# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from pathlib import Path import pytest from unittest.mock import patch DATA_DIR = Path(__file__).parents[2] / "llama_recipes/datasets/grammar_dataset/" @pytest.mark.skip_missing_tokenizer @pytest.mark.skipif(not Path(DATA_DIR / "grammar_validation.csv").exists(), reason="grammar_validation.csv not found") @pytest.mark.skipif(not Path(DATA_DIR / "gtrain_10k.csv").exists(), reason="gtrain_10k.csv not found") @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.AutoTokenizer') @patch('llama_recipes.finetuning.AutoConfig.from_pretrained') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_grammar_dataset(step_lr, optimizer, get_model, get_config, tokenizer, train, setup_tokenizer, llama_version): from llama_recipes.finetuning import main setup_tokenizer(tokenizer) get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256] get_config.return_value.model_type = "llama" BATCH_SIZE = 8 kwargs = { "model_name": llama_version, "batch_size_training": BATCH_SIZE, "val_batch_size": 1, "use_peft": False, "dataset": "grammar_dataset", "batching_strategy": "padding", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] VAL_SAMPLES = 2988 TRAIN_SAMPLES = 13016 assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE assert len(eval_dataloader) == VAL_SAMPLES batch = next(iter(train_dataloader)) assert "labels" in batch.keys() assert "input_ids" in batch.keys() assert "attention_mask" in batch.keys() token = args[3] assert batch["input_ids"][0][0] == token.bos_token_id assert batch["labels"][0][-1] == token.eos_token_id assert batch["input_ids"][0][-1] == token.eos_token_id