# Config for multi-device full finetuning in full_finetune_distributed.py # using a Llama3.1 70B Instruct model # # This config assumes that you've run the following command before launching # this run: # tune download meta-llama/Meta-Llama-3.1-70B-Instruct --output-dir /tmp/Meta-Llama-3.1-70B-Instruct --ignore-patterns "original/consolidated*" # # To launch on 8 devices, run the following command from root: # tune run --nproc_per_node 8 full_finetune_distributed --config llama3_1/70B_full # # You can add specific overrides through the command line. For example # to override the checkpointer directory while launching training # you can run: # tune run --nproc_per_node 8 full_finetune_distributed --config llama3_1/70B_full checkpointer.checkpoint_dir= # # This config is only tested on an 8xA100 machine. # output_dir: /tmp/torchtune/llama3_1_70B/full # /tmp may be deleted by your system. Change it to your preference. seed: 69 shuffle: True # Parallelism tensor_parallel_dim: 1 tensor_parallel_plan: _component_: torchtune.models.llama3.base_llama_tp_plan # Tokenizer tokenizer: _component_: torchtune.models.llama3.llama3_tokenizer path: /tmp/Meta-Llama-3.1-70B-Instruct/original/tokenizer.model max_seq_len: 16384 dataset: _component_: toolcall.custom_dataset #data_files: "train_data.json" #split: "train" # Model Arguments model: _component_: torchtune.models.llama3_1.llama3_1_70b checkpointer: _component_: torchtune.training.FullModelHFCheckpointer checkpoint_dir: /tmp/Meta-Llama-3.1-70B-Instruct/ checkpoint_files: filename_format: model-{}-of-{}.safetensors max_filename: "00030" recipe_checkpoint: null output_dir: ${output_dir} model_type: LLAMA3 resume_from_checkpoint: False # Fine-tuning arguments batch_size: 2 epochs: 1 optimizer: _component_: torch.optim.AdamW lr: 2e-5 # Note: highly recommended to use fused=True optimizer flag # with CPU offload for faster optimizer step. fused: False loss: _component_: torchtune.modules.loss.CEWithChunkedOutputLoss max_steps_per_epoch: null gradient_accumulation_steps: 1 # Use to increase effective batch size # Training env device: cuda # Memory management enable_activation_checkpointing: True # True reduces memory enable_activation_offloading: False # True reduces memory custom_sharded_layers: ['tok_embeddings', 'output'] # Layers to shard separately (useful for large vocab size models). Lower Memory, but lower speed. fsdp_cpu_offload: True clip_grad_norm: null compile: False # torch.compile the model + loss, True increases speed + decreases memory optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1 # Reduced precision dtype: bf16 # Logging metric_logger: _component_: torchtune.training.metric_logging.DiskLogger log_dir: ${output_dir}/logs log_every_n_steps: 1 log_peak_memory_stats: True # Profiler (disabled) profiler: _component_: torchtune.training.setup_torch_profiler enabled: False #Output directory of trace artifacts output_dir: ${output_dir}/profiling_outputs #`torch.profiler.ProfilerActivity` types to trace cpu: True cuda: True #trace options passed to `torch.profiler.profile` profile_memory: False with_stack: False record_shapes: True with_flops: False # `torch.profiler.schedule` options: # wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat wait_steps: 5 warmup_steps: 3 active_steps: 2 num_cycles: 1