# Top-level output directory output_dir: ./outputs/Llama-3.2-11B-Instruct-w2-full # Model model: _component_: torchtune.models.llama3_2_vision.llama3_2_vision_11b decoder_trainable: True encoder_trainable: True fusion_trainable: True image_size: 560 # Make sure this matches the image_size in tokenizer # Tokenizer / vision transform tokenizer: _component_: torchtune.models.llama3_2_vision.llama3_2_vision_transform path: ./Llama-3.2-11B-Vision-Instruct/original/tokenizer.model image_size: 560 max_seq_len: 8192 # Checkpointing checkpointer: _component_: torchtune.training.FullModelHFCheckpointer checkpoint_dir: ./Llama-3.2-11B-Vision-Instruct checkpoint_files: filename_format: model-{}-of-{}.safetensors max_filename: "00005" recipe_checkpoint: null output_dir: ${output_dir} model_type: LLAMA3_VISION resume_from_checkpoint: false save_adapter_weights_only: False # PeFT formatting not available yet. This will save it in torchtune format only. # Dataset dataset: _component_: torchtune.datasets.multimodal.vqa_dataset source: arrow data_files: train: "fake_w2_us_tax_form_dataset_train30_test70/train/data-00000-of-00001.arrow" split: train column_map: input: input output: ground_truth image: image # General data handling seed: null shuffle: true collate_fn: torchtune.data.padded_collate_tiled_images_and_mask # Training loop & hyperparams epochs: 5 max_steps_per_epoch: null batch_size: 4 gradient_accumulation_steps: 8 # Use to increase effective batch size # explicit optimizer / scheduler / loss optimizer: _component_: bitsandbytes.optim.PagedAdamW8bit lr: 2e-5 optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1 loss: _component_: torchtune.modules.loss.LinearCrossEntropyLoss clip_grad_norm: 1.0 compile: false # Device & memory device: cuda enable_activation_checkpointing: true dtype: bf16 # Logging metric_logger: _component_: torchtune.training.metric_logging.WandBLogger project: llama3_2_w2_extraction entity: job_type: full_finetune_single_device group: llama-cookbook log_every_n_steps: 5 save_steps: 100 log_peak_memory_stats: true log_level: INFO # Profiler (off by default) profiler: _component_: torchtune.training.setup_torch_profiler enabled: false output_dir: ${output_dir}/profiling_outputs cpu: true cuda: true profile_memory: false with_stack: false record_shapes: true with_flops: false wait_steps: 5 warmup_steps: 3 active_steps: 2 num_cycles: 1