{ "cells": [ { "cell_type": "markdown", "id": "18662496-bb36-45a6-99ab-b2f0b91eb534", "metadata": {}, "source": [ "## Suno Demo\n", "\n", "Copy-Pasted from: https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing#scrollTo=68QtoUqPWdLk\n" ] }, { "cell_type": "code", "execution_count": null, "id": "73cf9a1c-c6d4-492f-9d3d-8b19466e6014", "metadata": {}, "outputs": [], "source": [ "#!pip3 install optimum\n", "#!pip install -U flash-attn --no-build-isolation" ] }, { "cell_type": "code", "execution_count": 1, "id": "f6c0c08d-b1b7-479c-ae10-bd126d925bcd", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/sanyambhutani/.conda/envs/final-checking-meta/lib/python3.12/site-packages/transformers/models/encodec/modeling_encodec.py:124: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", " self.register_buffer(\"padding_total\", torch.tensor(kernel_size - stride, dtype=torch.int64), persistent=False)\n" ] } ], "source": [ "from transformers import BarkModel, AutoProcessor\n", "import torch\n", "\n", "device = \"cuda:3\"\n", "\n", "processor = AutoProcessor.from_pretrained(\"suno/bark\")\n", "\n", "#model = model.to_bettertransformer()\n", "#model = BarkModel.from_pretrained(\"suno/bark\", torch_dtype=torch.float16, attn_implementation=\"flash_attention_2\").to(device)\n", "model = BarkModel.from_pretrained(\"suno/bark\", torch_dtype=torch.float16).to(device)#.to_bettertransformer()" ] }, { "cell_type": "code", "execution_count": 26, "id": "94c95582-49cf-419d-89bf-51e2e4e04379", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "voice_preset = \"v2/en_speaker_6\"\n", "\n", "# prepare the inputs\n", "text_prompt = \"\"\"\n", "[Laughs] Exactly! And the distillation part is where you take a large model and compress it down into a smaller, more efficient model that can run on devices with limited resources.\n", "\"\"\"\n", "inputs = processor(text_prompt, voice_preset=voice_preset)\n", "\n", "# generate speech\n", "speech_output = model.generate(**inputs.to(device))\n", "\n", "# let's hear it\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 9, "id": "a258e898-b007-4697-af9f-a9e7dbbb7fe4", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.1)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 10, "id": "11561846-d029-4f7e-be4a-4f7a09e84bf4", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.2)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 11, "id": "e80a13a5-6c5c-4850-bdc6-bf7d18484162", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#I like this the most so far\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.3)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 27, "id": "a8f3285e-d658-488f-a6e0-37f80c59cd04", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This is better than 0.3\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.4)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 13, "id": "b11d23af-62e3-432d-8ff5-0452c91cc42d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Falls Apart\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.5)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 28, "id": "045b9608-7ec9-4950-b3da-62d51ca3d792", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# so-so\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.6)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 29, "id": "f4270d19-8752-48e0-86a0-05ef576e51ec", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#probably the best so far\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.7)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 30, "id": "0d887a7e-9680-4cb1-9158-1a612c499412", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# probably better\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.8)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 31, "id": "354ff9ac-955b-4bc5-bcf6-7444e9512eef", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# mix feelings\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "markdown", "id": "b0fb79c0-72a8-43cd-a5ef-0d3df6ce81f6", "metadata": {}, "source": [ "### Now changing temperature" ] }, { "cell_type": "code", "execution_count": 32, "id": "e585aa5d-67a0-4a6c-a8d6-aec038f9f2c2", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# very robotic\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.1, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 33, "id": "b7d627f4-173e-408f-a20a-49f7a6106966", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Less robotic, still not very convinving though, feels robotic later\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.2, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 34, "id": "be0cde0a-f459-4937-a746-d766f27cb443", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This feels a little less robotic\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.3, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 35, "id": "4bd995a6-9622-4241-8a12-24b8393e5bec", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Much better than the previous but still has a robotic tinge\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.4, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 36, "id": "b0d622d5-da03-45d7-8a0e-32862c45936f", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The laugh was weird but the robotic sense goes away and tone changes throughout\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.5, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 37, "id": "431918c1-bcb4-44c5-a604-01b5d5b95f57", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Probably most consistent but has robotic tinge still\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.6, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": null, "id": "147a43c0-7e85-478e-bc55-09fead6468dd", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] } ], "source": [ "# It hallucinated this one lol at first run\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.7, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": 39, "id": "37c35555-7fba-4c52-8a1a-ce2f48947fd7", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n", "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Doesnt laugh but feels a bit more natural\n", "\n", "speech_output = model.generate(**inputs, temperature = 0.8, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "code", "execution_count": null, "id": "e9234e00-473f-4736-acd1-cb9d4d1a9589", "metadata": {}, "outputs": [], "source": [ "speech_output = model.generate(**inputs, temperature = 0.9, semantic_temperature = 0.9)\n", "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)" ] }, { "cell_type": "markdown", "id": "e2cd65ba-69ec-4ee3-be6e-c88b9f7c3f9e", "metadata": {}, "source": [ "## To save" ] }, { "cell_type": "code", "execution_count": null, "id": "a8839e82-79eb-4f83-8524-44ad279b593f", "metadata": {}, "outputs": [], "source": [ "import scipy\n", "\n", "scipy.io.wavfile.write(\"bark_out.wav\", rate=sampling_rate, data=speech_output[0].cpu().numpy())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 5 }