# Source: https://www.philschmid.de/fine-tune-llms-in-2024-with-trl import torch from datasets import load_dataset from peft import LoraConfig from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, ) from trl import setup_chat_format, SFTTrainer FT_DATASET = "train_text2sql_sft_dataset.json" # uncomment to use the reasoning dataset created by "create_reasoning_dataset.py" # FT_DATASET = "train_text2sql_cot_dataset.json" dataset = load_dataset("json", data_files=SFT_DATASET, split="train") model_id = "meta-llama/Llama-3.1-8B-Instruct" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=bnb_config, ) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.padding_side = "right" if tokenizer.pad_token is None: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) model.resize_token_embeddings(len(tokenizer)) peft_config = LoraConfig( lora_alpha=128, lora_dropout=0.05, r=256, bias="none", target_modules="all-linear", task_type="CAUSAL_LM", ) args = TrainingArguments( output_dir="llama31-8b-text2sql-fine-tuned", # directory to save and repository id num_train_epochs=3, # number of training epochs per_device_train_batch_size=3, # batch size per device during training gradient_accumulation_steps=2, # number of steps before performing a backward/update pass gradient_checkpointing=True, # use gradient checkpointing to save memory optim="adamw_torch_fused", # use fused adamw optimizer logging_steps=10, # log every 10 steps save_strategy="epoch", # save checkpoint every epoch learning_rate=2e-4, # learning rate, based on QLoRA paper bf16=True, # use bfloat16 precision tf32=True, # use tf32 precision max_grad_norm=0.3, # max gradient norm based on QLoRA paper warmup_ratio=0.03, # warmup ratio based on QLoRA paper lr_scheduler_type="constant", # use constant learning rate scheduler push_to_hub=True, # push model to hub report_to="tensorboard", # report metrics to tensorboard ) max_seq_length = 4096 trainer = SFTTrainer( model=model, args=args, train_dataset=dataset, max_seq_length=max_seq_length, tokenizer=tokenizer, peft_config=peft_config, packing=True, ) trainer.train() trainer.save_model()