|
@@ -4,7 +4,6 @@ def get_ifeval_data(model_name,output_dir):
|
|
|
if model_name not in ["Meta-Llama-3.1-8B-Instruct","Meta-Llama-3.1-70B-Instruct","Meta-Llama-3.1-405B-Instruct"]:
|
|
|
raise ValueError("Only Meta-Llama-3.1-8B-Instruct, Meta-Llama-3.1-70B-Instruct, Meta-Llama-3.1-405B-Instruct models are supported for IFEval")
|
|
|
original_dataset_name = "wis-k/instruction-following-eval"
|
|
|
- #meta_dataset_name = "meta-llama/Meta-Llama-3.1-8B-Instruct-evals"
|
|
|
meta_dataset_name = f"meta-llama/{model_name}-evals"
|
|
|
meta_data = load_dataset(
|
|
|
meta_dataset_name,
|
|
@@ -19,11 +18,6 @@ def get_ifeval_data(model_name,output_dir):
|
|
|
meta_df = meta_data.to_pandas()
|
|
|
ifeval_df = ifeval_data.to_pandas()
|
|
|
ifeval_df = ifeval_df.rename(columns={"prompt": "input_question"})
|
|
|
- print("meta_df",meta_df.columns)
|
|
|
- print(meta_df)
|
|
|
- print("ifeval_df",ifeval_df.columns)
|
|
|
-
|
|
|
- print(ifeval_df)
|
|
|
|
|
|
joined = meta_df.join(ifeval_df.set_index('input_question'),on="input_question")
|
|
|
joined = joined.rename(columns={"input_final_prompts": "prompt"})
|
|
@@ -31,7 +25,6 @@ def get_ifeval_data(model_name,output_dir):
|
|
|
joined = Dataset.from_pandas(joined)
|
|
|
joined = joined.select_columns(["input_question", "prompt", "previous_is_correct","instruction_id_list","kwargs","output_prediction_text","key"])
|
|
|
joined.rename_column("output_prediction_text","previous_output_prediction_text")
|
|
|
- print(joined)
|
|
|
for item in joined:
|
|
|
check_sample(item)
|
|
|
joined.to_parquet(output_dir + f"/joined_ifeval.parquet")
|
|
@@ -52,22 +45,15 @@ def get_math_data(model_name,output_dir):
|
|
|
meta_df = meta_data.to_pandas()
|
|
|
math_df = math_data.to_pandas()
|
|
|
math_df = math_df.rename(columns={"problem": "input_question"})
|
|
|
- print("meta_df",meta_df.columns)
|
|
|
- print(meta_df)
|
|
|
- print("math_df",math_df.columns)
|
|
|
-
|
|
|
- print(math_df)
|
|
|
|
|
|
joined = meta_df.join(math_df.set_index('input_question'),on="input_question")
|
|
|
- # joined = Dataset.from_pandas(joined)
|
|
|
- # joined = joined.select_columns(["input_question", "input_correct_responses", "input_final_prompts", "is_correct","solution","output_prediction_text"])
|
|
|
- # joined = joined.rename_column("is_correct","previous_is_correct")
|
|
|
- # joined = joined.rename_column("output_prediction_text","previous_output_prediction_text")
|
|
|
- print(joined)
|
|
|
- # for item in joined:
|
|
|
- # check_sample(item)
|
|
|
+ joined = Dataset.from_pandas(joined)
|
|
|
+ joined = joined.select_columns(["input_question", "input_correct_responses", "input_final_prompts", "is_correct","solution","output_prediction_text"])
|
|
|
+ joined = joined.rename_column("is_correct","previous_is_correct")
|
|
|
+ joined = joined.rename_column("output_prediction_text","previous_output_prediction_text")
|
|
|
+ for item in joined:
|
|
|
+ check_sample(item)
|
|
|
joined.to_parquet(output_dir + f"/joined_math.parquet")
|
|
|
- #joined.save_to_disk(output_dir + f"/joined_math")
|
|
|
def get_question(example):
|
|
|
try:
|
|
|
example["input_question"] = eval(example["input_question"].replace("null","None").replace("true","True").replace("false","False"))["dialog"][0]["body"].replace("Is it True that the first song","Is it true that the first song").replace("Is the following True","Is the following true")
|