""" Script to set up a Qdrant collection with provided markdown files. To use this script, replace the file paths in the NEW_COLLECTIONS list with your own markdown files. Then, run the script using Python: `python setup_qdrant_collection.py` """ from pathlib import Path from qdrant_client import QdrantClient, models from sentence_transformers import SentenceTransformer import uuid import re # Configuration - in case you want to create an online collection QDRANT_URL = "replace with your Qdrant URL" QDRANT_API_KEY = "replace with your qdrant API key" EMBEDDING_MODEL = 'all-MiniLM-L6-v2' # New files to process # IMPORTANT: Added the configuration for readme_blogs_latest here NEW_COLLECTIONS = [ { "file_path": "path/to/your/markdown/file1.txt", "collection_name": "example_collection_1" }, { "file_path": "path/to/your/markdown/file2.txt", "collection_name": "example_collection_2" } ] def markdown_splitter(text, max_chunk=800): sections = re.split(r'(?=^#+ .*)', text, flags=re.MULTILINE) chunks = [] current_chunk = [] for section in sections: if len(''.join(current_chunk)) + len(section) > max_chunk: chunks.append(''.join(current_chunk)) current_chunk = [section] else: current_chunk.append(section) if current_chunk: chunks.append(''.join(current_chunk)) return [{"text": chunk, "header": f"section_{i}"} for i, chunk in enumerate(chunks)] def get_qdrant_client(): return QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY) def get_embedding_model(): return SentenceTransformer(EMBEDDING_MODEL) def process_file(config): client = get_qdrant_client() embedding_model = get_embedding_model() # Create collection if not exists if not client.collection_exists(config["collection_name"]): client.create_collection( collection_name=config["collection_name"], vectors_config=models.VectorParams( size=384, distance=models.Distance.COSINE ) ) # Process and store documents try: text = Path(config["file_path"]).read_text(encoding='utf-8') chunks = markdown_splitter(text) batch_size = 100 for i in range(0, len(chunks), batch_size): batch = chunks[i:i+batch_size] points = [] for chunk in batch: embedding = embedding_model.encode(chunk["text"]).tolist() points.append( models.PointStruct( id=str(uuid.uuid4()), vector=embedding, payload=chunk ) ) client.upsert(collection_name=config["collection_name"], points=points) print(f"Processed {len(chunks)} chunks for {config['collection_name']}") except FileNotFoundError: print(f"Error: The file at {config['file_path']} was not found. Skipping collection setup.") def setup_all_collections(): for config in NEW_COLLECTIONS: process_file(config) print("All collections created and populated successfully!") if __name__ == "__main__": setup_all_collections()