|
@@ -37,7 +37,7 @@ def check_padded_entry(batch, tokenizer):
|
|
|
@pytest.mark.skip_missing_tokenizer
|
|
|
@patch('llama_recipes.finetuning.train')
|
|
|
@patch('llama_recipes.finetuning.AutoTokenizer')
|
|
|
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.AutoModel.from_pretrained')
|
|
|
@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
@patch('llama_recipes.finetuning.StepLR')
|
|
|
def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
|
|
@@ -96,15 +96,17 @@ def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker,
|
|
|
|
|
|
|
|
|
@patch('llama_recipes.finetuning.train')
|
|
|
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.AutoConfig.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.AutoModel.from_pretrained')
|
|
|
@patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')
|
|
|
@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
@patch('llama_recipes.finetuning.StepLR')
|
|
|
-def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker, llama_version):
|
|
|
+def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, get_config, train, mocker, llama_version):
|
|
|
from llama_recipes.finetuning import main
|
|
|
|
|
|
tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
|
|
|
get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
|
|
|
+ get_config.return_value.model_type = "llama"
|
|
|
|
|
|
kwargs = {
|
|
|
"dataset": "custom_dataset",
|