# ## Serving Llama 3.2 3B Instruct Model With vLLM # This app runs a vLLM server on an A100 GPU. # # Run it with: # modal deploy inference import modal # This defines the image to use for the vLLM server container vllm_image = modal.Image.debian_slim(python_version="3.10").pip_install( "vllm==0.5.3post1" ) MODELS_DIR = "/llamas" MODEL_NAME = "meta-llama/Llama-3.2-3B-Instruct" # Ensure the model is downloaded and the volume exists try: volume = modal.Volume.lookup("llamas", create_if_missing=False) except modal.exception.NotFoundError: raise Exception("Download models first with modal run download") app = modal.App("many-llamas-human-eval") N_GPU = 1 # tip: for best results, first upgrade to more powerful GPUs, and only then increase GPU count TOKEN = ( "super-secret-token" # auth token. for production use, replace with a modal.Secret ) MINUTES = 60 # seconds HOURS = 60 * MINUTES @app.function( image=vllm_image, gpu=modal.gpu.A100(count=N_GPU, size="40GB"), container_idle_timeout=5 * MINUTES, timeout=24 * HOURS, allow_concurrent_inputs=20, # VLLM will batch requests so many can be received at once volumes={MODELS_DIR: volume}, concurrency_limit=10, # max 10 GPUs ) @modal.asgi_app() def serve(): import fastapi import vllm.entrypoints.openai.api_server as api_server from vllm.engine.arg_utils import AsyncEngineArgs from vllm.engine.async_llm_engine import AsyncLLMEngine from vllm.entrypoints.logger import RequestLogger from vllm.entrypoints.openai.serving_chat import OpenAIServingChat from vllm.entrypoints.openai.serving_completion import ( OpenAIServingCompletion, ) from vllm.usage.usage_lib import UsageContext volume.reload() # ensure we have the latest version of the weights # create a fastAPI app that uses vLLM's OpenAI-compatible router web_app = fastapi.FastAPI( title=f"OpenAI-compatible {MODEL_NAME} server", description="Run an OpenAI-compatible LLM server with vLLM on modal.com", version="0.0.1", docs_url="/docs", ) # security: CORS middleware for external requests http_bearer = fastapi.security.HTTPBearer( scheme_name="Bearer Token", description="See code for authentication details.", ) web_app.add_middleware( fastapi.middleware.cors.CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # security: inject dependency on authed routes async def is_authenticated(api_key: str = fastapi.Security(http_bearer)): if api_key.credentials != TOKEN: raise fastapi.HTTPException( status_code=fastapi.status.HTTP_401_UNAUTHORIZED, detail="Invalid authentication credentials", ) return {"username": "authenticated_user"} router = fastapi.APIRouter(dependencies=[fastapi.Depends(is_authenticated)]) # wrap vllm's router in auth router router.include_router(api_server.router) # add authed vllm to our fastAPI app web_app.include_router(router) engine_args = AsyncEngineArgs( model=MODELS_DIR + "/" + MODEL_NAME, tensor_parallel_size=N_GPU, gpu_memory_utilization=0.90, max_model_len=2048, enforce_eager=False, # capture the graph for faster inference, but slower cold starts (30s > 20s) ) engine = AsyncLLMEngine.from_engine_args( engine_args, usage_context=UsageContext.OPENAI_API_SERVER ) model_config = get_model_config(engine) request_logger = RequestLogger(max_log_len=2048) api_server.openai_serving_chat = OpenAIServingChat( engine, model_config=model_config, served_model_names=[MODEL_NAME], chat_template=None, response_role="assistant", lora_modules=[], prompt_adapters=[], request_logger=request_logger, ) api_server.openai_serving_completion = OpenAIServingCompletion( engine, model_config=model_config, served_model_names=[MODEL_NAME], lora_modules=[], prompt_adapters=[], request_logger=request_logger, ) return web_app def get_model_config(engine): import asyncio try: # adapted from vLLM source -- https://github.com/vllm-project/vllm/blob/507ef787d85dec24490069ffceacbd6b161f4f72/vllm/entrypoints/openai/api_server.py#L235C1-L247C1 event_loop = asyncio.get_running_loop() except RuntimeError: event_loop = None if event_loop is not None and event_loop.is_running(): # If the current is instanced by Ray Serve, # there is already a running event loop model_config = event_loop.run_until_complete(engine.get_model_config()) else: # When using single vLLM without engine_use_ray model_config = asyncio.run(engine.get_model_config()) return model_config