# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 3 Community License Agreement. import copy import datasets from datasets import Dataset, load_dataset, DatasetDict import itertools B_INST, E_INST = "[INST]", "[/INST]" def tokenize_dialog(q_a_pair, tokenizer): prompt_tokens = [tokenizer.encode(f"{tokenizer.bos_token}{B_INST} {(question).strip()} {E_INST}", add_special_tokens=False) for question in q_a_pair["Question"]] answer_tokens = [tokenizer.encode(f"{answer.strip()} {tokenizer.eos_token}", add_special_tokens=False) for answer in q_a_pair["Answer"]] dialog_tokens = list(itertools.chain.from_iterable(zip(prompt_tokens, answer_tokens))) dialog_tokens = list(itertools.chain.from_iterable(zip(prompt_tokens, answer_tokens))) #Add labels, convert prompt token to -100 in order to ignore in loss function labels_tokens = [len(c)*[-100,] if i % 2 == 0 else c for i,c in enumerate(dialog_tokens)] combined_tokens = { "input_ids": list(itertools.chain(*(t for t in dialog_tokens))), "labels": list(itertools.chain(*(t for t in labels_tokens))), } return dict(combined_tokens, attention_mask=[1]*len(combined_tokens["input_ids"])) def get_custom_dataset(dataset_config, tokenizer, split, split_ratio=0.8): dataset = load_dataset('json', data_files=dataset_config.data_path) dataset = dataset['train'].train_test_split(test_size=1-split_ratio, shuffle=True) dataset = dataset[split].map(lambda sample: { "Question": sample["Question"], "Answer": sample["Answer"], }, batched=True, ) dataset = dataset.map(lambda x: tokenize_dialog(x, tokenizer)) return dataset