# Fine-tuning with Single GPU This recipe steps you through how to finetune a Meta Llama 3 model on the text summarization task using the [samsum](https://huggingface.co/datasets/samsum) dataset on a single GPU. These are the instructions for using the canonical [finetuning script](../../src/llama_recipes/finetuning.py) in the llama-recipes package. ## Requirements Ensure that you have installed the llama-recipes package. To run fine-tuning on a single GPU, we will make use of two packages: 1. [PEFT](https://github.com/huggingface/peft) to use parameter-efficient finetuning. 2. [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) for int8 quantization. ## How to run it? **NOTE** To run the fine-tuning with `QLORA`, make sure to set `--peft_method lora` and `--quantization 4bit --quantization_config.quant_type nf4`. ```bash FSDP_CPU_RAM_EFFICIENT_LOADING=1 python finetuning.py --use_peft --peft_method lora --quantization 8bit --model_name /path_of_model_folder/8B --output_dir Path/to/save/PEFT/model ``` The args used in the command above are: * `--use_peft` boolean flag to enable PEFT methods in the script * `--peft_method` to specify the PEFT method, here we use `lora` other options are `llama_adapter`, `prefix`. * `--quantization` string flag to enable 8bit or 4bit quantization > [!NOTE] > In case you are using a multi-GPU machine please make sure to only make one of them visible using `export CUDA_VISIBLE_DEVICES=GPU:id`. ### How to run with different datasets? Currently 3 open source datasets are supported that can be found in [Datasets config file](../../src/llama_recipes/configs/datasets.py). You can also use your custom dataset (more info [here](./datasets/README.md)). * `grammar_dataset` : use this [notebook](../../src/llama_recipes/datasets/grammar_dataset/grammar_dataset_process.ipynb) to pull and process the Jfleg and C4 200M datasets for grammar checking. * `alpaca_dataset` : to get this open source data please download the `alpaca.json` to `dataset` folder. ```bash wget -P ../../src/llama_recipes/datasets https://raw.githubusercontent.com/tatsu-lab/stanford_alpaca/main/alpaca_data.json ``` * `samsum_dataset` to run with each of the datasets set the `dataset` flag in the command as shown below: ```bash # grammar_dataset python -m finetuning.py --use_peft --peft_method lora --quantization 8bit --dataset grammar_dataset --model_name /path_of_model_folder/8B --output_dir Path/to/save/PEFT/model # alpaca_dataset python -m finetuning.py --use_peft --peft_method lora --quantization 8bit --dataset alpaca_dataset --model_name /path_of_model_folder/8B --output_dir Path/to/save/PEFT/model # samsum_dataset python -m finetuning.py --use_peft --peft_method lora --quantization 8bit --dataset samsum_dataset --model_name /path_of_model_folder/8B --output_dir Path/to/save/PEFT/model ``` ## FLOPS Counting and Pytorch Profiling To help with benchmarking effort, we are adding the support for counting the FLOPS during the fine-tuning process. You can achieve this by setting `--flop_counter` when launching your single/multi GPU fine-tuning. Use `--flop_counter_start` to choose which step to count the FLOPS. It is recommended to allow a warm-up stage before using the FLOPS counter. Similarly, you can set `--use_profiler` flag and pass a profiling output path using `--profiler_dir` to capture the profile traces of your model using [PyTorch profiler](https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html). To get accurate profiling result, the pytorch profiler requires a warm-up stage and the current config is wait=1, warmup=2, active=3, thus the profiler will start the profiling after step 3 and will record the next 3 steps. Therefore, in order to use pytorch profiler, the --max-train-step has been greater than 6. The pytorch profiler would be helpful for debugging purposes. However, the `--flop_counter` and `--use_profiler` can not be used in the same time to ensure the measurement accuracy.