浏览代码

Fix conflicts

Sanyam Bhutani 7 月之前
父节点
当前提交
e002c0d2f2

+ 728 - 0
recipes/quickstart/NotebookLlama/Step-2-70B-Rewriter.ipynb

@@ -0,0 +1,728 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "0fccdeda-60db-4ac0-bbb0-98d4d5577a40",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#!pip install replicate"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "69395317-ad78-47b6-a533-2e8a01313e82",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "SYSTEMP_PROMPT = \"\"\"\n",
+    "You are the most skilled podcast writer, you have won multiple podcast awards for your writing.\n",
+    " \n",
+    "Your job is to write word by word, even \"umm, hmmm, right\" interruptions by the second speaker based on the PDF upload. Keep it extremely engaging, the speakers can get derailed now and then but should discuss the topic. \n",
+    "\n",
+    "Remember Speaker 2 is new to the topic and the conversation should always have realistic anecdotes and analogies sprinkled throughout. The questions should have real world example follow ups etc\n",
+    "\n",
+    "Speaker 1: Leads the conversation and teaches the speaker 2, gives incredible anecdotes and analogies when explaining. Is a captivating teacher that gives great anecdotes\n",
+    "\n",
+    "Speaker 2: Keeps the conversation on track by asking follow up questions. Gets super excited or confused when asking questions. Is a curious mindset that asks very interesting confirmation questions\n",
+    "\n",
+    "Make sure the tangents speaker 2 provides are quite wild or interesting. \n",
+    "\n",
+    "Ensure there are interruptions during explanations or there are \"hmm\" and \"umm\" injected throughout from the second speaker. \n",
+    "\n",
+    "It should be a real podcast with every fine nuance documented in as much detail as possible. Welcome the listeners with a super fun overview and keep it really catchy and almost borderline click bait\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "08c30139-ff2f-4203-8194-d1b5c50acac5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "DEFAULT_MODEL = \"meta-llama/Llama-3.1-70B-Instruct\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "id": "1641060a-d86d-4137-bbbc-ab05cbb1a888",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import necessary libraries\n",
+    "import torch\n",
+    "from accelerate import Accelerator\n",
+    "from transformers import AutoModelForCausalLM, AutoTokenizer\n",
+    "\n",
+    "from tqdm.notebook import tqdm\n",
+    "import warnings\n",
+    "\n",
+    "warnings.filterwarnings('ignore')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "id": "522fbf7f-8c00-412c-90c7-5cfe2fc94e4c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def read_file_to_string(filename):\n",
+    "    try:\n",
+    "        with open(filename, 'r') as file:\n",
+    "            content = file.read()\n",
+    "        return content\n",
+    "    except FileNotFoundError:\n",
+    "        print(f\"Error: File '{filename}' not found.\")\n",
+    "        return None\n",
+    "    except IOError:\n",
+    "        print(f\"Error: Could not read file '{filename}'.\")\n",
+    "        return None"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "id": "8119803c-18f9-47cb-b719-2b34ccc5cc41",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "INPUT_PROMPT = read_file_to_string('./clean_extracted_text.txt')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "id": "d895ed4f-1f3e-48b4-b7e2-b51d214fd6fb",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "conversation = [\n",
+    "        {\"role\": \"system\", \"content\": SYSTEMP_PROMPT},\n",
+    "        {\"role\": \"user\", \"content\": INPUT_PROMPT},\n",
+    "    ]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "id": "e9753245-dfd8-4eb4-b1f4-219723884d9f",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3ee94e15d1a04e88a6f5ebff149e2e98",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "config.json:   0%|          | 0.00/855 [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "8522222de2eb4877a6a2087cc05ad130",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model.safetensors.index.json:   0%|          | 0.00/59.6k [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "0852ae52bfef44c1bc487e7f0951826f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Downloading shards:   0%|          | 0/30 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "337fe09b152d4d8fb90a579a7b22554d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00001-of-00030.safetensors:   0%|          | 0.00/4.58G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "9dd0369f649247d89714134fca62deea",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00002-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "2e428d6b4af540d7b6eea54e6595f55c",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00003-of-00030.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "d2a2b3878e014d269d80509cc4e4edec",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00004-of-00030.safetensors:   0%|          | 0.00/4.97G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "8b5a80f517e64d1d9e10cefa72a44a5f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00005-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "42f21ca77fe340228f5e58ca0a479750",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00006-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b35ef602eed74020b44c06f8c3f829b6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00007-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3f94a8721bf44c61aefd38975c8ed29e",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00008-of-00030.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "8abe061e491a40cdb3c42bf07a73c645",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00009-of-00030.safetensors:   0%|          | 0.00/4.97G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b473d57e0fe64cc9a77b3516fdbfed70",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00010-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e3c0a69348074c62a1a2275fb261daf4",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00011-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a1980c5050dd4756975bce80e3a9ec06",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00012-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "1893e6e54598498f8a8765614d93bfe5",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00013-of-00030.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "1ca56f17fa3b4c9ca25aaf998c0fcf34",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00014-of-00030.safetensors:   0%|          | 0.00/4.97G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "82e40953ca7849069d2c6abf48f7da05",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00015-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "abada8dbafd14afcb725e7d5e82636d0",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00016-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "1418a6bc716d4ede964bee4d5e08ad6c",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00017-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "cc5968b03fa64c17bcaa0b83ecd193cc",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00018-of-00030.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "03cf0008853a413fbefdb7469f4238d7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00019-of-00030.safetensors:   0%|          | 0.00/4.97G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3477ef3422434df49e633fb46b7bd7b1",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00020-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "28d2912323bf4f1cb29883655494f56e",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00021-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "04cf278b908f470797c3d23072ec96b5",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00022-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "242b1b426d8043c89ab2068f65fd22d2",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00023-of-00030.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "068e90118c17466c998732d2e9262c01",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00024-of-00030.safetensors:   0%|          | 0.00/4.97G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "7edb872c32a54b87b7d332380e52609f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00025-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6ae0395a5a2c427c99be982f1e4219ee",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00026-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b61147d350de4664bb4b9503fff64c24",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00027-of-00030.safetensors:   0%|          | 0.00/4.66G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3ce42250ba79420ea919d13ad810aeef",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00028-of-00030.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "53255416182b4eefbc8bed8c10ba7fe2",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00029-of-00030.safetensors:   0%|          | 0.00/4.97G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ebf8e0ed2f4d4d64964643723e70b745",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "model-00030-of-00030.safetensors:   0%|          | 0.00/2.10G [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "5491aa5c1fc44bfab0265439207d4c2d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Loading checkpoint shards:   0%|          | 0/30 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ce6476509463415e9d4218aee9ff9d49",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "generation_config.json:   0%|          | 0.00/183 [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "449bf99c0da248c99594d903482a967a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "tokenizer_config.json:   0%|          | 0.00/55.4k [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a9d4713519db420d85391c8e8f7d9628",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "tokenizer.json:   0%|          | 0.00/9.09M [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "d24adab709fc44d58cf9e952c2fd7f63",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "special_tokens_map.json:   0%|          | 0.00/296 [00:00<?, ?B/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "accelerator = Accelerator()\n",
+    "model = AutoModelForCausalLM.from_pretrained(\n",
+    "    DEFAULT_MODEL,\n",
+    "    torch_dtype=torch.bfloat16,\n",
+    "    use_safetensors=True,\n",
+    "    device_map=\"auto\",\n",
+    ")\n",
+    "tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL, use_safetensors=True)\n",
+    "model, tokenizer = accelerator.prepare(model, tokenizer)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "id": "662b3567-1fe4-4744-a673-e0f871f4fe9a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "prompt = tokenizer.apply_chat_template(conversation, tokenize=False)\n",
+    "inputs = tokenizer(prompt, return_tensors=\"pt\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "13c51b1c-af72-4a30-99e2-e559b052aaeb",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
+     ]
+    }
+   ],
+   "source": [
+    "with torch.no_grad():\n",
+    "    output = model.generate(\n",
+    "        **inputs,\n",
+    "        temperature=0.7,\n",
+    "        top_p=0.9,\n",
+    "        max_new_tokens=8126\n",
+    "    )\n",
+    "\n",
+    "output = tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt):].strip()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "41c83f2a-d0dc-4962-8fe7-cd187a8cb006",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}

文件差异内容过多而无法显示
+ 251 - 0
recipes/quickstart/NotebookLlama/Step-2-8B-Rewriter.ipynb


文件差异内容过多而无法显示
+ 72 - 34
recipes/quickstart/NotebookLlama/Step-2-Bark-Multiple-Speaker-Workflow.ipynb


文件差异内容过多而无法显示
+ 74 - 0
recipes/quickstart/NotebookLlama/clean_extracted_text.txt