@@ -301,7 +301,7 @@ class H2OLlamaAttention(nn.Module):
if not output_attentions:
attn_weights = None
- if layer_idx == 0:
+ if self.layer_idx == 0:
print(past_key_value.key_cache[0].shape, past_key_value.value_cache[0].shape, past_key_value.accumulated_attention_scores[0][0,0,0].item())
return attn_output, attn_weights, past_key_value