{ "cells": [ { "cell_type": "markdown", "id": "6c33ba3a", "metadata": {}, "source": [ "# PowerPoint to Voiceover Transcript Generator\n", "\n", "This notebook demonstrates the complete workflow for converting PowerPoint presentations into AI-generated voiceover transcripts using Llama 4 Maverick through the Llama API.\n", "\n", "## Overview\n", "\n", "This workflow performs the following operations:\n", "\n", "1. **Content Extraction**: Pulls speaker notes and visual elements from PowerPoint slides\n", "2. **Image Conversion**: Transforms slides into high-quality images for AI analysis\n", "3. **Transcript Generation**: Uses Llama vision models to create natural-sounding voiceover content\n", "4. **Speech Optimization**: Converts numbers, technical terms, and abbreviations to spoken form\n", "5. **Results Export**: Saves transcripts in multiple formats for further use\n", "\n", "## Prerequisites\n", "\n", "Before running this notebook, ensure you have:\n", "- Created a `.env` file with your `LLAMA_API_KEY`\n", "- Updated `config.yaml` with your presentation file path\n", "---" ] }, { "cell_type": "markdown", "id": "d8965447", "metadata": {}, "source": [ "## Setup and Configuration\n", "\n", "Import required libraries and load environment configuration." ] }, { "cell_type": "code", "execution_count": null, "id": "21a962b2", "metadata": {}, "outputs": [], "source": [ "# Import required libraries\n", "import pandas as pd\n", "import os\n", "from pathlib import Path\n", "from dotenv import load_dotenv\n", "import matplotlib.pyplot as plt\n", "from IPython.display import display\n", "\n", "# Load environment variables from .env file\n", "load_dotenv()\n", "\n", "# Verify setup\n", "if os.getenv('LLAMA_API_KEY'):\n", " print(\"SUCCESS: Environment loaded successfully!\")\n", " print(\"SUCCESS: Llama API key found\")\n", "else:\n", " print(\"WARNING: LLAMA_API_KEY not found in .env file\")\n", " print(\"Please check your .env file and add your API key\")" ] }, { "cell_type": "code", "execution_count": null, "id": "71c1c8bd", "metadata": {}, "outputs": [], "source": [ "# Import custom modules\n", "try:\n", " from src.core.pptx_processor import extract_pptx_notes, pptx_to_images_and_notes\n", " from src.processors.transcript_generator import process_slides, TranscriptProcessor\n", " from src.config.settings import load_config, get_config\n", "\n", " print(\"SUCCESS: All modules imported successfully!\")\n", " print(\"- PPTX processor ready\")\n", " print(\"- Transcript generator ready\")\n", " print(\"- Configuration manager ready\")\n", "\n", "except ImportError as e:\n", " print(f\"ERROR: Import error: {e}\")\n", " print(\"Make sure you're running from the project root directory\")" ] }, { "cell_type": "code", "execution_count": null, "id": "53781172", "metadata": {}, "outputs": [], "source": [ "# Load and display configuration\n", "config = load_config()\n", "print(\"SUCCESS: Configuration loaded successfully!\")\n", "print(\"\\nCurrent Settings:\")\n", "print(f\"- Llama Model: {config['api']['llama_model']}\")\n", "print(f\"- Image DPI: {config['processing']['default_dpi']}\")\n", "print(f\"- Image Format: {config['processing']['default_format']}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "9386e035", "metadata": {}, "outputs": [], "source": [ "# Configure file paths from config.yaml\n", "pptx_file = config['current_project']['pptx_file'] + config['current_project']['extension']\n", "output_dir = config['current_project']['output_dir']\n", "\n", "print(\"File Configuration:\")\n", "print(f\"- Input File: {pptx_file}\")\n", "print(f\"- Output Directory: {output_dir}\")\n", "\n", "# Verify input file exists\n", "if Path(pptx_file).exists():\n", " file_size = Path(pptx_file).stat().st_size / 1024 / 1024\n", " print(f\"- SUCCESS: Input file found ({file_size:.1f} MB)\")\n", "else:\n", " print(f\"- ERROR: Input file not found: {pptx_file}\")\n", " print(\" Please update the 'pptx_file' path in config.yaml\")\n", "\n", "# Create output directory if needed\n", "Path(output_dir).mkdir(parents=True, exist_ok=True)\n", "print(f\"- SUCCESS: Output directory ready\")" ] }, { "cell_type": "markdown", "id": "ea4851e6", "metadata": {}, "source": [ "---\n", "## Processing Pipeline\n", "\n", "Execute the main processing pipeline in three key steps." ] }, { "cell_type": "markdown", "id": "0f098fdf", "metadata": {}, "source": [ "### Step 1: Extract Content and Convert to Images\n", "\n", "Extract speaker notes and slide text, then convert the presentation to high-quality images for AI analysis." ] }, { "cell_type": "code", "execution_count": null, "id": "644ee94c", "metadata": {}, "outputs": [], "source": [ "print(\"PROCESSING: Converting PPTX to images and extracting notes...\")\n", "\n", "result = pptx_to_images_and_notes(\n", " pptx_path=pptx_file,\n", " output_dir=output_dir,\n", " extract_notes=True\n", ")\n", "\n", "notes_df = result['notes_df']\n", "image_files = result['image_files']\n", "\n", "print(f\"\\nSUCCESS: Processing completed successfully!\")\n", "print(f\"- Processed {len(image_files)} slides\")\n", "print(f\"- Images saved to: {result['output_dir']}\")\n", "print(f\"- Found notes on {notes_df['has_notes'].sum()} slides\")\n", "print(f\"- DataFrame shape: {notes_df.shape}\")\n", "\n", "# Show sample data\n", "print(\"\\nSample Data (First 5 slides):\")\n", "display(notes_df[['slide_number', 'slide_title', 'has_notes', 'notes_word_count', 'slide_text_word_count']].head())" ] }, { "cell_type": "markdown", "id": "1f95749d", "metadata": {}, "source": [ "### Step 2: Generate AI Transcripts\n", "\n", "Use the Llama vision model to analyze each slide image and generate natural-sounding voiceover transcripts.\n", "\n", "This process:\n", "- Analyzes slide visual content using AI vision\n", "- Combines slide content with speaker notes\n", "- Generates speech-optimized transcripts\n", "- Converts numbers and technical terms to spoken form" ] }, { "cell_type": "code", "execution_count": null, "id": "fe564b99", "metadata": {}, "outputs": [], "source": [ "print(\"PROCESSING: Starting AI transcript generation...\")\n", "print(f\"- Processing {len(notes_df)} slides\")\n", "print(f\"- Using model: {config['api']['llama_model']}\")\n", "print(\"- This may take several minutes...\")\n", "\n", "# Initialize processor and generate transcripts\n", "processor = TranscriptProcessor()\n", "processed_df = processor.process_slides_dataframe(\n", " df=notes_df,\n", " output_dir=output_dir\n", ")\n", "\n", "print(f\"\\nSUCCESS: Transcript generation completed!\")\n", "print(f\"- Generated {len(processed_df)} transcripts\")\n", "print(f\"- Average length: {processed_df['ai_transcript'].str.len().mean():.0f} characters\")\n", "print(f\"- Total words: {processed_df['ai_transcript'].str.split().str.len().sum():,}\")" ] }, { "cell_type": "markdown", "id": "5cff4b70", "metadata": {}, "source": [ "### Step 3: Save Results\n", "\n", "Save results in multiple formats for different use cases." ] }, { "cell_type": "code", "execution_count": null, "id": "8463ac3a", "metadata": {}, "outputs": [], "source": [ "print(\"PROCESSING: Saving results in multiple formats...\")\n", "\n", "# Create output directory\n", "os.makedirs(output_dir, exist_ok=True)\n", "\n", "# Save complete results with all metadata\n", "output_file = f\"{output_dir}processed_transcripts.csv\"\n", "processed_df.to_csv(output_file, index=False)\n", "print(f\"- SUCCESS: Complete results saved to {output_file}\")\n", "\n", "# Save transcript-only version for voiceover work\n", "transcript_only = processed_df[['slide_number', 'slide_title', 'ai_transcript']]\n", "transcript_file = f\"{output_dir}transcripts_only.csv\"\n", "transcript_only.to_csv(transcript_file, index=False)\n", "print(f\"- SUCCESS: Transcripts only saved to {transcript_file}\")\n", "\n", "# Save as JSON for API integration\n", "json_file = f\"{output_dir}transcripts.json\"\n", "processed_df.to_json(json_file, orient='records', indent=2)\n", "print(f\"- SUCCESS: JSON format saved to {json_file}\")\n", "\n", "# Summary statistics\n", "total_words = processed_df['ai_transcript'].str.split().str.len().sum()\n", "reading_time = total_words / 150 # Assuming 150 words per minute\n", "\n", "print(f\"\\nExport Summary:\")\n", "print(f\"- Total slides processed: {len(processed_df)}\")\n", "print(f\"- Slides with speaker notes: {processed_df['has_notes'].sum()}\")\n", "print(f\"- Total transcript words: {total_words:,}\")\n", "print(f\"- Average transcript length: {processed_df['ai_transcript'].str.len().mean():.0f} characters\")\n", "print(f\"- Estimated reading time: {reading_time:.1f} minutes\")" ] }, { "cell_type": "markdown", "id": "8728d2ac", "metadata": {}, "source": [ "---\n", "# Completion Summary\n", "\n", "## Successfully Generated:\n", "- **Slide Images**: High-resolution images for AI analysis\n", "- **AI Transcripts**: Speech-optimized voiceover content\n", "- **Multiple Formats**: CSV, JSON exports for different use cases\n", "- **Analysis**: Visual insights into content distribution and quality\n", "\n", "## Output Files:\n", "- `processed_transcripts.csv` - Complete dataset with all metadata\n", "- `transcripts_only.csv` - Just slide numbers, titles, and transcripts\n", "- `transcripts.json` - JSON format for API integration\n", "- Individual slide images in PNG/JPEG format\n", "\n", "## Next Steps:\n", "1. **Review** generated transcripts for accuracy and tone\n", "2. **Edit** any content that needs refinement\n", "3. **Create** voiceover recordings or use TTS systems\n", "4. **Integrate** JSON data into your video production workflow\n", "\n", "## Tips for Better Results:\n", "- **Rich Speaker Notes**: Slides with detailed notes generate better transcripts\n", "- **Clear Visuals**: High-contrast slides with readable text work best\n", "- **Consistent Style**: Maintain consistent formatting across your presentation\n", "- **Review & Edit**: Always review AI-generated content before final use\n", "\n", "---" ] }, { "cell_type": "code", "execution_count": null, "id": "7122cdf6-667e-4ae4-8ce7-67cfc32577c8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "promptTesting", "language": "python", "name": "prompttesting" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 5 }