+1] = [-100] * (idx-last_idx+1)
|
|
|
+ else:
|
|
|
+ last_idx = idx+1
|
|
|
+ # Lastly mask all the assistant header prompt <|start_header_id|>assistant<|end_header_id|>, which has been tokenized to [128006, 78191, 128007]
|
|
|
+ assistant_header_seq = [128006, 78191, 128007]
|
|
|
+ labels = replace_target(assistant_header_seq,labels)
|
|
|
+ batch["labels"][i] = torch.tensor(labels)
|
|
|
return batch
|
|
|
-def image_tokenize(sample, processor):
|
|
|
- processor.tokenizer.padding_side = "right" # during training, one always uses padding on the right
|
|
|
- images,sample_text = sample["images"],sample["messages"]
|
|
|
- dialog = []
|
|
|
- for line in sample_text:
|
|
|
- content = []
|
|
|
- messages = line["content"]
|
|
|
- role = line["role"]
|
|
|
- for message in messages:
|
|
|
- if message["type"] == "image":
|
|
|
- content.append({"type": "image"})
|
|
|
- elif message["type"] == "text":
|
|
|
- content.append({"type": "text", "text": message["text"].strip()})
|
|
|
- dialog.append({"role": role,"content":content})
|
|
|
- return tokenize_dialog(dialog,images, processor)
|
|
|
-
|
|
|
|
|
|
def get_custom_dataset(dataset_config, processor, split, split_ratio=0.9):
|
|
|
# load_dataset will return DatasetDict that contains all the data in the train set
|
|
|
dataset_dict = load_dataset("remyxai/vqasynth_spacellava")
|
|
|
dataset = dataset_dict[split]
|
|
|
dataset = dataset.select(range(100))
|
|
|
- tokenized_datasets = dataset.map(lambda x: image_tokenize(x, processor))
|
|
|
- tokenized_datasets = tokenized_datasets.remove_columns(dataset.column_names)
|
|
|
- return tokenized_datasets
|
|
|
+ return dataset
|
|
|
+
|
|
|
+class VQADataCollator:
|
|
|
+ def __init__(self, processor):
|
|
|
+ self.processor = processor
|
|
|
+ self.processor.tokenizer.padding_side = "right" # during training, one always uses padding on the right
|
|
|
+ def __call__(self, samples):
|
|
|
+ dialogs,images = [],[]
|
|
|
+ for sample in samples:
|
|
|
+ image,sample_text = sample["images"],sample["messages"]
|
|
|
+ dialog = []
|
|
|
+ for line in sample_text:
|
|
|
+ content = []
|
|
|
+ messages = line["content"]
|
|
|
+ role = line["role"]
|
|
|
+ for message in messages:
|
|
|
+ if message["type"] == "image":
|
|
|
+ content.append({"type": "image"})
|
|
|
+ elif message["type"] == "text":
|
|
|
+ content.append({"type": "text", "text": message["text"].strip()})
|
|
|
+ dialog.append({"role": role,"content":content})
|
|
|
+ dialogs.append(dialog)
|
|
|
+ images.append(image)
|
|
|
+ return tokenize_dialogs(dialogs,images, self.processor)
|
|
|
+def get_data_collator(processor):
|
|
|
+ return VQADataCollator(processor)
|