@@ -288,7 +288,7 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
print(f"best eval loss on epoch {epoch+1} is {best_val_loss}")
else:
- val_loss.append(float(best_val_loss))
+ val_loss.append(float(eval_epoch_loss))
val_prep.append(float(eval_ppl))
if train_config.enable_fsdp:
if rank==0: