|
@@ -5,17 +5,20 @@ from PIL import Image as PIL_Image
|
|
|
import torch
|
|
|
from transformers import MllamaForConditionalGeneration, MllamaProcessor
|
|
|
|
|
|
+
|
|
|
# Constants
|
|
|
DEFAULT_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
|
|
|
|
|
-def load_model_and_processor(model_name: str):
|
|
|
+
|
|
|
+def load_model_and_processor(model_name: str, hf_token: str):
|
|
|
"""
|
|
|
Load the model and processor based on the 11B or 90B model.
|
|
|
"""
|
|
|
- model = MllamaForConditionalGeneration.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16)
|
|
|
- processor = MllamaProcessor.from_pretrained(model_name)
|
|
|
+ model = MllamaForConditionalGeneration.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, token=hf_token)
|
|
|
+ processor = MllamaProcessor.from_pretrained(model_name, token=hf_token)
|
|
|
return model, processor
|
|
|
|
|
|
+
|
|
|
def process_image(image_path: str) -> PIL_Image.Image:
|
|
|
"""
|
|
|
Open and convert an image from the specified path.
|
|
@@ -26,6 +29,7 @@ def process_image(image_path: str) -> PIL_Image.Image:
|
|
|
with open(image_path, "rb") as f:
|
|
|
return PIL_Image.open(f).convert("RGB")
|
|
|
|
|
|
+
|
|
|
def generate_text_from_image(model, processor, image, prompt_text: str, temperature: float, top_p: float):
|
|
|
"""
|
|
|
Generate text from an image using the model and processor.
|
|
@@ -38,22 +42,25 @@ def generate_text_from_image(model, processor, image, prompt_text: str, temperat
|
|
|
output = model.generate(**inputs, temperature=temperature, top_p=top_p, max_new_tokens=512)
|
|
|
return processor.decode(output[0])[len(prompt):]
|
|
|
|
|
|
-def main(image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str):
|
|
|
+
|
|
|
+def main(image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str, hf_token: str):
|
|
|
"""
|
|
|
Call all the functions.
|
|
|
"""
|
|
|
- model, processor = load_model_and_processor(model_name)
|
|
|
+ model, processor = load_model_and_processor(model_name, hf_token)
|
|
|
image = process_image(image_path)
|
|
|
result = generate_text_from_image(model, processor, image, prompt_text, temperature, top_p)
|
|
|
print("Generated Text: " + result)
|
|
|
|
|
|
+
|
|
|
if __name__ == "__main__":
|
|
|
parser = argparse.ArgumentParser(description="Generate text from an image and prompt using the 3.2 MM Llama model.")
|
|
|
- parser.add_argument("image_path", type=str, help="Path to the image file")
|
|
|
- parser.add_argument("prompt_text", type=str, help="Prompt text to describe the image")
|
|
|
+ parser.add_argument("--image_path", type=str, help="Path to the image file")
|
|
|
+ parser.add_argument("--prompt_text", type=str, help="Prompt text to describe the image")
|
|
|
parser.add_argument("--temperature", type=float, default=0.7, help="Temperature for generation (default: 0.7)")
|
|
|
parser.add_argument("--top_p", type=float, default=0.9, help="Top p for generation (default: 0.9)")
|
|
|
parser.add_argument("--model_name", type=str, default=DEFAULT_MODEL, help=f"Model name (default: '{DEFAULT_MODEL}')")
|
|
|
+ parser.add_argument("--hf_token", type=str, required=True, help="Hugging Face token for authentication")
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
- main(args.image_path, args.prompt_text, args.temperature, args.top_p, args.model_name)
|
|
|
+ main(args.image_path, args.prompt_text, args.temperature, args.top_p, args.model_name, args.hf_token)
|