{ "cells": [ { "cell_type": "markdown", "id": "104f2b97-f9bb-4dcc-a4c8-099710768851", "metadata": {}, "source": [ "# Parallel Tool use" ] }, { "cell_type": "markdown", "id": "f8dc57b6-2c48-4ee3-bb2c-25441274ed2f", "metadata": {}, "source": [ "### Setup" ] }, { "cell_type": "markdown", "id": "e70814b4", "metadata": {}, "source": [ "Make sure you have `ipykernel` and `pip` pre-installed" ] }, { "cell_type": "code", "execution_count": null, "id": "962ae5e2", "metadata": {}, "outputs": [], "source": [ "%pip install -r requirements.txt" ] }, { "cell_type": "code", "execution_count": 1, "id": "e21816b3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Groq API key configured: gsk_7FdrzM...'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "import json\n", "\n", "from groq import Groq\n", "from dotenv import load_dotenv\n", "\n", "load_dotenv()\n", "\"Groq API key configured: \" + os.environ[\"GROQ_API_KEY\"][:10] + \"...\"" ] }, { "cell_type": "markdown", "id": "7f7c9c55-e925-4cc1-89f2-58237acf14a4", "metadata": {}, "source": [ "We will use the ```llama3-70b-8192``` model in this demo. Note that you will need a Groq API Key to proceed and can create an account [here](https://console.groq.com/) to generate one for free. Only Llama 3 models support parallel tool use at this time (05/07/2024).\n", "\n", "We recommend using the 70B Llama 3 model, 8B has subpar consistency." ] }, { "cell_type": "code", "execution_count": 2, "id": "0cca781b-1950-4167-b36a-c1099d6b3b00", "metadata": {}, "outputs": [], "source": [ "client = Groq(api_key=os.getenv(\"GROQ_API_KEY\"))\n", "model = \"llama3-70b-8192\"" ] }, { "cell_type": "markdown", "id": "2c23ec2b", "metadata": {}, "source": [ "Let's define a dummy function we can invoke in our tool use loop" ] }, { "cell_type": "code", "execution_count": 3, "id": "f2ce18dc", "metadata": {}, "outputs": [], "source": [ "def get_weather(city: str):\n", " if city == \"Madrid\":\n", " return 35\n", " elif city == \"San Francisco\":\n", " return 18\n", " elif city == \"Paris\":\n", " return 20\n", " else:\n", " return 15" ] }, { "cell_type": "markdown", "id": "a37e3c92", "metadata": {}, "source": [ "Now we define our messages and tools and run the completion request." ] }, { "cell_type": "code", "execution_count": 4, "id": "6b454910-4352-40cc-b9b2-cc79edabd7c1", "metadata": {}, "outputs": [], "source": [ "messages = [\n", " {\"role\": \"system\", \"content\": \"\"\"You are a helpful assistant.\"\"\"},\n", " {\n", " \"role\": \"user\",\n", " \"content\": \"What is the weather in Paris, Tokyo and Madrid?\",\n", " },\n", "]\n", "tools = [\n", " {\n", " \"type\": \"function\",\n", " \"function\": {\n", " \"name\": \"get_weather\",\n", " \"description\": \"Returns the weather in the given city in degrees Celsius\",\n", " \"parameters\": {\n", " \"type\": \"object\",\n", " \"properties\": {\n", " \"city\": {\n", " \"type\": \"string\",\n", " \"description\": \"The name of the city\",\n", " }\n", " },\n", " \"required\": [\"city\"],\n", " },\n", " },\n", " }\n", "]\n", "response = client.chat.completions.create(\n", " model=model, messages=messages, tools=tools, tool_choice=\"auto\", max_tokens=4096\n", ")\n", "\n", "response_message = response.choices[0].message" ] }, { "cell_type": "markdown", "id": "25c2838f", "metadata": {}, "source": [ "# Processing the tool calls\n", "\n", "Now we process the assistant message and construct the required messages to continue the conversation. \n", "\n", "*Including* invoking each tool_call against our actual function." ] }, { "cell_type": "code", "execution_count": 5, "id": "fe623ab9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[\n", " {\n", " \"role\": \"system\",\n", " \"content\": \"You are a helpful assistant.\"\n", " },\n", " {\n", " \"role\": \"user\",\n", " \"content\": \"What is the weather in Paris, Tokyo and Madrid?\"\n", " },\n", " {\n", " \"role\": \"assistant\",\n", " \"tool_calls\": [\n", " {\n", " \"id\": \"call_5ak8\",\n", " \"function\": {\n", " \"name\": \"get_weather\",\n", " \"arguments\": \"{\\\"city\\\":\\\"Paris\\\"}\"\n", " },\n", " \"type\": \"function\"\n", " },\n", " {\n", " \"id\": \"call_zq26\",\n", " \"function\": {\n", " \"name\": \"get_weather\",\n", " \"arguments\": \"{\\\"city\\\":\\\"Tokyo\\\"}\"\n", " },\n", " \"type\": \"function\"\n", " },\n", " {\n", " \"id\": \"call_znf3\",\n", " \"function\": {\n", " \"name\": \"get_weather\",\n", " \"arguments\": \"{\\\"city\\\":\\\"Madrid\\\"}\"\n", " },\n", " \"type\": \"function\"\n", " }\n", " ]\n", " },\n", " {\n", " \"role\": \"tool\",\n", " \"content\": \"20\",\n", " \"tool_call_id\": \"call_5ak8\"\n", " },\n", " {\n", " \"role\": \"tool\",\n", " \"content\": \"15\",\n", " \"tool_call_id\": \"call_zq26\"\n", " },\n", " {\n", " \"role\": \"tool\",\n", " \"content\": \"35\",\n", " \"tool_call_id\": \"call_znf3\"\n", " }\n", "]\n" ] } ], "source": [ "tool_calls = response_message.tool_calls\n", "\n", "messages.append(\n", " {\n", " \"role\": \"assistant\",\n", " \"tool_calls\": [\n", " {\n", " \"id\": tool_call.id,\n", " \"function\": {\n", " \"name\": tool_call.function.name,\n", " \"arguments\": tool_call.function.arguments,\n", " },\n", " \"type\": tool_call.type,\n", " }\n", " for tool_call in tool_calls\n", " ],\n", " }\n", ")\n", "\n", "available_functions = {\n", " \"get_weather\": get_weather,\n", "}\n", "for tool_call in tool_calls:\n", " function_name = tool_call.function.name\n", " function_to_call = available_functions[function_name]\n", " function_args = json.loads(tool_call.function.arguments)\n", " function_response = function_to_call(**function_args)\n", "\n", " # Note how we create a separate tool call message for each tool call\n", " # the model is able to discern the tool call result through the tool_call_id\n", " messages.append(\n", " {\n", " \"role\": \"tool\",\n", " \"content\": json.dumps(function_response),\n", " \"tool_call_id\": tool_call.id,\n", " }\n", " )\n", "\n", "print(json.dumps(messages, indent=2))" ] }, { "cell_type": "markdown", "id": "1abe981a", "metadata": {}, "source": [ "Now we run our final completion with multiple tool call results included in the messages array.\n", "\n", "**Note**\n", "\n", "We pass the tool definitions again to help the model understand:\n", "\n", "1. The assistant message with the tool call\n", "2. Interpret the tool results." ] }, { "cell_type": "code", "execution_count": 6, "id": "5f077df3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The weather in Paris is 20°C, in Tokyo is 15°C, and in Madrid is 35°C.\n" ] } ], "source": [ "response = client.chat.completions.create(\n", " model=model, messages=messages, tools=tools, tool_choice=\"auto\", max_tokens=4096\n", ")\n", "\n", "print(response.choices[0].message.content)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }