|
@@ -1,4 +1,4 @@
|
|
|
-<h1 align="center"> Geting Started </h1>
|
|
|
+<h1 align="center"> Getting Started </h1>
|
|
|
<p align="center">
|
|
|
<a href="https://llama.developer.meta.com/join_waitlist?utm_source=llama-cookbook&utm_medium=readme&utm_campaign=getting_started"><img src="https://img.shields.io/badge/Llama_API-Join_Waitlist-brightgreen?logo=meta" /></a>
|
|
|
<a href="https://llama.developer.meta.com/docs?utm_source=llama-cookbook&utm_medium=readme&utm_campaign=getting_started"><img src="https://img.shields.io/badge/Llama_API-Documentation-4BA9FE?logo=meta" /></a>
|
|
@@ -22,4 +22,4 @@ If you are new to developing with Meta Llama models, this is where you should st
|
|
|
* The [inference](./inference/) folder contains scripts to deploy Llama for inference on server and mobile. See also [3p_integrations/vllm](../3p-integrations/vllm/) and [3p_integrations/tgi](../3p-integrations/tgi/) for hosting Llama on open-source model servers.
|
|
|
* The [RAG](./RAG/) folder contains a simple Retrieval-Augmented Generation application using Llama.
|
|
|
* The [finetuning](./finetuning/) folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-cookbook finetuning code found in [finetuning.py](../src/llama_cookbook/finetuning.py) which supports these features:
|
|
|
-* The [llama-tools](./llama-tools/) folder contains resources to help you use Llama tools, such as [llama-prompt-ops](../llama-tools/llama-prompt-ops_101.ipynb).
|
|
|
+* The [llama-tools](./llama-tools/) folder contains resources to help you use Llama tools, such as [llama-prompt-ops](../llama-tools/llama-prompt-ops_101.ipynb).
|