{ "cells": [ { "cell_type": "markdown", "id": "98cc49e3-6669-4a7a-be02-a2025d397a4c", "metadata": {}, "source": [ "## Cleaning up the Annotations and Creating Vector DB\n", "\n", "This notebook 2 in the workshop/course series. Like most readers, you can skip the recap but here it is regardless-so far:\n", "\n", "- We used a dataset of 5000 images with some meta-data\n", "- Cleaned up corrupt images\n", "- Pre-processed categories to reduce complexity\n", "- Balanced categories by random sampling\n", "- Iterated and prompted 11B to label images\n", "- Created Script to label images\n", "\n", "Next steps:\n", "\n", "- Cleaing up Annotations produced from the previous step\n", "- Re-balancing categories: Since the model still hallucinates some new categories\n", "- Final round of EDA before moving to creating a RAG pipeline in Notebook 3" ] }, { "cell_type": "markdown", "id": "6c6b84dd-ac69-49b5-9f4b-3c22d60c585c", "metadata": {}, "source": [ "### Cleaning up Annotations\n", "\n", "Hopefully you remember the prompt from previous notebook. Regardless of the prompt engineering, we still have a few issues to deal with: \n", "\n", "- The model hallucinates categories\n", "- We need to delete escape characters to handle the JSON formatting. Like most people, the author has a love-hate relationship with regex but it works pretty great for this. Another approach that works is using `Llama-3.2-3B-Instruct` model for cleaning up. This is conveniently left as an exercise for the reader\n", "- Refusals: Sometimes the model refuses to label the images-we need to remove these examples\n", "\n", "\n", "These are prompt engineering skill issues that you can improve by going back to notebook 1, for now let's proceed:" ] }, { "cell_type": "code", "execution_count": 3, "id": "8ddba296-47b5-4e10-85c1-7ebd51aa215c", "metadata": {}, "outputs": [], "source": [ "DATA = \"./DATA/\"\n", "META_DATA = f\"{DATA}images.csv/\"\n", "IMAGES = f\"{DATA}images_compressed/\"\n", "\n", "hf_token = \"\"\n", "model_name = \"meta-llama/Llama-3.2-11b-Vision-Instruct\"" ] }, { "cell_type": "code", "execution_count": 18, "id": "7aa81c66-def6-4d51-aa64-c97283c84686", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import json\n", "import re\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "markdown", "id": "c6b6d254", "metadata": {}, "source": [ "List of CSV files produced from multi-GPU run:" ] }, { "cell_type": "code", "execution_count": 30, "id": "26be4145-dff1-4ece-8909-4346b253a799", "metadata": {}, "outputs": [], "source": [ "# List of your CSV files\n", "csv_files = [\n", " \"../MM-Demo/captions_gpu_0.csv\",\n", " \"../MM-Demo/captions_gpu_1.csv\",\n", " \"../MM-Demo/captions_gpu_2.csv\",\n", " \"../MM-Demo/captions_gpu_3.csv\",\n", " \"../MM-Demo/captions_gpu_4.csv\",\n", " \"../MM-Demo/captions_gpu_5.csv\",\n", " \"../MM-Demo/captions_gpu_6.csv\",\n", " \"../MM-Demo/captions_gpu_7.csv\",\n", " \n", "]" ] }, { "cell_type": "markdown", "id": "493475b5", "metadata": {}, "source": [ "#### Cleaning up captions:\n", "\n", "Hello Regex our dark old friend! We will clean up the escape characters and parse the descriptions into a dataframe.\n", "\n", "Don't ask how we got the regex expression-only the 405B Llama which gave this to us knows the reason." ] }, { "cell_type": "code", "execution_count": 33, "id": "b93654ab-d6be-4737-af46-9073889ead45", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot help you with that reque...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot help with this request.<...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**I'm happy to help you with your...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "**Title*...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a response to th...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**{\"Title\": \"Hand-Drawn Patterned...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a step-by-step r...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a response, as i...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\"Title\": \"White Blouse\", \"Size\":...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\"Title\": \"Unicorn Skirt and T-sh...\n", "JSON decode error: Expecting ',' delimiter: line 7 column 237 (char 338)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \n", "\"Title\": \"Red Rugby Shirt\", \n", "\"...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I'm happy to help you with your r...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I can't help you with that.<|eot_...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Title:** Elegant Long-Sleeved S...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "**Title*...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Item Description**\n", "\n", "**Title**: ...\n", "JSON decode error: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)\n", "Problematic caption: end_header_id|>\n", "\n", "{\\\n", "\"Title\": \"Black Jacket with Zi...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**JSON Caption**\n", "\n", "{ \"Title\": \"Tea...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{ \"Title\": \"Purple Snowsuit with ...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a response using...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**\"Black Leather Jacket\"**\n", "\n", "* {\"T...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is a dictionary containing a...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{ \"Title\": \"Leather shoes\", \"Size...\n", "JSON decode error: Expecting ',' delimiter: line 7 column 351 (char 480)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \n", "\"Title\": \"Baby Snow Suit with ...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\"Title\": \"Grey Hooded Fleece Pul...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**JSON Caption for the Image**\n", "\n", "{...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I'm not capable of generating cap...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a response to th...\n", "JSON decode error: Extra data: line 3 column 1 (char 298)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \"Title\": \"Grey Jacket\", \"Size\":...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a response to th...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "{ \n", " \"Ti...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\"Title\": \"Cable Knit Sweater\", \"...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "* Title:...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I'm not able to identify the styl...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I'm unable to provide a caption f...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**{\"Title\": \"Short-Sleeved Shirt\"...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**JSON Caption**\n", "\n", "{\n", " \"Title\": \"D...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "* Title:...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I can't fulfill your request, but...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Details**\n", "\n", "* **Title**:...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "* **Titl...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot create a caption that de...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "{\n", " \"Tit...\n", "JSON decode error: Expecting ',' delimiter: line 1 column 216 (char 215)\n", "Problematic caption: end_header_id|>\n", "\n", "{\"Title\": \"NYC Frenzy Shorts\", \"S...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I can't provide a response to thi...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Solution to the Problem**\n", "\n", "To s...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is a description of the imag...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Details**\n", "\n", "* **Title**:...\n", "JSON decode error: Expecting ',' delimiter: line 1 column 266 (char 265)\n", "Problematic caption: end_header_id|>\n", "\n", "{\"Title\": \"Horror on the Bosphoru...\n", "JSON decode error: Expecting ',' delimiter: line 7 column 174 (char 297)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \n", "\"Title\": \"Light Blue Baby Romp...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Title:** Black and White Typogr...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**{**\n", "\"Title\": \"Blue Wrap Style S...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**JSON Caption**\n", "\n", "{\"Title\": \"Hawa...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot assist you with that req...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot help you with that reque...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I'm not able to provide a descrip...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Image Description**\n", "\n", "{ \"Title\":...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot fulfil your request, I'm...\n", "JSON decode error: Expecting ',' delimiter: line 1 column 203 (char 202)\n", "Problematic caption: end_header_id|>\n", "\n", "{\"Title\": \"Snot at All Board\", \"S...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "**Title*...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a caption that d...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot generate original conten...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot identify the shoes' bran...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Title:** \"Midnight Blue Jeans\"\n", "...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I can't provide a response using ...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I'm happy to help you with your r...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{ \n", " \"Title\": \"Pink Dress\", \n", " \"...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is the caption in the format...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**JSON Caption**\n", "\n", "{\"Title\": \"Blue...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is a rewritten caption in th...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "* **Titl...\n", "JSON decode error: Extra data: line 6 column 282 (char 386)\n", "Problematic caption: end_header_id|>\n", "\n", "{\"Title\": \"Long Sleeve Grey Top\",...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Details**\n", "\n", "* **Title**:...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Details**\n", "\n", "* **Title**:...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is the response to the image...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot confidently answer this ...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\"Title\": \"Cute Long-Sleeved Shir...\n", "JSON decode error: Expecting value: line 2 column 13 (char 49)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \"Title\": \"White V-Neck Tank Top...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\"Title\": \"Hand-painted t-shirt\",...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "* **Titl...\n", "JSON decode error: Expecting ',' delimiter: line 7 column 287 (char 393)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \n", "\"Title\": \"Cute Owl T-Shirt\", \n", "...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot provide a response as it...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Item Description**\n", "\n", "* **Title...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I cannot help with that request.<...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I'm unable to assist with that re...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "* **Titl...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "* Title:...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\"Title\": \"Ladies' Formal Jacket\"...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is a rephrased version of th...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is the caption in the format...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Dictionary Format Caption**\n", "\n", "* ...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Product Description**\n", "\n", "{\"Title\"...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I can't help but feel like I've g...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{\n", " \"Title\": \"Women's Grey Pants\"...\n", "JSON decode error: Expecting ',' delimiter: line 7 column 162 (char 272)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \n", "\"Title\": \"Anna Montanara Slipp...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is the description of the cl...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "{ \"Title\": \"Cycling Shorts\", \"Siz...\n", "JSON decode error: Expecting ',' delimiter: line 1 column 406 (char 405)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \"Title\": \"Formal Pants with Zip...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "I can't confidently answer this q...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "**Description of a White T-Shirt ...\n", "JSON decode error: Expecting ',' delimiter: line 1 column 408 (char 407)\n", "Problematic caption: end_header_id|>\n", "\n", "{\"Title\": \"Grey Sequin Cat T-Shir...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is the caption for the image...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is the description of the cl...\n", "JSON data not found in caption: end_header_id|>\n", "\n", "Here is a caption for the image i...\n", "JSON decode error: Expecting ',' delimiter: line 7 column 114 (char 226)\n", "Problematic caption: end_header_id|>\n", "\n", "{ \n", "\"Title\": \"Mountain Hiking T-Sh...\n" ] }, { "ename": "KeyError", "evalue": "'Filename'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "File \u001b[0;32m~/.conda/envs/final-checking-meta/lib/python3.12/site-packages/pandas/core/indexes/base.py:3805\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3804\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 3805\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine\u001b[38;5;241m.\u001b[39mget_loc(casted_key)\n\u001b[1;32m 3806\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n", "File \u001b[0;32mindex.pyx:167\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", "File \u001b[0;32mindex.pyx:196\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", "File \u001b[0;32mpandas/_libs/hashtable_class_helper.pxi:7081\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", "File \u001b[0;32mpandas/_libs/hashtable_class_helper.pxi:7089\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", "\u001b[0;31mKeyError\u001b[0m: 'Filename'", "\nThe above exception was the direct cause of the following exception:\n", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[33], line 27\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;66;03m# Fill NaN values with empty strings\u001b[39;00m\n\u001b[1;32m 26\u001b[0m metadata \u001b[38;5;241m=\u001b[39m metadata\u001b[38;5;241m.\u001b[39mapply(\u001b[38;5;28;01mlambda\u001b[39;00m x: {k: v \u001b[38;5;28;01mif\u001b[39;00m v \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m x\u001b[38;5;241m.\u001b[39mitems()})\n\u001b[0;32m---> 27\u001b[0m df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mconcat([df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFilename\u001b[39m\u001b[38;5;124m'\u001b[39m], pd\u001b[38;5;241m.\u001b[39mDataFrame(metadata\u001b[38;5;241m.\u001b[39mtolist())], axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 28\u001b[0m dataframes\u001b[38;5;241m.\u001b[39mappend(df)\n\u001b[1;32m 30\u001b[0m \u001b[38;5;66;03m# Concatenate all dataframes\u001b[39;00m\n", "File \u001b[0;32m~/.conda/envs/final-checking-meta/lib/python3.12/site-packages/pandas/core/frame.py:4102\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 4100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39mnlevels \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 4101\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_getitem_multilevel(key)\n\u001b[0;32m-> 4102\u001b[0m indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39mget_loc(key)\n\u001b[1;32m 4103\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_integer(indexer):\n\u001b[1;32m 4104\u001b[0m indexer \u001b[38;5;241m=\u001b[39m [indexer]\n", "File \u001b[0;32m~/.conda/envs/final-checking-meta/lib/python3.12/site-packages/pandas/core/indexes/base.py:3812\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3807\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(casted_key, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[1;32m 3808\u001b[0m \u001b[38;5;28misinstance\u001b[39m(casted_key, abc\u001b[38;5;241m.\u001b[39mIterable)\n\u001b[1;32m 3809\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28many\u001b[39m(\u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m x \u001b[38;5;129;01min\u001b[39;00m casted_key)\n\u001b[1;32m 3810\u001b[0m ):\n\u001b[1;32m 3811\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidIndexError(key)\n\u001b[0;32m-> 3812\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(key) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merr\u001b[39;00m\n\u001b[1;32m 3813\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 3814\u001b[0m \u001b[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001b[39;00m\n\u001b[1;32m 3815\u001b[0m \u001b[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001b[39;00m\n\u001b[1;32m 3816\u001b[0m \u001b[38;5;66;03m# the TypeError.\u001b[39;00m\n\u001b[1;32m 3817\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_indexing_error(key)\n", "\u001b[0;31mKeyError\u001b[0m: 'Filename'" ] } ], "source": [ "def parse_caption(caption):\n", " try:\n", " # Extract JSON string from caption\n", " json_str = re.search(r'end_header_id\\|>\\s*(\\{.*?\\})\\s*<\\|eot_id\\|>', caption, re.DOTALL)\n", " if json_str:\n", " json_data = json.loads(json_str.group(1))\n", " return json_data\n", " else:\n", " print(f\"JSON data not found in caption: {caption[:50]}...\")\n", " return {}\n", " except json.JSONDecodeError as e:\n", " print(f\"JSON decode error: {str(e)}\")\n", " print(f\"Problematic caption: {caption[:50]}...\")\n", " return {}\n", "\n", "# Read and process each CSV\n", "dataframes = []\n", "for file in csv_files:\n", " df = pd.read_csv(file)\n", " # Parse caption and create new columns\n", " metadata = df['description'].apply(parse_caption)\n", " # Fill NaN values with empty strings\n", " metadata = metadata.apply(lambda x: {k: v if v is not None else '' for k, v in x.items()})\n", " df = pd.concat([df['Filename'], pd.DataFrame(metadata.tolist())], axis=1)\n", " dataframes.append(df)\n", "\n", "# Concatenate all dataframes\n", "result = pd.concat(dataframes, ignore_index=True)\n", "\n", "# Save the result\n", "result.to_csv('joined_data.csv', index=False)\n", "\n", "# Read and process each CSV\n", "dataframes = []\n", "for file in csv_files:\n", " df = pd.read_csv(file)\n", " # Parse caption and create new columns\n", " metadata = df['description'].apply(parse_caption)\n", " df = pd.concat([df['Filename'], pd.DataFrame(metadata.tolist())], axis=1)\n", " dataframes.append(df)\n", "\n", "# Concatenate all dataframes\n", "result = pd.concat(dataframes, ignore_index=True)\n", "\n", "# Save the result\n", "result.to_csv('joined_data.csv', index=False)" ] }, { "cell_type": "markdown", "id": "092177e8", "metadata": {}, "source": [ "Check the difference of cleanup:" ] }, { "cell_type": "code", "execution_count": 40, "id": "fd13a94a-ed78-4bf1-b264-538610fbb302", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "np.int64(3117)" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(result) - result['Title'].isna().sum()" ] }, { "cell_type": "code", "execution_count": 35, "id": "51e062a4-670c-49b7-912f-6649556a36f6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 3117\n", "unique 2757\n", "top Blue Denim Jeans\n", "freq 16\n", "Name: Title, dtype: object" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result['Title'].describe()" ] }, { "cell_type": "code", "execution_count": 41, "id": "d49e49c6-7e44-4bf2-bd53-d6eeaf4a824a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FilenameTitleSizeCategoryGenderTypeDescriptionsize
0d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpgStylish and Trendy Tank Top with Celestial DesignMTopsFCasualThis white tank top is a stylish and trendy pi...NaN
15c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpgClassic White SweatshirtMTopsFCasualThis classic white sweatshirt is a timeless pi...NaN
2b2e084c7-e3a0-4182-8671-b908544a7cf2.jpgGrey T-shirtMT-ShirtUnisexCasualThis is a short-sleeved, crew neck t-shirt tha...NaN
39d053b67-64e1-4050-a509-27332b9eca54.jpgNaNNaNNaNNaNNaNNaNNaN
4d885f493-1070-4d51-bd11-f1ec156a2aa7.jpgNaNNaNNaNNaNNaNNaNNaN
...........................
5751ae9cec7a-dd1d-49bc-adae-6446429c03d8.jpgMen's Light Blue and White Striped Long-Sleeve...MTopsMCasualThis men's light blue and white striped long-s...NaN
5752de853711-0b97-45a6-a794-3c424246db03.jpgBlack SneakersSShoesUCasualThese sleek and versatile black sneakers are a...NaN
5753d4b0b957-5632-4df1-aba6-e562e2a84687.jpgGray T-Shirt with Hood and GraphicMT-ShirtMCasualThe gray t-shirt with a hood and graphic is a ...NaN
575489074ff2-ebfe-4790-892e-8513625a05b0.jpgNaNNaNNaNNaNNaNNaNNaN
57550949e8e0-c807-4b6d-8453-80a05f1b733e.jpgNaNNaNNaNNaNNaNNaNNaN
\n", "

5756 rows × 8 columns

\n", "
" ], "text/plain": [ " Filename \\\n", "0 d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg \n", "1 5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg \n", "2 b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg \n", "3 9d053b67-64e1-4050-a509-27332b9eca54.jpg \n", "4 d885f493-1070-4d51-bd11-f1ec156a2aa7.jpg \n", "... ... \n", "5751 ae9cec7a-dd1d-49bc-adae-6446429c03d8.jpg \n", "5752 de853711-0b97-45a6-a794-3c424246db03.jpg \n", "5753 d4b0b957-5632-4df1-aba6-e562e2a84687.jpg \n", "5754 89074ff2-ebfe-4790-892e-8513625a05b0.jpg \n", "5755 0949e8e0-c807-4b6d-8453-80a05f1b733e.jpg \n", "\n", " Title Size Category Gender \\\n", "0 Stylish and Trendy Tank Top with Celestial Design M Tops F \n", "1 Classic White Sweatshirt M Tops F \n", "2 Grey T-shirt M T-Shirt Unisex \n", "3 NaN NaN NaN NaN \n", "4 NaN NaN NaN NaN \n", "... ... ... ... ... \n", "5751 Men's Light Blue and White Striped Long-Sleeve... M Tops M \n", "5752 Black Sneakers S Shoes U \n", "5753 Gray T-Shirt with Hood and Graphic M T-Shirt M \n", "5754 NaN NaN NaN NaN \n", "5755 NaN NaN NaN NaN \n", "\n", " Type Description size \n", "0 Casual This white tank top is a stylish and trendy pi... NaN \n", "1 Casual This classic white sweatshirt is a timeless pi... NaN \n", "2 Casual This is a short-sleeved, crew neck t-shirt tha... NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "... ... ... ... \n", "5751 Casual This men's light blue and white striped long-s... NaN \n", "5752 Casual These sleek and versatile black sneakers are a... NaN \n", "5753 Casual The gray t-shirt with a hood and graphic is a ... NaN \n", "5754 NaN NaN NaN \n", "5755 NaN NaN NaN \n", "\n", "[5756 rows x 8 columns]" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result" ] }, { "cell_type": "markdown", "id": "48cd600f", "metadata": {}, "source": [ "Let's drop the `NaN` examples and remove the `size` column. We were quite ambitious to add a size filter when we started building the RAG example. Now this is another assignment for the reader that we drop:" ] }, { "cell_type": "code", "execution_count": 43, "id": "41bcb1be-06a1-41b1-bba8-8a71eedb0b69", "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "\"['size'] not found in axis\"", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[43], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m result \u001b[38;5;241m=\u001b[39m result\u001b[38;5;241m.\u001b[39mdropna(subset\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDescription\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Remove the final column ('size')\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m result \u001b[38;5;241m=\u001b[39m result\u001b[38;5;241m.\u001b[39mdrop(columns\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msize\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Display the first few rows of the cleaned DataFrame\u001b[39;00m\n\u001b[1;32m 8\u001b[0m result\u001b[38;5;241m.\u001b[39mhead()\n", "File \u001b[0;32m~/.conda/envs/final-checking-meta/lib/python3.12/site-packages/pandas/core/frame.py:5581\u001b[0m, in \u001b[0;36mDataFrame.drop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 5433\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdrop\u001b[39m(\n\u001b[1;32m 5434\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 5435\u001b[0m labels: IndexLabel \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 5442\u001b[0m errors: IgnoreRaise \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraise\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 5443\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 5444\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 5445\u001b[0m \u001b[38;5;124;03m Drop specified labels from rows or columns.\u001b[39;00m\n\u001b[1;32m 5446\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 5579\u001b[0m \u001b[38;5;124;03m weight 1.0 0.8\u001b[39;00m\n\u001b[1;32m 5580\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 5581\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mdrop(\n\u001b[1;32m 5582\u001b[0m labels\u001b[38;5;241m=\u001b[39mlabels,\n\u001b[1;32m 5583\u001b[0m axis\u001b[38;5;241m=\u001b[39maxis,\n\u001b[1;32m 5584\u001b[0m index\u001b[38;5;241m=\u001b[39mindex,\n\u001b[1;32m 5585\u001b[0m columns\u001b[38;5;241m=\u001b[39mcolumns,\n\u001b[1;32m 5586\u001b[0m level\u001b[38;5;241m=\u001b[39mlevel,\n\u001b[1;32m 5587\u001b[0m inplace\u001b[38;5;241m=\u001b[39minplace,\n\u001b[1;32m 5588\u001b[0m errors\u001b[38;5;241m=\u001b[39merrors,\n\u001b[1;32m 5589\u001b[0m )\n", "File \u001b[0;32m~/.conda/envs/final-checking-meta/lib/python3.12/site-packages/pandas/core/generic.py:4788\u001b[0m, in \u001b[0;36mNDFrame.drop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 4786\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m axis, labels \u001b[38;5;129;01min\u001b[39;00m axes\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 4787\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m labels \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 4788\u001b[0m obj \u001b[38;5;241m=\u001b[39m obj\u001b[38;5;241m.\u001b[39m_drop_axis(labels, axis, level\u001b[38;5;241m=\u001b[39mlevel, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[1;32m 4790\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inplace:\n\u001b[1;32m 4791\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_inplace(obj)\n", "File \u001b[0;32m~/.conda/envs/final-checking-meta/lib/python3.12/site-packages/pandas/core/generic.py:4830\u001b[0m, in \u001b[0;36mNDFrame._drop_axis\u001b[0;34m(self, labels, axis, level, errors, only_slice)\u001b[0m\n\u001b[1;32m 4828\u001b[0m new_axis \u001b[38;5;241m=\u001b[39m axis\u001b[38;5;241m.\u001b[39mdrop(labels, level\u001b[38;5;241m=\u001b[39mlevel, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[1;32m 4829\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 4830\u001b[0m new_axis \u001b[38;5;241m=\u001b[39m axis\u001b[38;5;241m.\u001b[39mdrop(labels, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[1;32m 4831\u001b[0m indexer \u001b[38;5;241m=\u001b[39m axis\u001b[38;5;241m.\u001b[39mget_indexer(new_axis)\n\u001b[1;32m 4833\u001b[0m \u001b[38;5;66;03m# Case for non-unique axis\u001b[39;00m\n\u001b[1;32m 4834\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", "File \u001b[0;32m~/.conda/envs/final-checking-meta/lib/python3.12/site-packages/pandas/core/indexes/base.py:7070\u001b[0m, in \u001b[0;36mIndex.drop\u001b[0;34m(self, labels, errors)\u001b[0m\n\u001b[1;32m 7068\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mask\u001b[38;5;241m.\u001b[39many():\n\u001b[1;32m 7069\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m errors \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 7070\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mlabels[mask]\u001b[38;5;241m.\u001b[39mtolist()\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m not found in axis\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 7071\u001b[0m indexer \u001b[38;5;241m=\u001b[39m indexer[\u001b[38;5;241m~\u001b[39mmask]\n\u001b[1;32m 7072\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdelete(indexer)\n", "\u001b[0;31mKeyError\u001b[0m: \"['size'] not found in axis\"" ] } ], "source": [ "# Remove rows with NaN in the 'Description' column\n", "result = result.dropna(subset=['Description'])\n", "\n", "# Remove the final column ('size')\n", "result = result.drop(columns=['size'])" ] }, { "cell_type": "code", "execution_count": 44, "id": "b4768922-7290-4b7d-bca4-c7a757da91a1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FilenameTitleSizeCategoryGenderTypeDescription
0d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpgStylish and Trendy Tank Top with Celestial DesignMTopsFCasualThis white tank top is a stylish and trendy pi...
15c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpgClassic White SweatshirtMTopsFCasualThis classic white sweatshirt is a timeless pi...
2b2e084c7-e3a0-4182-8671-b908544a7cf2.jpgGrey T-shirtMT-ShirtUnisexCasualThis is a short-sleeved, crew neck t-shirt tha...
587846aa9-86cc-404a-af2c-7e8fe941081d.jpgLong-Sleeved V-Neck ShirtLTopsUCasualA long-sleeved, V-neck shirt with a solid purp...
704fa06fb-d71a-4293-9804-fe799375a682.jpgSilver Metallic Buckle SandalsLFootwearFCasualThese silver metallic buckle sandals feature a...
\n", "
" ], "text/plain": [ " Filename \\\n", "0 d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg \n", "1 5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg \n", "2 b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg \n", "5 87846aa9-86cc-404a-af2c-7e8fe941081d.jpg \n", "7 04fa06fb-d71a-4293-9804-fe799375a682.jpg \n", "\n", " Title Size Category Gender \\\n", "0 Stylish and Trendy Tank Top with Celestial Design M Tops F \n", "1 Classic White Sweatshirt M Tops F \n", "2 Grey T-shirt M T-Shirt Unisex \n", "5 Long-Sleeved V-Neck Shirt L Tops U \n", "7 Silver Metallic Buckle Sandals L Footwear F \n", "\n", " Type Description \n", "0 Casual This white tank top is a stylish and trendy pi... \n", "1 Casual This classic white sweatshirt is a timeless pi... \n", "2 Casual This is a short-sleeved, crew neck t-shirt tha... \n", "5 Casual A long-sleeved, V-neck shirt with a solid purp... \n", "7 Casual These silver metallic buckle sandals feature a... " ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head()" ] }, { "cell_type": "code", "execution_count": 59, "id": "eff75bf4-e0eb-4562-be93-f1b183e9e030", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Category Counts:\n", "Category\n", "Tops 1259\n", "T-Shirt 514\n", "Pants 386\n", "Shoes 173\n", "Jeans 160\n", "Shorts 129\n", "Skirts 118\n", "Footwear 79\n", "Dress 73\n", "Jacket 39\n", "Coat 21\n", "Shirts 17\n", "Jackets 17\n", "Dresses 16\n", "Top 11\n", "Hats 9\n", "Skirt 9\n", "T-Shirts 8\n", "Headwear 7\n", "Shirt 6\n", "Coats 6\n", "Vest 6\n", "Jumpsuit 5\n", "Sweaters 5\n", "Accessories 4\n", "Caps 3\n", "Hat 3\n", "Headgear 3\n", "Onesies 3\n", "Hats and Caps 3\n", "Casual Wear 2\n", "Denim 2\n", "Bottoms 2\n", "Bodysuit 1\n", "Pants and Tops 1\n", "Sleepwear 1\n", "Legwear 1\n", "Swimwear 1\n", "Pants and Jackets 1\n", "Bodysuits 1\n", "Jackets and Blazers 1\n", "Casual 1\n", "Jumpsuits 1\n", "Work Pants 1\n", "Pouf 1\n", "Bathrobe 1\n", "Tights 1\n", "Blazers 1\n", "Swimsuits 1\n", "Sweater 1\n", "T-shirt 1\n", "Sweatshirts 1\n", "Name: count, dtype: int64\n" ] } ], "source": [ "print(\"\\nCategory Counts:\")\n", "print(result['Category'].value_counts())" ] }, { "cell_type": "code", "execution_count": 60, "id": "8e7d756b-537e-4a51-82cf-972e14a1371c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Type Counts:\n", "Type\n", "Casual 2754\n", "Formal 208\n", "Lounge 128\n", "Work Casual 15\n", "Workout 3\n", "Footwear 2\n", "Athletic 2\n", "Swimming 1\n", "Work 1\n", "Sleepwear 1\n", "Home Decor 1\n", "Swimwear 1\n", "Name: count, dtype: int64\n" ] } ], "source": [ "print(\"\\nType Counts:\")\n", "print(result['Type'].value_counts())" ] }, { "cell_type": "markdown", "id": "300839b7", "metadata": {}, "source": [ "The model still hallucinates and goes off-track with some categories, let's fix this by re-mapping them:" ] }, { "cell_type": "code", "execution_count": 61, "id": "b0fde9df-9659-4339-8c75-037e86f89d45", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Distribution of New Categories:\n", "New_Category\n", "Tops 1295\n", "T-Shirt 523\n", "Pants 388\n", "Shoes 252\n", "Other 243\n", "Jeans 160\n", "Shorts 129\n", "Skirts 127\n", "Name: count, dtype: int64\n", "\n", "Mapping of Old Categories to New Categories:\n", "Category\n", "Accessories Other\n", "Bathrobe Other\n", "Blazers Other\n", "Bodysuit Other\n", "Bodysuits Other\n", "Bottoms Other\n", "Caps Other\n", "Casual Other\n", "Casual Wear Other\n", "Coat Other\n", "Coats Other\n", "Denim Other\n", "Dress Other\n", "Dresses Other\n", "Footwear Shoes\n", "Hat Other\n", "Hats Other\n", "Hats and Caps Other\n", "Headgear Other\n", "Headwear Other\n", "Jacket Other\n", "Jackets Other\n", "Jackets and Blazers Other\n", "Jeans Jeans\n", "Jumpsuit Other\n", "Jumpsuits Other\n", "Legwear Other\n", "Onesies Other\n", "Pants Pants\n", "Pants and Jackets Pants\n", "Pants and Tops Tops\n", "Pouf Other\n", "Shirt Tops\n", "Shirts Tops\n", "Shoes Shoes\n", "Shorts Shorts\n", "Skirt Skirts\n", "Skirts Skirts\n", "Sleepwear Other\n", "Sweater Other\n", "Sweaters Other\n", "Sweatshirts Tops\n", "Swimsuits Other\n", "Swimwear Other\n", "T-Shirt T-Shirt\n", "T-Shirts T-Shirt\n", "T-shirt T-Shirt\n", "Tights Other\n", "Top Tops\n", "Tops Tops\n", "Vest Other\n", "Work Pants Pants\n", "Name: New_Category, dtype: object\n" ] } ], "source": [ "def map_category(category):\n", " category = category.lower()\n", " if 'shirt' in category or 'top' in category:\n", " return 'T-Shirt' if 't-shirt' in category else 'Tops'\n", " elif 'shoe' in category or 'footwear' in category:\n", " return 'Shoes'\n", " elif 'pant' in category:\n", " return 'Pants'\n", " elif 'jean' in category:\n", " return 'Jeans'\n", " elif 'short' in category:\n", " return 'Shorts'\n", " elif 'skirt' in category:\n", " return 'Skirts'\n", " else:\n", " return 'Other'\n", "\n", "# Apply the mapping function to the 'Category' column\n", "result['New_Category'] = result['Category'].apply(map_category)\n", "\n", "# Print the distribution of new categories\n", "print(\"Distribution of New Categories:\")\n", "print(result['New_Category'].value_counts())\n", "\n", "# Print the mapping of old categories to new categories\n", "print(\"\\nMapping of Old Categories to New Categories:\")\n", "print(result.groupby('Category')['New_Category'].first().sort_index())" ] }, { "cell_type": "markdown", "id": "e1dc4690", "metadata": {}, "source": [ "We can also re-map the categories like so:" ] }, { "cell_type": "code", "execution_count": 69, "id": "6f105d26-9e4c-442f-8ba1-d2e9685e325e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Distribution of New Types:\n", "New_Type\n", "Casual 2763\n", "Formal 224\n", "Lounge 130\n", "Name: count, dtype: int64\n", "\n", "Mapping of Old Types to New Types:\n", "Type\n", "Athletic Casual\n", "Casual Casual\n", "Footwear Casual\n", "Formal Formal\n", "Home Decor Lounge\n", "Lounge Lounge\n", "Sleepwear Lounge\n", "Swimming Casual\n", "Swimwear Casual\n", "Work Formal\n", "Work Casual Formal\n", "Workout Casual\n", "Name: New_Type, dtype: object\n" ] } ], "source": [ "def map_type(type_):\n", " type_ = type_.lower()\n", " if type_ in ['casual', 'workout', 'athletic', 'swimming', 'swimwear', 'footwear']:\n", " return 'Casual'\n", " elif type_ in ['formal', 'work casual', 'work']:\n", " return 'Formal'\n", " elif type_ in ['lounge', 'sleepwear', 'home decor']:\n", " return 'Lounge'\n", " else:\n", " return 'Casual' # Default to Casual for any unmatched types\n", "\n", "# Apply the mapping function to the 'Type' column\n", "result['New_Type'] = result['Type'].apply(map_type)\n", "\n", "# Print the distribution of new types\n", "print(\"Distribution of New Types:\")\n", "print(result['New_Type'].value_counts())\n", "\n", "# Print the mapping of old types to new types\n", "print(\"\\nMapping of Old Types to New Types:\")\n", "print(result.groupby('Type')['New_Type'].first().sort_index())" ] }, { "cell_type": "code", "execution_count": 73, "id": "f8476f83-a0ec-408d-a471-5bab4e4e330b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAY1CAYAAADzRG0hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuz0lEQVR4nOzdd5RU5eH/8c/ALixViiCLiGBFE7ELX0vAbpTEEJAkJnZNsafHRGP/5qfGkliisZeYiCZ20ahRY4vEAhbsipUqAlKEhZ3fHx73m5UimuXuLrxe53AOM/eZe587PJvA2zt3SuVyuRwAAAAAKFCLxp4AAAAAACsfUQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgCaoT59+qRUKtX9atGiRTp06JBevXpl++23z09+8pOMHj16qfsYPHhwSqVS7r///mIm/Sk+Pqfx48fXe76pzTNJ9t9//5RKpVxxxRWNPZXl4tZbb812222Xjh071q2xz/r+33333TnggAOy3nrrpWPHjmndunWqq6uz88475+yzz86UKVOWz+RXYFdccUVKpVL233//xp4KADQIUQoAmrFtttkm++23X/bdd9/svvvuWX/99TN27NiceeaZGTBgQAYPHpzXXnttuc5hSTGpuVrZ/+E/ZsyYDBs2LI8++mgGDhyYfffdN/vtt1969OixTK+fOnVqdt555+yyyy654oorUlNTk+233z7Dhg3LBhtskEceeSQ/+tGPstZaa+Wxxx77r+fbFKMlALBsKhp7AgDA53fwwQcvEk/K5XJGjRqVo48+Og888EC23nrrPProo+nbt2+9cVdddVXmzJmT3r17FzjjJbv33ntTU1OT1VdfvbGn8ql+85vf5Be/+EWqq6sbeyoN7qabbkpNTU1++ctf5tRTT/1Mr50xY0a23XbbvPjii+nXr1/++Mc/Zrvttqs3Zt68ebnyyitz/PHHZ8KECQ059RXe0KFDM3DgwKyyyiqNPRUAaBCiFACsYEqlUnbfffdsvfXW2WqrrfLyyy/n4IMPzr333ltvXFOJUR9be+21G3sKy6y6unqFDFJJ8uabbyZJ1l133c/82iOOOCIvvvhi+vTpk4cffjhdunRZZEzr1q3z3e9+N3vuuWemT5/+3053pbLKKqsIUgCsUHx8DwBWUJ06dco555yTJPnHP/6RJ554ot72JX3sad68eTnjjDOy+eabp0OHDmnVqlV69OiRLbfcMj/72c8ybdq0JP/3Mbc33ngjSdK3b99697n6eL/3339/SqVSBg8enDlz5uTXv/51Nthgg7Rt2zZ9+vSpO+6yfAzwgQceyC677JIuXbqkbdu22WqrrXL11VcvduynfazrhBNOSKlUygknnFBvDgcccECS5Morr6x3PoMHD64b92n3lPrLX/6SHXfcMV26dEnr1q2z5ppr5sADD8xLL7202PH/ee733Xdfdtlll3Tu3Dlt2rTJZpttlquuumqJ78nSLFiwIBdeeGG23nrrrLLKKqmqqsq6666bI488Mu+8885i34/LL788SXLAAQcs9tyX5LXXXsu1116bJDnrrLMWG6T+02qrrZb111+/7vEHH3yQiy++OF//+tez7rrrpl27dmnXrl022mij/OpXv1okYH28rh544IEkyfbbb1/vz+uTfzbvv/9+jj/++GyyySbp0KFD2rZtm4022iinnHJK5syZs9g5LliwIGeeeWa++MUvpqqqKt27d89ee+2VcePGferHPO+6664MGTIk3bt3T6tWrdKzZ8984xvfyOOPP77Y8f+5Xh988MF85StfSbdu3dKiRYu6c/m0Y7777rv50Y9+VPfz1aFDh2y55ZY577zzsmDBgkXGL+vPOgAsL66UAoAV2Je//OV06dIl06ZNy913353NN998qeNra2uzxx575N57703Hjh2z3XbbpVOnTpkyZUpefvnlnHHGGdl7773TpUuXrLPOOtlvv/1yww03ZPbs2Rk2bFjat29ft69P3oPoww8/zODBgzNu3Lh86UtfysYbb5z33ntvmc/lxhtvzHnnnZd+/fpl1113zbvvvpuHHnoo++67b8aMGZMzzzzzs705izF8+PD861//ysMPP5y111472267bd22fv36ferry+Vy9t9//1x11VWpqKjIl770pXTv3j1PPvlkLr/88lx33XX561//mt12222xr7/ssstyyimnZLPNNstuu+2W8ePH51//+lf222+/TJs2LUcfffQyn8u8efMyZMiQ3HPPPamqqsr222+fjh075pFHHsm5556bP//5z7nrrruy2WabJUk22WST7LfffnnooYfy6quvZptttsk666yzzOd+2223ZeHChenUqVO++tWvLvM8PzZ27Nh897vfTbdu3bL++utn8803z/vvv58nnngi//u//5uRI0fmX//6V7p27Zrko/W133775c4778ykSZOy66671ltzH889ScaNG5fddtstb731Vqqrq7PtttumsrIyo0ePznHHHZe//vWvuf/+++tdhVRbW5uhQ4fmtttuS6tWrTJ48OB07tw5//73v7PlllvmwAMPXOK5HHfccTnllFNSKpWy9dZbp3fv3nn++eczcuTI/PWvf80f//jHJb7++uuvz4UXXph+/fplp512yrRp09K6detPff/++c9/5mtf+1ref//99OnTJzvvvHPmzZuX0aNH54gjjsitt96a2267LZWVlXXnt6w/6wCw3JQBgGZnzTXXLCcpX3755Z86dqeddionKX/nO9+p9/ygQYPKScr33Xdf3XMPPPBAOUl50003Lc+cOXORff373/8uT506dbFzef311xd7/Pvuu6+cpJyk3L9///KECROWek6f3M/H80xS/t///d962+6///5ymzZtyknKd95556ee3386/vjjy0nKxx9/fL3nL7/88nKS8n777bfY15XL5fJ+++232Pf/D3/4QzlJedVVVy0/9dRTdc/X1tbWHa9Tp07lyZMnL/bcKysry7feeuti57PKKquU58yZs8Q5fdLPf/7zcpLy2muvXe89nT9/fvmggw4qJyn37du3PG/evGU6t0+zzz77lJOUd9hhh8/0uo+99dZb5Xvuuae8cOHCes/Pnj27vO+++5aTlA899NBFXvdpf85z5swpr7322uUk5WOPPbbe+c6ePbv8rW99q5ykfMABB9R73e9+97tyknJ1dXX5hRdeqHt+wYIF5aOOOqpuTX5ynYwaNaqcpFxVVVX++9//Xm/bJZdcUvfn/Oyzzy72PJKUzz///MWey5LW5oQJE8pdu3Ytl0ql8gUXXFDvPZw6dWp5hx12KCcpn3jiiXXPf56fdQBoaD6+BwAruFVXXTVJlumqpEmTJiVJtttuu3To0GGR7VtssUXdlSqfx3nnnbfM3+L2SZtuummOOeaYes8NGjQohx56aJI0yJVS/63f/va3SZJf//rX2WSTTeqeL5VKOf7449O/f/9Mnz49F1988WJff8QRR2TIkCH1ntt///3Tr1+/zJgxY4kf/fqkDz/8MOeff36S5Oyzz673McnKysr8/ve/z2qrrZbXX389N9xww2c4wyWbMmVKkqR79+6f6/W9evXKjjvumBYt6v/1tG3btvnDH/6QioqKXH/99Z95v1deeWVeffXVDBkyJCeffHJatWpVb99//OMf071791x99dV5//3367b97ne/S/LRxxr/82OGLVu2zOmnn77EG/J/vAYOPfTQ7LzzzvW2HXTQQRkyZEhqamrq9v9JO+ywQ92aXlbnnHNO3nvvvRx22GH5wQ9+UO897Nq1a6666qpUVlbmvPPOS7lcTrL8f9YBYFmIUgCwgqutrU3yURj5NJtttllatmyZyy67LOeff36Dfjta9+7dF/kmts9i3333Xezz++23X5LkoYceysKFCz/3/v9bb7/9dl599dV6c/pPpVKp7n5V991332L38ZWvfGWxz2+wwQZJssh9oJbk8ccfz6xZs9KlS5fF7rNt27b55je/udS5NJZHHnkkp512Wg477LAccMAB2X///XPooYemVatWmTJlSr1wtCxuv/32JMk3vvGNxW5v3759tthiiyxYsCD//ve/k3z0Z/naa68lSfbee+9FXtOqVasMHz58kecXLFiQhx9+OEmWeN+ngw46KMmS3/fF7ffTfNo5rr766ll33XXrPpqXLN+fdQBYVqIUAKzgpk6dmiTLdG+YtddeO2effXZqampy+OGHp2fPnunTp0++9a1v5U9/+lPmz5//uefxn1frfB59+/Zd6vNz5879TPeoamgfB6OuXbumY8eOix3z8TcMLikuLekbET/e34cffviZ5rKk92xZ5vJZdevWLUkyefLkz/X6yZMnZ7vttss222yTX/ziF7ngggtyxRVX5Morr8yVV15ZdzPymTNnfqb9fhyX9tlnn3o3Qv/PX3fccUeS/7va6+23307y0VWG/3mftP+0uPX83nvv1f0ZLem9/7T3/fP8nHx8jtttt90Sz3HcuHFJ/u8cl+fPOgAsKzc6B4AVWLlczlNPPZUk2WijjZbpNUcccURGjBiRW265JQ899FAeeuih/OUvf8lf/vKXHH/88XnwwQdTXV39mefSpk2bz/yaz+rjjyYti4+vIGtKPvnRteZk8803z9VXX50nn3wyCxcuTMuWLT/T6w8++OA89NBD+Z//+Z+ceOKJ2XjjjdO5c+e6G3P37NkzEyZM+Ex/xsn//TnvtttuWW211ZY6ds0116z3eGlXFy7LlYefx+f5Ofn4HIcPH5527dotdex/fiRvef2sA8CyEqUAYAV2xx131H3caZdddlnm16222mo55JBDcsghhyRJXnjhhRx44IF59NFH84tf/CJXXnnlcpnv0rz++uuLfX78+PFJkqqqqnr/4P743kEffPDBYl/3xhtvNOj8Pr7H0HvvvZeZM2cu9mqpj69oWdL9iBp6Lkt6z5bHXIYMGZIf/ehHmT59em655ZYMHTp0mV87e/bs3HHHHWnRokXuuOOOdOrUaZHtEydO/FzzWmONNfLCCy/koIMOWuaPxn38nkyZMiWzZ89ebOj5eN39p65du6Z169aZN29eXnvttfTv33+RMctjDayxxhp5+eWX8/Of/zxbbLHFZ3ptU/xZB2Dl0Xz/cxwAsFQzZszID3/4wyTJzjvvXO/G259Vv3798vOf/zxJMmbMmHrbPo4/CxYs+Nz7XxbXXHPNYp+/6qqrkiTbbrttKir+77+3ffyP/ueff36R18yZM2eJ9/T5vOfTq1evuo9mXXHFFYtsL5fLdc9vv/32n2nfn9UWW2yR9u3bZ9q0abnlllsW2T537tz85S9/adC5rL322vnWt76VJPnxj3+cadOmLXX85MmT8+KLLyb5aK0uXLgwHTt2XCRIJR/92S/pCqlP+/P68pe/nCQZOXLkMp1H8lHk+fhjdH/+858X2T5//vz89a9/XeT5ioqKbLvttkkWvwaS5LLLLkvSsGvg85zjkiztZx0AGpooBQArmHK5nFGjRmWrrbbKyy+/nOrq6iV+29sn/eMf/8gdd9yRmpqaRfZ52223JVn0I069evVKkjz33HMNMPsle+KJJ3L66afXe+6hhx6q+5a5jwPcx3baaackyfnnn1/v/j2zZ8/Od7/73bz11luLPc7H5/PxPXg+i5/85CdJkpNPPjljx46te75cLueUU07JmDFj0qlTp7qrUpaXqqqqHHbYYUk+CkT/eVVYTU1NjjrqqEycODF9+/b9XDfWXpJzzz0366yzTl5//fVsu+22eeihhxYZM3/+/Fx22WXZdNNN64Lhaqutls6dO2f69Om5+uqr643/17/+tci3Lv6nT1t/3/3ud7Pmmmvm+uuvz89//vPFXjk3ceLERX5GjjzyyCTJ8ccfn5deeqnu+dra2hxzzDFLXD8//vGPkyR/+MMfcu+999bbdsUVV+SWW25JZWVljjrqqCWe02f105/+NJ06dcpZZ52VM888c7H3g3r99dfrhd3P87MOAA3Nx/cAoBm75JJLcv/99ydJ5s2bl6lTp+bJJ5+su0pl8ODBueyyy5b5H5dPP/10fvjDH6Zjx47ZbLPN0rNnz8ydOzdPPvlk3njjjayyyio56aST6r1m2LBhue+++/Kd73wnu+yySzp37pzko38or7/++g12rkceeWSOOeaYXHXVVenfv3/efffdPPjgg6mtrc1RRx2V3Xffvd74ESNG5Jxzzsnjjz+eL3zhC9l2221TW1ubxx9/PK1atcqBBx5Yd9XKfxo4cGB69uyZp556Kptttlk22mijVFZWZv31189Pf/rTpc7xe9/7Xh555JFcffXV2WKLLTJo0KB07949Tz75ZF588cW0adMm1157bd1NwZenE088MY8//njuvffebLDBBtl+++3ToUOHPProo3nzzTfTtWvXXH/99XVXGjWEzp075+GHH843vvGN3H///dluu+3St2/f9O/fP23bts2kSZMyevTozJo1Kx07dkzPnj2TJC1btsyvf/3r/PCHP8y+++6b888/P2uttVbefPPNPPLII/nOd76Tf/7zn4v9yOWwYcNy+eWX52c/+1nuueeedO/ePaVSKQceeGC23nrrtGvXLrfffnuGDBmS008/PX/84x/Tv3//9OrVK3PmzMlLL72U559/Pt27d68XC4888sjcfffdGTVqVPr375/tt98+nTp1yr///e+8++67OfTQQ3PBBRcs8v59+ctfzrHHHptTTjklO++8c7bZZpv07t07L7zwQp588sm0bNkyF154Yb7whS802Pveq1ev3HzzzRk2bFh+8pOf5PTTT88Xv/jFVFdXZ8aMGXn++efz6quvZsCAAfnOd76T5PP9rANAgysDAM3OmmuuWU5S71e7du3KPXv2LA8aNKj84x//uDx69Oil7mPQoEHlJOX77ruv7rlXXnmlfMIJJ5R33HHHcu/evctVVVXlzp07l/v371/+xS9+UX7rrbcW2c/ChQvLv/nNb8pf+MIXylVVVXXz+Xi/9913XzlJedCgQct0Tq+//voS53nvvfeWd9xxx/Iqq6xSbtOmTXmLLbYoX3HFFUvc5/vvv18+/PDDy7169SpXVlaWV1999fJ3v/vd8qRJk8rHH398OUn5+OOPX+R1zzzzTPmrX/1quVu3buUWLVosMv/99tuvnKR8+eWXL/a41157bXnw4MHlTp06lSsrK8trrLFGef/99y+/8MILn+ncl/V4S1JTU1O+4IILygMHDix36NCh3KpVq/Laa69dPuKII8pvv/12gx7rk0aNGlXed999y+uss065ffv25crKynKPHj3KO++8c/mcc84pv/fee4u85qabbipvvfXW5U6dOpXbt29f3mKLLcoXXHBBuba2dqnv0cUXX1zebLPNym3btq1bf5+c/8yZM8unn356+X/+53/q/lyqq6vLW265ZfmnP/1p+ZFHHllkv/Pnzy+ffvrp5Q033LDcunXr8qqrrloeOnRo+ZlnnimfdNJJ5STlY445Zonnv/vuu5e7du1arqioKPfo0aO81157lR977LHFjl/cz+MnXX755eUk5f3222+x2ydNmlQ+7rjjyptttlndn3evXr3KW2+9dfn4448vP/3003VjP8/POgA0tFK5/Bm/wgQAAFZyO+ywQ+6777789a9/zde//vXGng4ANEvuKQUAAIsxZsyYRe7PNH/+/Jxwwgm577770r1790U+NgoALDv3lAIAgMU4+uijM2bMmGy88caprq7O+++/n2eeeSYTJkxIVVVVrrzyylRVVTX2NAGg2fLxPQAAWIw//elP+dOf/pSnn3467733Xsrlcnr27Jntt98+P/7xj7Phhhs29hQBoFkTpQAAAAAonHtKAQAAAFA4UQoAAACAwolSAAAAABTOt+81ovfffz8LFixo7GlAunXrlilTpjT2NKCONUlTYj3SlFiPNDXWJE2J9dh0VFRUpHPnzp8+roC5sAQLFixITU1NY0+DlVypVEry0Xr0vQc0BdYkTYn1SFNiPdLUWJM0JdZj8+TjewAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAAClcq+67ERjPuV0dk7vhXG3saAAAAQCOrPuOSxp5Cg6msrEy3bt0+dZwrpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwFY09geVlxIgRS90+fPjwTx0DAAAAwPKxwkapP/7xj3W/f+SRR3Ldddfld7/7Xd1zVVVVjTEtAAAAALICR6lOnTrV/b5t27YplUp1z9XW1uZvf/tb7rnnnsycOTOrr756vv3tb2eTTTZJkkyePDmHH354jjrqqIwaNSqvv/56evTokYMOOigbbrhhkmTWrFm57LLLMnbs2Hz44Yfp2rVrhg4dmu23336RudTU1KSmpqbucalUSps2bZbbuQMAAAA0dStslFqaO+64I7feemu++93vpm/fvvnHP/6R0047LWeddVaqq6vrxl1zzTXZb7/90qtXr9x222057bTTct5556VDhw657rrr8vbbb+eXv/xlOnTokIkTJ2b+/PmLPd6NN96YG264oe5x3759c9pppy338wQAAABoqlbKKHXrrbdmzz33zDbbbJMk+c53vpPnnnsut99+ew4++OC6cbvuumsGDhyYJDnkkEMyduzY/OMf/8iee+6ZqVOnpk+fPll77bWTJN27d1/i8YYOHZohQ4bUPS6VSsvjtAAAAACajZUuSs2ZMyfvv/9++vXrV+/59ddfP2+88Ua959Zbb72637ds2TJrrbVW3nnnnSTJLrvskjPPPDOvv/56Nt5442y55ZZZf/31F3vMysrKVFZWNvCZAAAAADRfLRp7As3VpptumgsuuCB77LFHpk2blpNOOilXXXVVY08LAAAAoFlY6aJU27Zt07lz57zwwgv1nn/xxRfTq1eves+9/PLLdb9fuHBhXnvttay++up1z3Xs2DGDBw/OkUcemf333z/33nvv8p08AAAAwApipfv4XpJ89atfzciRI9OjR4/06dMn9913X8aPH58jjzyy3ri77ror1dXVWX311XP77bdn9uzZdd+ud91112WttdbKGmuskZqamjzxxBP1ghUAAAAAS7ZSRqkvf/nLmTNnTq666qrMmDEjvXr1ys9//vN637yXJHvvvXduuummjB8/Pj169MjPfvazdOzYMUlSUVGRa6+9NlOmTEmrVq3Sr1+/HH300Y1wNgAAAADNT6lcLpcbexJNzeTJk3P44Yfn9NNPT58+fZbbccb96ojMHf/qcts/AAAA0DxUn3FJY0+hwVRWVqZbt26fOm6lu6cUAAAAAI1PlAIAAACgcCvlPaU+Tffu3TNy5MjGngYAAADACsuVUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUrlQul8uNPYmV1ZQpU1JTU9PY02AlVyqVUl1dnQkTJsT/HNAUWJM0JdYjTYn1SFNjTdKUWI9NS2VlZbp16/ap41wpBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAAChcRWNPYGU25ZyTMnf8q409Dci7jT0B+ARrsnjVZ1zS2FMAAGAl40opAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFW2mj1GGHHZbbb799idsnT56cESNGZPz48cVNCgAAAGAlUdHYE/g0I0aMWOr24cOHLzJm3rx5+etf/5pHH30006ZNS1VVVXr16pUhQ4Zkyy23XKbjrrrqqvnjH/+YDh06LHXcyJEj8+9//ztnnHHGMu0XAAAAgGYQpf74xz/W/f6RRx7Jddddl9/97nd1z1VVVS3ymosvvjgvv/xyDjjggPTq1SuzZs3Kiy++mA8++GCZj9uiRYt06tRpidvL5XJqa2uXeX8AAAAA/J8mH6X+Mwy1bds2pVJpqbEoSR5//PHsv//+2WyzzZIk3bt3z1prrbXIuHnz5uWCCy7Iv/71r7Rr1y7Dhg3LTjvtlOSjj+8dfvjhOf3009OnT58899xzOfHEE3PMMcfkL3/5S958881873vfyw033JDk/67oOvTQQzN48OD//sQBAAAAVmBNPkp9Hp06dcpTTz2VAQMGpE2bNkscd9ttt+Ub3/hGvv71r+df//pXLr744my44Ybp2bPnEl9z7bXXZp999kn37t3TqlWrDBkyJGPHjs1xxx2X5KNw9kk1NTWpqampe1wqlZY6LwAAAIAV3QoZpb773e/m3HPPzYEHHpg+ffpk/fXXz8CBA9OvX7964zbddNPsuuuuSZI999wzt99+e5599tmlRqkRI0akf//+dY+rqqo+9aN+N954Y90VVUnSt2/fnHbaaZ/z7AAAAACav2YdpaZOnZof/vCHdY+HDh2ar3/969lwww1z7rnn5uWXX86LL76YZ599Nscff3z22muvDB8+vG78mmuuWff7jz8WOHPmzKUec+211/7M8xw6dGiGDBlS71gAAAAAK7NmHaU6d+5c71vv2rdvX/f7ioqKbLDBBtlggw3yta99LX/9619zww035Gtf+1oqKj467ZYtWy6yz0+7eXnr1q0/8zwrKytTWVn5mV8HAAAAsKJq1lGqZcuW6dGjxzKN7dWrV2prazN//vy6KNUQKioqfAsfAAAAwGfUrKPUkpxwwgnZZpttsvbaa6d9+/Z5++238+c//zlf+MIXFnsj8v9G9+7dM3ny5IwfPz5dunRJmzZtXBUFAAAA8ClWyCi18cYb54EHHsif//znzJs3L126dMlmm21W735SDWXAgAF57LHHcuKJJ2b27Nk59NBDM3jw4AY/DgAAAMCKpFQul8uNPYmV1bhfHZG5419t7GkAQKrPuKSxp9AklUqlVFdXZ8KECfFXJhqb9UhTY03SlFiPTUtlZWW6dev2qeNaFDAXAAAAAKhHlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAoXEVjT2Bl1u3oX6empqaxp8FKrlQqpbq6OhMmTEi5XG7s6YA1CQAAKwlXSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAULiKxp7AymzKOSdl7vhXG3sakHcbewKs8KrPuKSxpwAAADQxrpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFC4isaewH/r/PPPzwMPPJAkadmyZVZdddUMGjQoQ4cOTcuWLRtk/7Nnz87Pfvaz/3pfAAAAAHyk2UepJNlkk01y6KGHpqamJk899VQuvfTStGzZMkOHDm3sqQEAAACwGCtElKqoqEinTp2SJLvssktGjx6dxx9/PJWVlbnvvvsyefLktG/fPptvvnm+853vpKqqKkly//3354orrsjRRx+dK6+8MlOnTk2/fv1y6KGHpnPnzhk5cmTdVVgjRoxIkhx//PFZf/31c+WVV+axxx7L7Nmzs8oqq2TnnXcWwQAAAACW0QoRpT6pVatW+eCDD1IqlXLAAQeke/fumTx5ci655JJcc801Ofjgg+vGzps3L7feemsOP/zwlEqlnHvuubn66qtz5JFH5qtf/WreeeedzJ07N4ceemiSpH379rnjjjvy+OOP54c//GFWXXXVvPfee5k6deoS51NTU5Oampq6x6VSKW3atFl+bwAAAABAE7dCRalyuZxnnnkmY8eOzW677ZY99tijblv37t3zzW9+MxdffHG9KLVw4cIccsgh6dGjR5Jkt912yw033JAkqaqqSqtWrVJTU1N3JVaSTJ06NdXV1enXr19KpVK6deu21HndeOONdftMkr59++a0005riFMGAAAAaJZWiCj15JNPZp999snChQtTLpezzTbbZK+99srTTz+dm266qe5qp4ULF6ampibz5s1L69atkyStW7euC1JJ0rlz58ycOXOpxxs8eHBOOeWUHH300dl4442z+eabZ+ONN17i+KFDh2bIkCF1j0ul0n95xgAAAADN2woRpb7whS/kkEMOSUVFRTp37pyWLVtm8uTJOe2007Lzzjvnm9/8Ztq3b58XXnghF154YRYsWFAXpRb3DX3lcnmpx1trrbVy3nnnZcyYMXn66adz9tlnZ6ONNsqPf/zjxY6vrKxMZWXlf3+iAAAAACuIFSJKffJqpyR57bXXUltbm3333TctWrRIkjz66KOfed8VFRWpra1d5Pm2bdtm6623ztZbb52BAwfmf//3fzNr1qy0b9/+850EAAAAwEpkhYhSi9OjR48sXLgwd955ZzbffPO8+OKLufvuuz/zfrp165axY8fm3XffTfv27dO2bdvceeed6dSpU/r27ZtSqZR//etf6dSpU9q2bbsczgQAAABgxbPCRqk+ffpk3333zc0335xrr702G2ywQfbee++cd955n2k/O+20U8aNG5df/OIX+fDDD3P88cenqqoqt9xySyZMmJAWLVpknXXWyTHHHFN3RRYAAAAAS1cqf9oNlFhuxv3qiMwd/2pjTwNguas+45JlHlsqlVJdXZ0JEyZ86j3+YHmzHmlKrEeaGmuSpsR6bFoqKyvTrVu3Tx3n0h4AAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABSuorEnsDLrdvSvU1NT09jTYCVXKpVSXV2dCRMmpFwuN/Z0AAAAWEm4UgoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMJVNPYEVmZTzjkpc8e/2tjToBmpPuOSxp4CAAAANAhXSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKNwKGaVGjBiR0aNHN/Y0AAAAAFiCisaewOcxc+bMXHfddXnyySczY8aMtGvXLn369MmwYcPSr1+/xp4eAAAAAJ+iWUapM888MwsWLMhhhx2W1VZbLTNmzMgzzzyTWbNmNfbUAAAAAFgGzS5KzZ49O88//3xOOOGEbLjhhkmSbt26ZZ111qk37oMPPsgZZ5yRsWPHpkuXLtl3332zxRZb1G0fN25crr766rzxxhtp3759Bg0alG9+85tp2bJlkqS2tjY333xz7rnnnkyfPj09e/bMsGHDMnDgwCTJrFmzctlll2Xs2LH58MMP07Vr1wwdOjTbb7/9InOuqalJTU1N3eNSqZQ2bdo0+HsDAAAA0Fw0uyhVVVWVqqqqjB49Ouuuu24qKysXO+6GG27It7/97eyzzz4ZNWpUfv/73+eCCy5I+/btM23atPzmN7/JoEGDcvjhh+edd97JRRddlMrKyowYMSJJctNNN+XBBx/MIYcckurq6jz//PM599xz07Fjx2y44Ya57rrr8vbbb+eXv/xlOnTokIkTJ2b+/PmLncuNN96YG264oe5x3759c9pppzX8mwMAAADQTDS7KNWyZcsceuihueiii3L33XdnrbXWygYbbJBtttkma665Zt24QYMGZdttt02SfOtb38qoUaPyyiuvZJNNNsldd92Vrl275qCDDkqpVMrqq6+e999/P3/6058yfPjwLFy4MDfeeGOOO+64rLfeekmS1VZbLS+88ELuvvvubLjhhpk6dWr69OmTtddeO0nSvXv3Jc556NChGTJkSN3jUqm0PN4aAAAAgGaj2UWpJBk4cGA222yzvPDCC3nppZcyZsyY3HLLLfn+97+fwYMHJ0m9QFVVVZU2bdpkxowZSZJ33nkn6623Xr04tP766+fDDz/MtGnTMnfu3MybNy8nn3xyveMuWLAgffv2TZLssssuOfPMM/P6669n4403zpZbbpn1119/sfOtrKxc4hVdAAAAACujZhmlkqRVq1bp379/+vfvn+HDh+fCCy/MyJEj66LUx/eG+lipVEq5XF6mfX/44YdJkmOOOSZdunSpt62i4qO3bNNNN80FF1yQJ598Mk8//XROOumk7Lrrrtl3333/yzMDAAAAWPG1aOwJNJRevXpl3rx5yzR29dVXz0svvVQvUr344otp06ZNunTpkl69eqWysjJTp05Njx496v1addVV617TsWPHDB48OEceeWT233//3HvvvQ1+XgAAAAAromZ3pdQHH3yQs846K9tvv33WXHPNtGnTJq+++mpuvvnmet+utzS77rpr7rjjjlx22WXZbbfd8u6772bkyJHZY4890qJFi7Rp0yZf+cpXcuWVV6a2tjb9+vXLnDlz6sLV4MGDc91112WttdbKGmuskZqamjzxxBNZffXVl/PZAwAAAKwYml2Uqqqqyrrrrpvbb789kyZNysKFC9O1a9fsuOOO+frXv75M++jSpUuOOeaYXH311fnpT3+a9u3bZ4cddsiwYcPqxnzjG99Ix44dc9NNN2XSpElp165d+vbtm6FDhyb56GN81157baZMmZJWrVqlX79+Ofroo5fHKQMAAACscErlZb3REg1u3K+OyNzxrzb2NGhGqs+4pMH3WSqVUl1dnQkTJizzfddgebImaUqsR5oS65GmxpqkKbEem5bKysp069btU8etMPeUAgAAAKD5aPAo9f777zf0LgEAAABYwTT4PaV+8IMf5Itf/GK+9KUvZauttkpVVVVDHwIAAACAZq7Br5QaMWJE3n///Zx//vk55JBD8vvf/z5jxoxJbW1tQx8KAAAAgGaqwa+U+vrXv56vf/3ref311/Pggw/mkUceycMPP5yOHTtmm222yXbbbZe11167oQ8LAAAAQDPS4FHqY3379k3fvn2zzz775Nlnn81DDz2U+++/P6NGjUrPnj2z3Xbb5Utf+lJWXXXV5TUFAAAAAJqo5f7te6VSKRtssEE23XTTrLvuukmSiRMn5vrrr8/hhx+es846y83RAQAAAFYyy+1KqSR1V0g99thjmTNnTnr37p199tkn2267bVq2bJn77rsvN954Y84777wcd9xxy3MqAAAAADQhDR6lxo8fn4ceeigPP/xwpk2blk6dOmWHHXbIoEGD0rt373pjv/rVr6ZVq1a5+uqrG3oaAAAAADRhDR6lfv7zn6dVq1bZcsst86UvfSn9+/dPixZL/pRgr169st566zX0NAAAAABowho8Sv3gBz/IwIEDU1VVtUzjv/jFL+aLX/xiQ08DAAAAgCasQW90Pm/evIwaNSr//Oc/G3K3AAAAAKxgGjRKtW7dOpMnT06pVGrI3QIAAACwgmnQKJUkm2yyScaOHdvQuwUAAABgBdLgUWrYsGGZMGFCzj333LzwwguZNm1aZs2atcgvAAAAAFZeDX6j8x//+MdJkrfffjsPPfTQEsddd911DX1oAAAAAJqJBo9Sw4YNc08pAAAAAJaqwaPUiBEjGnqXAAAAAKxgGvyeUp80f/78zJ8/f3kfBgAAAIBmpMGvlEqSqVOnZuTIkXnqqacyc+bMJEnHjh2z6aabZq+99kq3bt2Wx2EBAAAAaCYaPEq98847+fWvf53Zs2enf//+WX311ZMk7777bv75z3/miSeeyMknn5yePXs29KEBAAAAaCYaPEr96U9/SqlUyumnn57evXvX2/bmm2/m5JNPzp/+9Kf89Kc/behDAwAAANBMNPg9pZ5//vl8+ctfXiRIJUnv3r2z6667Zty4cQ19WAAAAACakQaPUgsWLEirVq2WuL1169ZZsGBBQx8WAAAAgGakwaNU3759849//CNz5sxZZNucOXPyj3/8I2uttVZDHxYAAACAZqTB7yk1YsSInHrqqTn66KMzePDguhuav/vuu3nggQfywQcf5KCDDmrowwIAAADQjDR4lPriF7+YY445Jtdcc01uvvnmetv69OmTww8/PF/84hcb+rAAAAAANCMNHqWSpH///jn99NMzffr0TJkyJUnSrVu3dOrUaXkcrtnqdvSvU1NT09jTAAAAACjccolSH+vUqZMQBQAAAMAiGjxKPfDAA0vdXiqVUllZma5du6Zv376prKxs6CkAAAAA0MQ1eJS64IILlnls27Zt87WvfS177rlnQ08DAAAAgCaswaPU6aefnvPPPz8dOnTIrrvumh49eiRJJkyYkLvuuiuzZ8/OQQcdlOnTp+fOO+/MtddemzZt2mSXXXZp6KkAAAAA0ES1aOgd3n777VlllVVy3HHHZauttkrv3r3Tu3fvDBgwIMcdd1w6duyYf/zjH9lqq61y7LHHZr311stdd93V0NMAAAAAoAlr8Cj173//O1tuueVit5VKpWyxxRZ57LHHPjp4ixYZMGBAJk6c2NDTAAAAAKAJa/AoVVtbm3fffXeJ2995552Uy+W6xxUVFWnVqlVDTwMAAACAJqzBo9QWW2yRu+66K3feeWfmz59f9/z8+fMzatSo3H333dl8883rnn/ppZfq7jsFAAAAwMqhwW90fsABB2TSpEm5/PLLc/XVV6dTp05JkunTp2fBggVZZ511csABByT5KFS1atUqe+yxR0NPAwAAAIAmrMGjVPv27XPyySdn9OjRGTNmTKZOnZok2XjjjbPxxhtnyy23TIsWH12g1apVq3z/+99v6CkAAAAA0MQ1eJRKPrqh+YABAzJgwIDlsXsAAAAAmrnlEqWSZNq0aRk3blxmzpyZAQMGpGvXrqmtrc2cOXPStm3buqulAAAAAFj5NHiUKpfLueqqq3LnnXemtrY2SdK7d+907do1H374YQ477LCMGDHCfaQAAAAAVmINfrnSLbfckjvuuCNf+cpXcuyxx9bb1rZt22y11VZ57LHHGvqwAAAAADQjDR6l7r333gwaNCh77713+vTps8j2NddcMxMmTGjowwIAAADQjDR4lHrvvfey3nrrLXF769atM2fOnIY+LAAAAADNSINHqY4dO+a9995b4vbXXnstq666akMfFgAAAIBmpMGj1IABA3L33Xdn0qRJi2wbO3Zs7r///vzP//xPQx8WAAAAgGakwb99b8SIEXnuuefys5/9LP369UuS3Hzzzbnuuuvy0ksvpW/fvhk6dGhDHxYAAACAZqTBr5Rq27ZtTj311Hz1q1/NtGnT0qpVq4wbNy5z5szJXnvtlZNOOimtW7du6MMCAAAA0Iw0+JVSSdKqVasMGzYsw4YNWx67BwAAAKCZa/ArpU488cQ888wzS9z+7LPP5sQTT2zowwIAAADQjDR4lBo3blxmzJixxO0zZ87MuHHjGvqwAAAAADQjDR6lPs3EiRPTpk2bog8LAAAAQBPSIPeUuv/++/PAAw/UPf7b3/6We++9d5Fxc+bMyRtvvJFNN920IQ4LAAAAQDPVIFFq/vz5mTlzZt3juXPnplQq1RtTKpXSunXr7Lzzzhk+fHhDHBYAAACAZqpBotQuu+ySXXbZJUly2GGH5YADDsgWW2zRELsGAAAAYAXUIFHqP51//vkNvUsAAAAAVjANHqX+09y5czNnzpyUy+VFtq266qrL89AAAAAANGHLJUr9/e9/z2233ZZJkyYtccx11123PA4NAAAAQDPQoqF3+Pe//z2XXnppevTokW9+85tJkj322CNf+9rX0qlTp/Tp0yc/+MEPGvqwAAAAADQjDR6l7rzzzmy88cb55S9/mZ122ilJstlmm+Vb3/pWzj777MydOzcffPBBQx8WAAAAgGakwaPUpEmTsvnmmydJWrZsmSRZsGBBkqRt27bZYYcd8ve//72hDwsAAABAM9LgUapt27ZZuHBh3e9btWqVqVOn1m1v06ZNpk+f3tCHBQAAAKAZafAotcYaa+SNN96oe7zeeuvl7rvvzrRp0zJ16tTcc889qa6ubujDAgAAANCMNHiU2m677fLWW2+lpqYmSbLXXnvl7bffzg9+8IMcdthheffdd+tugA4AAADAyqmioXe4/fbbZ/vtt6973K9fv5x11ll54okn0qJFi/Tv3z89e/Zs6MMCAAAA0Iw0yJVS8+fPzx//+MeMGjVqsdtXW2217L777qmtrc0dd9xRd+NzAAAAAFZODRKl7rnnnjzwwAPZbLPNljpu8803z3333Zd//OMfDXFYAAAAAJqpBolSjz76aAYMGJDVVlttqeNWW221DBgwIA8//HBDHBYAAACAZqpBotSbb76Zfv36LdPYfv361ft2PgAAAABWPg0SpRYsWJCKimW7Z3pFRUXdN/MBAAAAsHJqkCjVpUuXvPnmm8s09s0330yXLl0a4rAAAAAANFMNEqU22mij/POf/8yMGTOWOm7GjBn55z//mY022qghDgsAAABAM9UgUWrPPfdMTU1NTjrppLz88suLHfPyyy/npJNOSk1NTb761a82xGEBAAAAaKaW7UZQn2K11VbLD3/4w/zud7/Lsccem9VWWy29e/dOVVVVPvzww7z11luZOHFiWrdunaOOOio9evRoiMMCAAAA0Ew1SJRKks022yxnnHFGbr755jz55JP597//Xbetc+fO2XHHHbPnnntmtdVWa6hDAgAAANBMNViUSpLu3bvnkEMOSZLMnTs3c+fOTZs2bdKmTZuGPAwAAAAAzVyD3FNqcdq0aZMuXbo02SB1//33Z//992/saQAAAACslBr0SqnGMHXq1IwcOTJjx47NzJkz07lz52y55ZYZPnx4OnTokCQ57LDDsvvuu2ePPfZo5NkCAAAAkDTzKDVp0qQce+yxqa6uzlFHHZXu3bvnrbfeyjXXXJMxY8bk1FNPTfv27Qud04IFC1JR0azfVgAAAIDlrlnXk0svvTQVFRU59thj06pVqyTJqquumr59++aII47In//857zzzjuZMmVKrrzyylx55ZVJkpEjR9btY8yYMbnyyiszderU9OvXL4ceemg6d+5ct/3ee+/NbbfdlsmTJ6dbt2758pe/nF133TVJMnny5Bx++OE5+uijc9ddd+WVV17JIYccksGDB9ebZ01NTWpqauoel0qlJvuxRgAAAIAiNNsoNWvWrIwdOzbf/OY364LUxzp16pRtt902jzzySH7/+9/nZz/7WXbcccfstNNO9cbNmzcvt956aw4//PCUSqWce+65ufrqq3PkkUcmSR588MGMHDkyBx54YPr27ZvXX389F110UVq3bl0vPP3pT3/Kvvvum759+6aysnKRud5444254YYb6h737ds3p512WgO+GwAAAADNS7ONUhMmTEi5XM7qq6++2O2rr756Zs+endra2rRo0SJt2rRJp06d6o1ZuHBhDjnkkPTo0SNJsttuu9WLRyNHjsw+++yTAQMGJPno2wXffvvt3HPPPfWi1B577FE3ZnGGDh2aIUOG1D0ulUqf9XQBAAAAVijNNko1hNatW9cFqSTp3LlzZs6cmST58MMPM2nSpFx44YW56KKL6sbU1tambdu29faz1lprLfU4lZWVi72CCgAAAGBl1WyjVI8ePVIqlfL2229nq622WmT7O++8k3bt2qVjx45L3EfLli0Xea5cLif5KEolyfe+972su+669ca0aNGi3uOqqqrPPH8AAACAlVmLTx/SNHXo0CH9+/fP3//+98yfP7/etunTp+ehhx7K1ltvnVKplIqKitTW1n6m/Xfq1CmdO3fOpEmT0qNHj3q/unfv3pCnAgAAALDSabZRKkkOPPDA1NTU5NRTT824ceMyderUjBkzJieffHK6dOmSb33rW0mSbt265fnnn8+0adPqPp63LEaMGJGbbropd9xxR9599928+eabue+++3Lbbbctr1MCAAAAWCk024/vJUl1dXX+3//7fxk5cmTOPvvszJo1K506dcqWW26ZvfbaK+3bt0/yUVy6+OKLc8QRR6SmpiYjR45cpv3vuOOOad26dW655ZZcc801ad26dXr37p099thjeZ4WAAAAwAqvVP74JkoUbsqUKampqWnsabCSK5VKqa6urvtGS2hs1iRNifVIU2I90tRYkzQl1mPTUllZmW7dun3quGb98T0AAAAAmidRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIWraOwJrMymnHNS5o5/tbGnQRNQfcYljT0FAAAAKJQrpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwK0SUOv/883P66ac39jQAAAAAWEYrRJQCAAAAoHmpaOwJNLTa2trcfPPNueeeezJ9+vT07Nkzw4YNy8CBA+u2X3TRRXn22Wczffr0rLrqqtl1112z++671+3j/PPPz+zZs9OvX7/cdtttWbBgQbbeeuvsv//+qaj46C276667cvvtt+e9995L27Zt069fv/z4xz9ulHMGAAAAaG5WuCh100035cEHH8whhxyS6urqPP/88zn33HPTsWPHbLjhhqmtrU3Xrl3zox/9KB06dMiLL76YP/7xj+nUqVO23nrruv0899xz6dy5c44//vhMnDgx55xzTvr06ZOddtopr776ai6//PIcfvjhWX/99TNr1qw8//zzS5xTTU1Nampq6h6XSqW0adNmub4PAAAAAE3ZChWlampqcuONN+a4447LeuutlyRZbbXV8sILL+Tuu+/OhhtumIqKiowYMaLuNd27d89LL72URx99tF6Uat++fQ466KC0aNEiq6++ejbddNM8++yz2WmnnTJ16tS0bt06m2++edq0aZNu3bqlb9++S5zXjTfemBtuuKHucd++fXPaaacth3cAAAAAoHlYoaLUxIkTM2/evJx88sn1nl+wYEG9aHTnnXfmvvvuy9SpUzN//vwsWLAgffr0qfeaXr16pUWL/7vlVufOnfPmm28mSfr3759u3brl8MMPzyabbJJNNtkkW221VVq3br3YeQ0dOjRDhgype1wqlf7bUwUAAABo1laoKPXhhx8mSY455ph06dKl3raP7wX18MMP5+qrr86+++6b9dZbL23atMktt9ySl19+ud74li1b1ntcKpVSLpeTJG3atMlpp52W5557Lk8//XRGjhyZ66+/Pr/5zW/Srl27ReZVWVmZysrKBjtPAAAAgOZuhYpSvXr1SmVlZaZOnZoNN9xwsWNefPHFrL/++tl1113rnps0adJnPlbLli3Tv3//9O/fP8OHD88BBxyQZ599NgMGDPjc8wcAAABYWaxQUapNmzb5yle+kiuvvDK1tbXp169f5syZkxdffDFt2rTJ4MGD06NHjzzwwAMZM2ZMunfvnn/+85955ZVX0r1792U+zhNPPJFJkyZlww03TLt27fLUU0+ltrY2PXv2XI5nBwAAALDiWCGiVLlcrvu43Te+8Y107NgxN910UyZNmpR27dqlb9++GTp0aJJk5513zvjx43POOeekVCplm222ya677pqnnnpqmY/Xrl27jB49Otdff31qampSXV2do446KmusscZyOT8AAACAFU2p/PGNkpqxU089NT169MhBBx3U2FP5TMb96ojMHf9qY0+DJqD6jEsa7dilUinV1dWZMGFCVoD/OWAFYE3SlFiPNCXWI02NNUlTYj02LZWVlenWrdunjmvxqSOasFmzZuWJJ57IuHHjstFGGzX2dAAAAABYRs3643t/+MMf8uqrr2bIkCHZcsstG3s6AAAAACyjZh2lfvrTnzb2FAAAAAD4HJr1x/cAAAAAaJ5EKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOEqGnsCK7NuR/86NTU1jT0NAAAAgMK5UgoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMJVNPYEVmZTzjkpc8e/2tjTYCmqz7iksacAAAAAKyRXSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFW2Gi1IgRIzJ69OjGngYAAAAAy6CisSewrGbOnJnrrrsuTz75ZGbMmJF27dqlT58+GTZsWPr167dcjz1ixIj85Cc/yVZbbbVcjwMAAACwsmg2UerMM8/MggULcthhh2W11VbLjBkz8swzz2TWrFnL7ZgLFixIRUWzeYsAAAAAmo1mUVxmz56d559/PieccEI23HDDJEm3bt2yzjrr1Bv3wQcf5IwzzsjYsWPTpUuX7Lvvvtliiy3qto8bNy5XX3113njjjbRv3z6DBg3KN7/5zbRs2TJJcsIJJ2SNNdZIy5Yt8+CDD6Z3796ZPHlykuS3v/1t3XHPP//8jB8/PldeeWVeffXVlEql9OjRI9/97nez9tprF/GWAAAAADRrzSJKVVVVpaqqKqNHj866666bysrKxY674YYb8u1vfzv77LNPRo0ald///ve54IIL0r59+0ybNi2/+c1vMmjQoBx++OF55513ctFFF6WysjIjRoyo28cDDzyQXXbZJSeffHKSpH379jn44INz6KGHZpNNNkmLFh/dhuvcc89Nnz59cvDBB6dFixYZP358Xdz6pJqamtTU1NQ9LpVKadOmTUO9PQAAAADNTrOIUi1btsyhhx6aiy66KHfffXfWWmutbLDBBtlmm22y5ppr1o0bNGhQtt122yTJt771rYwaNSqvvPJKNtlkk9x1113p2rVrDjrooJRKpay++up5//3386c//SnDhw+vi03V1dX5zne+s8gc2rZtm06dOtU9njp1ar7yla9k9dVXr3vdktx444254YYb6h737ds3p5122n/1ngAAAAA0Z80iSiXJwIEDs9lmm+WFF17ISy+9lDFjxuSWW27J97///QwePDhJ6gWqqqqqtGnTJjNmzEiSvPPOO1lvvfVSKpXqxqy//vr58MMPM23atKy66qpJPgpGy2KPPfbIRRddlAcffDAbbbRRBg4cmB49eix27NChQzNkyJC6x/85BwAAAICVUYvGnsBn0apVq/Tv3z/Dhw/PKaecksGDB2fkyJF12z/58blSqZRyufyZjlFVVbVM40aMGJEzzzwzm266aZ599tn86Ec/yujRoxc7trKyMm3btq375aN7AAAAwMquWUWpT+rVq1fmzZu3TGNXX331vPTSS/Ui1Ysvvpg2bdqkS5cuS31ty5YtU1tbu8jzPXv2zJAhQ3Lsscdmq622yn333ffZTgAAAABgJdUsotQHH3yQE088Mf/85z/zxhtvZPLkyXn00Udz88031/t2vaXZdddd89577+Wyyy7LO++8k3//+98ZOXJk9thjj7r7SS1J9+7d8+yzz2b69OmZNWtW5s+fn0svvTTPPfdcpkyZkhdeeCGvvvpq3f2lAAAAAFi6ZnFPqaqqqqy77rq5/fbbM2nSpCxcuDBdu3bNjjvumK9//evLtI8uXbrkmGOOydVXX52f/vSnad++fXbYYYcMGzbsU1+7zz775Kqrrsq9996bLl265He/+10++OCDnHfeeZkxY0Y6dOiQAQMG1PsWPwAAAACWrFT+rDddosGM+9URmTv+1caeBktRfcYljT2F5a5UKqW6ujoTJkz4zPdgg+XBmqQpsR5pSqxHmhprkqbEemxaKisr061bt08d1yw+vgcAAADAikWUAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAAChcRWNPYGXW7ehfp6amprGnAQAAAFA4V0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFC4isaewMpsyjknZe74Vxt7Giut6jMuaewpAAAAwErLlVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAq3QkepESNGZPTo0Uvcfthhh+X2228vcEYAAAAAJElFY0/gvzFz5sxcd911efLJJzNjxoy0a9cuffr0ybBhw9KvX79Pff1vfvObtG7deqljnnvuuZx44om5/PLL065du4aaOgAAAMBKrVlHqTPPPDMLFizIYYcdltVWWy0zZszIM888k1mzZi3T6zt27LjU7QsWLGiIaQIAAADwCc02Ss2ePTvPP/98TjjhhGy44YZJkm7dumWdddZZ4mtGjhyZe+65J7/61a+y5ppr5rDDDsvuu++ePfbYI8lHH/c7+OCD89RTT+XZZ5/NwIED88ADDyRJDjjggCTJoEGDcthhh+Vf//pXrr/++kycODGtW7dO375989Of/jRVVVWLHLempiY1NTV1j0ulUtq0adNg7wUAAABAc9Nso1RVVVWqqqoyevTorLvuuqmsrFzi2HK5nMsvvzxPPPFETjrppPTo0WOJY6+//vrsvffe2X///dOiRYtsscUWOfPMM3POOeekbdu2adWqVd5///387ne/y7e//e1stdVW+fDDD/P8888vcZ833nhjbrjhhrrHffv2zWmnnfb5ThwAAABgBdBso1TLli1z6KGH5qKLLsrdd9+dtdZaKxtssEG22WabrLnmmnXjamtrc+655+b111/PySefnC5duix1v9tss0223377useTJ09Okqyyyip195SaOHFiFi5cmAEDBqRbt25Jkt69ey9xn0OHDs2QIUPqHpdKpc9+wgAAAAArkGYbpZJk4MCB2WyzzfLCCy/kpZdeypgxY3LLLbfk+9//fgYPHpwkufLKK1NRUZFTTz31U+8hlSRrr732p47p06dPNtpoo/zkJz/JxhtvnP79+2fgwIFp3779YsdXVlYu9UouAAAAgJVNi8aewH+rVatW6d+/f4YPH55TTjklgwcPzsiRI+u2b7TRRpk2bVrGjh27TPv7tG/jS5IWLVrk2GOPzTHHHJNevXrlzjvvzNFHH113VRUAAAAAS9fso9Qn9erVK/Pmzat7vMUWW+Soo47KhRdemIcffvgz76+i4qOLyWpra+s9XyqV0q9fv4wYMSKnn356KioqMnr06P9u8gAAAAAriWb78b0PPvggZ511VrbffvusueaaadOmTV599dXcfPPN2WKLLeqN3WqrrXLEEUfk3HPPTcuWLTNw4MBlPk63bt1SKpXyxBNPZLPNNkurVq3y1ltv5ZlnnsnGG2+cVVZZJS+//HJmzpyZ1VdfvaFPEwAAAGCF1GyjVFVVVdZdd93cfvvtmTRpUhYuXJiuXbtmxx13zNe//vVFxg8cOLDupuelUikDBgxYpuN06dIle+21V6699tr84Q9/yJe+9KXsueeeef7553PHHXdk7ty5WXXVVbPvvvtm0003bejTBAAAAFghlcrlcrmxJ7GyGverIzJ3/KuNPY2VVvUZlzT2FJqEUqmU6urqTJgwIf7ngKbAmqQpsR5pSqxHmhprkqbEemxaKisr061bt08dt8LdUwoAAACApk+UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQAAAAAonCgFAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhato7AmszLod/evU1NQ09jQAAAAACudKKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAAChcRWNPYGVWUeHtp+mwHmlqrEmaEuuRpsR6pKmxJmlKrMemYVn/HErlcrm8nOfCJ9TU1KSysrKxpwEAAADQaHx8rxHU1NTkd7/7XebOndvYU4HMnTs3P//5z61HmgxrkqbEeqQpsR5paqxJmhLrsXkSpRrJww8/HBep0RSUy+W8/vrr1iNNhjVJU2I90pRYjzQ11iRNifXYPIlSAAAAABROlAIAAACgcKJUI6isrMzw4cPd7JwmwXqkqbEmaUqsR5oS65GmxpqkKbEemyffvgcAAABA4VwpBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABSuorEnsDK68847c+utt2b69OlZc801c+CBB2adddZp7GmxArnxxhszevTovPPOO2nVqlXWW2+9fOc730nPnj3rxsyfPz9XXXVVHnnkkdTU1GTjjTfOwQcfnE6dOtWNmTp1ai6++OI899xzqaqqyqBBg7L33nunZcuWjXBWrChuuummXHvttdl9992z//77J7EeKd60adNyzTXXZMyYMZk3b1569OiRQw89NGuvvXaSpFwuZ+TIkbn33nsze/bs9OvXLwcffHCqq6vr9jFr1qxcdtlleeKJJ1IqlTJgwIAccMABqaqqaqzTohmqra3NyJEj8+CDD2b69Onp0qVLBg0alGHDhqVUKiWxHlm+xo0bl1tuuSWvv/563n///fzkJz/JVlttVbe9odbfG2+8kUsvvTSvvvpqOnbsmN122y177rlnoedK07e09bhgwYL85S9/yVNPPZXJkyenbdu22WijjbL33nunS5cudfuwHpsXV0oV7JFHHslVV12V4cOH57TTTsuaa66ZU089NTNmzGjsqbECGTduXHbdddeceuqpOfbYY7Nw4cKccsop+fDDD+vGXHnllXniiSfyox/9KCeeeGLef//9nHnmmXXba2tr85vf/CYLFizIKaecksMOOyz3339/rrvuusY4JVYQr7zySu6+++6sueaa9Z63HinSrFmzctxxx6WioiK//OUvc/bZZ2ffffdNu3bt6sbcfPPNGTVqVA455JD87//+b1q3bp1TTz018+fPrxvz+9//Pm+99VaOPfbY/OIXv8jzzz+fiy66qDFOiWbspptuyt13352DDjooZ599dr797W/nlltuyahRo+rGWI8sT/PmzUufPn1y0EEHLXZ7Q6y/OXPm5JRTTsmqq66a//f//l++853v5Prrr88999yz3M+P5mVp63H+/Pl5/fXXM2zYsJx22mn58Y9/nHfffTenn356vXHWYzNTplDHHHNM+ZJLLql7vHDhwvJ3v/vd8o033th4k2KFN2PGjPJee+1Vfu6558rlcrk8e/bs8je/+c3yo48+Wjfm7bffLu+1117lF198sVwul8tPPvlkecSIEeX333+/bsxdd91V3nfffcs1NTWFzp8Vw9y5c8tHHnlkeezYseXjjz++fPnll5fLZeuR4l1zzTXl4447bonba2try4ccckj55ptvrntu9uzZ5b333rv80EMPlcvlcvmtt94q77XXXuVXXnmlbsxTTz1VHjFiRPm9995bfpNnhfOb3/ymfMEFF9R77owzzij/7ne/K5fL1iPF2muvvcqPPfZY3eOGWn933XVXef/996/3/9nXXHNN+aijjlrOZ0Rz9sn1uDgvv/xyea+99ipPmTKlXC5bj82RK6UKtGDBgrz22mvZaKON6p5r0aJFNtpoo7z00kuNODNWdHPmzEmStG/fPkny2muvZeHChfXW4uqrr55VV121bi2+9NJL6d27d72PT22yySaZO3du3nrrreImzwrjkksuyaabbpr+/fvXe956pGiPP/541lprrZx11lk5+OCD87Of/azefx2dPHlypk+fXm+ttm3bNuuss069NdmuXbu6j/slyUYbbZRSqZRXXnmluJOh2VtvvfXy7LPP5t13302SjB8/Pi+++GI23XTTJNYjjauh1t9LL72UDTbYIBUV/3f3mI033jjvvvtuZs2aVdDZsCKaM2dOSqVS2rZtm8R6bI7cU6pAM2fOTG1tbb1/VCVJp06d6v4iAg2ttrY2V1xxRdZff/307t07STJ9+vRUVFTU+6hKkqyyyiqZPn163ZhPrtVVVlmlbht8Fg8//HBef/31/OY3v1lkm/VI0SZPnpy77747e+yxR4YOHZpXX301l19+eSoqKjJ48OC6NfXxGvvYJ9dkx44d621v2bJl2rdvb03ymXzta1/L3Llz88Mf/jAtWrRIbW1tvvnNb2a77bZLEuuRRtVQ62/69Onp3r17vTEf///69OnT6/7DKXwW8+fPz5/+9Kdss802dVHKemx+RClYwV166aV56623ctJJJzX2VFhJTZ06NVdccUWOPfbYtGrVqrGnA6mtrc3aa6+dvffeO0nSt2/fvPnmm7n77rszePDgxp0cK51HH300Dz30UI488sisscYaGT9+fK644op07tzZegRYggULFuTss89Okhx88MGNPBv+G6JUgTp27JgWLVos8l+sFncFADSESy+9NE8++WROPPHEdO3ate75Tp06ZcGCBZk9e3a9q1NmzJhRtxY7deq0yCX/H9+Q33rls3jttdcyY8aM/PznP697rra2Ns8//3zuvPPO/OpXv7IeKVTnzp3Tq1eves/16tUrjz32WJL/W1MzZsxI586d68bMmDEjffr0qRszc+bMevtYuHBhZs2aZU3ymVxzzTXZc889s8022yRJevfunSlTpuSmm27K4MGDrUcaVUOtv06dOi3230D/eQxYVh8HqalTp+bXv/513VVSifXYHLmnVIEqKiqy1lpr5dlnn617rra2Ns8++2zWW2+9RpwZK5pyuZxLL700o0ePzq9//etFLk9da6210rJlyzzzzDN1z7377ruZOnVq3Vpcb7318uabb9b7Zsinn346bdq0WeQfc7A0G220UX7729/m9NNPr/u19tprZ9ttt637vfVIkdZff/1FPjb/7rvvplu3bkmS7t27p1OnTvXW5Jw5c/LKK6/UW5OzZ8/Oa6+9Vjfm2WefTblczjrrrFPAWbCimDdvXlq0qP9X8hYtWqRcLiexHmlcDbX+1ltvvTz//PNZsGBB3Zinn346PXv29FEpPpOPg9TEiRNz3HHHpUOHDvW2W4/NjyhVsCFDhuTee+/N/fffn7fffjuXXHJJ5s2b5/JsGtSll16aBx98MEcddVTatGmT6dOnZ/r06XVf3du2bdvssMMOueqqq/Lss8/mtddeywUXXJD11luv7i8YG2+8cXr16pXzzjsv48ePz5gxY/KXv/wlu+66ayorKxvz9Ghm2rRpk969e9f71bp163To0CG9e/e2HincHnvskZdffjl/+9vfMnHixDz00EO59957s+uuuyZJSqVSdt999/ztb3/L448/njfffDPnnXdeOnfunC233DLJR1dWbbLJJrnooovyyiuv5IUXXshll12WrbfeOl26dGnM06OZ2XzzzfO3v/0tTz75ZCZPnpzRo0fntttuq1tr1iPL24cffpjx48dn/PjxST6679748eMzderUBlt/2267bSoqKnLhhRfmrbfeyiOPPJJRo0ZlyJAhjXXaNFFLW48LFizIWWedlddeey1HHHFEamtr6/6d83Fgsh6bn1L54/8MQ2HuvPPO3HLLLZk+fXr69OmTAw44IOuuu25jT4sVyIgRIxb7/KGHHloXQOfPn5+rrroqDz/8cBYsWJCNN944Bx98cL1LVqdMmZJLLrkkzz33XFq3bp1Bgwbl29/+dlq2bFnAWbAiO+GEE9KnT5/sv//+SaxHivfEE0/k2muvzcSJE9O9e/fsscce2Wmnneq2l8vljBw5Mvfcc0/mzJmTfv365aCDDkrPnj3rxsyaNSuXXnppnnjiiZRKpQwYMCAHHnhgqqqqGuOUaKbmzp2b6667LqNHj86MGTPSpUuXbLPNNhk+fHjdN0NZjyxPzz33XE488cRFnh80aFAOO+ywBlt/b7zxRi699NK8+uqr6dChQ3bbbbd87WtfK+IUaUaWth732muvHH744Yt93fHHH58vfOELSazH5kaUAgAAAKBwPr4HAAAAQOFEKQAAAAAKJ0oBAAAAUDhRCgAAAIDCiVIAAAAAFE6UAgAAAKBwohQAAAAAhROlAAAAACicKAUAAABA4SoaewIAANQ3ceLE3HLLLXn66afz/vvvp6KiIr17987//M//ZKeddkqrVq0adX533XVXWrduncGDBzfqPACA5k2UAgBoQp588smcddZZqayszJe+9KWsscYaWbBgQV544YVcffXVeeutt/K9732vUef497//PR06dBClAID/iigFANBETJ48Oeecc066deuWX//61+ncuXPdtt122y0TJ07Mk08+2YgzBABoOKVyuVxu7EkAAJBcfPHFufvuu3PyySdn/fXXX+rYhQsX5sYbb8wDDzyQ9957L507d84222yTvfbaK5WVlXXjRowYkeHDh2fEiBH1Xn/YYYdlww03zGGHHZYkuf/++3PBBRfkpJNOymOPPZZ//vOfmT9/fvr375/vfe976dixY93rpkyZUm9fG264YU444YQGeAcAgJWJK6UAAJqIJ554IqutttqnBqkkufDCC/PAAw9k4MCBGTJkSF5++eXcdNNNeeedd/LTn/70c8/h8ssvT7t27bLXXntl8uTJueOOO3LppZfmhz/8YZJkv/32y+WXX56qqqoMHTo0SdKpU6fPfTwAYOUlSgEANAFz5szJtGnTssUWW3zq2PHjx+eBBx7IDjvskO9///tJkl133TWrrLJKbr311jz77LP54he/+Lnm0b59+xx77LEplUpJknK5nFGjRmXOnDlp27Ztttpqq1x33XXp0KFDvvSlL32uYwAAJEmLxp4AAADJ3LlzkyRt2rT51LFPPfVUkmTIkCH1nv/KV76SJP/Vfad22mmnuiCVJBtssEFqa2sX+cgeAMB/S5QCAGgCPo5RH8eppZkyZUpKpVJ69OhR7/lOnTqlXbt2mTp16ueex6qrrlrvcbt27ZIks2fP/tz7BABYHFEKAKAJaNu2bTp37py33nprmV/zn1c0fVa1tbWLfb5Fi8X/9dB34wAADU2UAgBoIjbffPNMmjQpL7300lLHdevWLeVyORMmTKj3/PTp0zN79ux6Vzu1a9cuc+bMqTduwYIFef/99xtu4gAAn4MoBQDQRHz1q19N69atc+GFF2b69OmLbJ84cWLuuOOObLrppkmSO+64o9722267LUmy2Wab1T3Xo0ePPP/88/XG3XPPPUu8UmpZVFVV+TgfAPBf8+17AABNRI8ePXLUUUfl7LPPzg9/+MMMGjQoa6yxRhYsWJAXX3wx//rXvzJ48ODsvvvuGTRoUO65557Mnj07G264YV555ZU88MAD2XLLLet9894OO+yQiy++OL/97W/Tv3//vPHGGxk7dmw6dOjwuefZt2/f3H333fnrX/+aHj16ZJVVVvnc3/YHAKy8RCkAgCZkiy22yG9/+9vccsst+fe//52///3vqaysTO/evbPvvvtmxx13TJJ8//vfz2qrrZb7778/o0ePTqdOnfK1r30te+21V7397bjjjpk8eXL+8Y9/ZOzYsenXr1+OPfbYnHzyyZ97jsOHD8/UqVNzyy23ZO7cudlwww1FKQDgMyuV3bUSAAAAgIK5pxQAAAAAhROlAAAAACicKAUAAABA4UQpAAAAAAonSgEAAABQOFEKAAAAgMKJUgAAAAAUTpQCAAAAoHCiFAAAAACFE6UAAAAAKJwoBQAAAEDhRCkAAAAACidKAQAAAFA4UQoAAACAwolSAAAAABROlAIAAACgcKIUAAAAAIUTpQCAZdKnT5+USqW6Xy1atEiHDh3Sq1evbL/99vnJT36S0aNHL3UfgwcPTqlUyv3331/MpD/Fx+c0fvz4es83tXkmyf77759SqZQrrriisaeyXNx6663Zbrvt0rFjx7o1trT3/z/X4rL+Gjx4cGHnAwB8uorGngAA0Lxss802WWeddZIkc+fOzdSpU/PUU0/l/vvvz5lnnplBgwblsssuy1prrbXc5tCnT5+88cYbef3119OnT5/ldpyiXHHFFTnggAOy3377rbDRaWnGjBmTYcOGpba2NjvssEOqq6tTKpXSo0ePJb5mv/32W+S5iRMn5q677lri9n79+jXcpAGA/5ooBQB8JgcffHD233//es+Vy+WMGjUqRx99dB544IFsvfXWefTRR9O3b99646666qrMmTMnvXv3/v/t3XeUVeWh/+HvICO9CghIsYIaRSCW3GjEFkXFmxiNEhvWWInxqjHVEo2JURONNVfBiMbYol5j7CjEGrvGhhVFkCACKr2d3x8u5ucEUEB8B5znWcu1OLuc8+7jO3D4sPc+BUe8eMOHD8+cOXOyxhpr1PVQPtOvf/3r/PjHP06nTp3qeijL3S233JI5c+bkpz/9aX71q18t0T6LincjRoyoiVL1Me4BwMpGlAIAPreqqqrssssu+frXv57NN988r776ag499NAMHz681nYrSoxaYJ111qnrISyxTp06fSmDVJK8/fbbSZL11luvjkcCAJTknlIAwHLTunXrnHfeeUmS++67L08++WSt9Yu7V9OsWbNy9tln56tf/WpatGiRVVddNR07dsxmm22WH/3oR5k0aVKSj89+qaqqyltvvZUkWWuttWrdM2jB844YMaLmHkLTp0/PySefnA022CBNmzatdbnf4u4p9UkjR47MjjvumLZt26Zp06bZfPPNc9VVVy1y28+6F9Wpp56aqqqqnHrqqbXGcNBBByVJrrzyysXeA+mz7il17bXXZvvtt0/btm3TqFGjdO/ePQcffHBeeeWVRW7/yWO///77s+OOO6ZNmzZp0qRJ+vbtm2HDhi32Pfk0c+fOzaWXXpqvf/3radWqVRo3bpz11lsvP/jBDzJ27NhFvh9XXHFFkuSggw5a7vd/mj9/ftZee+1UVVXlkUceWex2Rx11VKqqqvKjH/2oZtkn3/Nnn3023/nOd9K+ffs0adIkvXr1yvnnn5958+Yt9jmffPLJ7LvvvunWrVsaNWqUtm3bZqeddsrtt9++yO3ffffdHHvssenRo0caN26cpk2bpmvXrtl+++1zzjnnLPubAAArKGdKAQDL1c4775y2bdtm0qRJueeee/LVr371U7efP39+dt111wwfPjwtW7bMN77xjbRu3TrvvfdeXn311Zx99tnZZ5990rZt26y77roZNGhQbrzxxkybNi177LFHmjdvXvNc/3kPopkzZ2abbbbJiy++mK233jqbbLJJ3n///SU+lptvvjkXXnhh1l9//ey0004ZN25cHnzwwRxwwAF55plncu655y7dm7MIe+65Zx599NE89NBDWWeddbLVVlvVrFuSeyBVKpUceOCBGTZsWBo2bJitt946HTp0yFNPPZUrrrgi1113Xf7617+mf//+i9x/6NChOeOMM9K3b9/0798/o0ePzqOPPppBgwZl0qRJ+eEPf7jExzJr1qwMGDAg9957bxo3bpxtt902LVu2zMMPP5wLLrggf/nLX3LXXXelb9++SZLevXtn0KBBefDBB/P666/Xul/Z8rr/U4MGDXLMMcfk+OOPz4UXXpj/+q//WmibDz/8MFdddVUaNGiQo446aqH1jz32WI488sh07Ngx22+/fSZPnpwRI0bkhz/8YR588MFcf/31qaqqqrXP+eefn//5n//J/Pnz07t372yxxRYZP358RowYkbvvvjunnXZaTj755Jrtx48fn0033TTjxo1Lt27d0r9//zRu3Djjxo3LM888kyeffDInnHDCcnlPAGCFUQEAWALdu3evJKlcccUVn7ntDjvsUElS2W+//Wot79evXyVJ5f77769ZNnLkyEqSSp8+fSoffvjhQs/1+OOPVyZOnLjIsbz55puLfP3777+/kqSSpNKrV6/Ku++++6nH9J/Ps2CcSSpnnnlmrXUjRoyoNGnSpJKkcuedd37m8X3SKaecUklSOeWUU2otv+KKKypJKoMGDVrkfpVKpTJo0KBFvv+XXHJJJUmlXbt2laeffrpm+fz582ter3Xr1pUJEyYs8tirq6srf/vb3xY5nlatWlWmT5++2DH9p5NOOqmSpLLOOuvUek9nz55dOeSQQypJKmuttVZl1qxZS3RsS+uT/98/acqUKZVmzZpVVl111cr48eMX2u+CCy6oJKnstttuixxXkspRRx1VmTNnTs26559/vtK+fftKksqll15aa78777yzUlVVVWnXrl1l5MiRtdY999xzlS5dulSSVEaMGFGz/LTTTqskqXz/+9+vzJ8/v9Y+s2fPrtx7771L92YAwErA5XsAwHLXrl27JFmis5L+/e9/J0m+8Y1vpEWLFgut33TTTbPaaqst81guvPDCT/0Wt0/Tp0+f/OQnP6m1rF+/fjVn0yyPM6U+rwWXdZ188snp3bt3zfKqqqqccsop6dWrV6ZMmZLLLrtskfsPHjw4AwYMqLXswAMPzPrrr58PPvggTzzxxBKNY+bMmbnooouSJL///e9rXSZZXV2dP/zhD1l99dXz5ptv5sYbb1yKI/z8WrVqlUGDBmX27NmLfB8WjPuYY45Z5P6dOnXKueeem4YN//9FBl/5yldqznT6z3lwyimnpFKp5NJLL83WW29da93GG2+c3/3ud0mSCy64oGb5gp+D/v37L3TWVXV1dbbffvslOlYAWJmIUgDAcjd//vwkWegv14vSt2/frLLKKhk6dGguuuiivPvuu8ttHB06dMg3vvGNZd7/gAMOWOTyQYMGJUkefPDBT72n0BftnXfeyeuvv15rTJ9UVVVVc7+q+++/f5HPsdtuuy1y+QYbbJAkC90HanGeeOKJTJ06NW3btl3kczZt2jQDBw781LF8kX7wgx+kqqoqf/zjHzN37tya5cOHD8/LL7+cnj175pvf/OYi991rr73SuHHjhZYveM9fffXVjBs3LkkyceLEPPbYY2nSpMli39sF98t6+OGHa5ZtvvnmSZIf//jHuemmmzJ16tSlP0gAWMmIUgDAcjdx4sQkSdu2bT9z23XWWSe///3vM2fOnBxzzDHp3Llz1lxzzXzve9/Ln//858yePXuZx/HJs3WWxVprrfWpy2fMmLFU96ha3hYEo9VWWy0tW7Zc5DYLvmFwcXFpcd+IuOD5Zs6cuVRjWdx7tiRj+SL17NkzO+64Y955553ccsstNcsXnCW14Ebni7K4Y2rRokXNWXzvvPNOkuTNN99MpVLJjBkz0qhRo1o3rl/wX4cOHZIk7733Xs1z7b///tl3333zyiuvZI899kjr1q3Tq1evHHXUUbnvvvs+9/EDwIrIjc4BgOWqUqnk6aefTvLxpUpLYvDgwdlrr71y66235sEHH8yDDz6Ya6+9Ntdee21OOeWUPPDAA+nUqdNSj6VJkyZLvc/SqlQqS7ztgjPIViQNGtSff6M89thjc9ddd+Wiiy7KnnvumTFjxuTWW29N8+bNc+CBB36u514wDxb8P27evHn22GOPJd6/QYMGufrqq/PTn/40f//73/PQQw/loYceyiWXXJJLLrkku+22W26++easssoqn2ucALAiEaUAgOXq9ttvz+TJk5MkO+644xLvt/rqq+ewww7LYYcdliR5+eWXc/DBB+eRRx7Jj3/841x55ZVfyHg/zZtvvrnI5aNHj06SNG7cuNb9rlZdddUkyUcffbTI/d56663lOr411lgjycf37vrwww8XebbUG2+8UWvbL8qC51/ce1ZyLIvTv3//9OjRIyNGjMgLL7yQa665JvPmzcv++++/2DPNksUf00cffVRzplyXLl2SJF27dk3y8aWTQ4cOXerot+GGG2bDDTfMiSeemEqlkvvuuy/77LNP/va3v2XYsGE1l2MCwJdB/fmnMQDgC/fBBx/kuOOOS5J885vfrHXj7aW1/vrr56STTkqSPPPMM7XWLYg/n7w30Bfh6quvXuTyYcOGJUm22mqrWje/XhBbXnrppYX2mT59+mLvpbSsx9OlS5eaS+L+9Kc/LbS+UqnULN92222X6rmX1qabbprmzZtn0qRJufXWWxdaP2PGjFx77bVFxrI4VVVVGTx4cJLkd7/7XS6//PIki7/B+QI33HBDZs2atdDyq666Kkmy7rrr1vy/79y5c3r16pWPPvood9555+ce7/bbb5999tknycI/BwCwshOlAIDPrVKp5I477sjmm2+eV199NZ06dVrst739p/vuuy+333575syZs9Bz3nbbbUmS7t2711q34KyUF154YTmMfvGefPLJ/Pa3v6217MEHH6y5D9GCALfADjvskOTj+xR98r5J06ZNy/e///2MGTNmka+z4HhefPHFpR7jCSeckCQ5/fTT8+yzz9Ysr1QqOeOMM/LMM8+kdevWNWegfVEaN26co48+Okly/PHH1zorbM6cOTn22GMzfvz4rLXWWtlzzz2/0LF8mgMPPDCtWrXK0KFDM2HChGy77bbZcMMNP3WfcePG5YQTTqh1U/uXXnopv/zlL5MsPA/OOOOMJMlBBx2Uv/3tbws9X6VSyT//+c/cfffdNcuGDRuWJ598cqFtP/roo4wYMSLJwj8HALCyc/keALBULr/88pq/JM+aNSsTJ07MU089lUmTJiX5+JvFhg4dusR/gX7uuedy3HHHpWXLlunbt286d+6cGTNm5Kmnnspbb72VVq1a1fzlf4E99tgj999/f/bbb7/suOOOadOmTZLkxBNPTM+ePZfbsf7gBz/IT37ykwwbNiy9evXKuHHj8sADD2T+/Pk59thjs8suu9Tafq+99sp5552XJ554Il/5yley1VZbZf78+XniiSey6qqr5uCDD87QoUMXep2vfe1r6dy5c55++un07ds3G2+8caqrq9OzZ8+ceOKJnzrGww8/PA8//HCuuuqqbLrppunXr186dOiQp556KqNGjUqTJk1yzTXXpH379svtfVmc0047LU888USGDx+eDTbYINtuu21atGiRRx55JG+//XZWW2213HDDDTVnhtWF5s2b56CDDsp5552X5LPPkkqSI444Ipdffnn+/ve/Z4sttsjkyZNz//33Z/bs2dl9991z5JFH1tp+t912y/nnn5/jjz8+//3f/5111103PXv2TKtWrfLee+/l2WefzYQJE3LSSSfVXOJ60003ZdCgQencuXN69+6dNm3aZPLkyXnooYfywQcfZKONNvrCwyIAlCZKAQBLZcENmJOkWbNmadWqVTbeeONsuumm2XvvvbPZZpst1fPttttu+eCDD/LAAw/k1VdfzaOPPpomTZqka9eu+fGPf5yjjz665kyiBY488sh89NFHufrqq3P77bfXfEPcfvvtt1yj1O67755vfetbOfPMM3P77bdn9uzZ6du3b4455pgMGjRooe2rq6tzzz335Be/+EVuueWW3H333enQoUN23333nH766bn44osX+Tqrrrpq7rrrrvzsZz/LI488kmeffTbz589Pv379PjNKVVVVZdiwYdl5553zv//7v3nyySczbdq0dOzYMQceeGB+/OMfL9f35NM0atQod955Zy677LIMGzYsDzzwQGbNmpWuXbtm8ODBOemkk+rsflKftNNOO+W8885L165d861vfeszt99iiy3y/e9/P6ecckruueeeTJ06Neutt14OOeSQDB48eJHf2veDH/wg2223XS644ILcf//9GT58eBo0aJCOHTumT58+2XXXXWvdCP3444/PWmutlYcffrgm8rZt2zYbbrhh9tlnnxx00EFp1qzZcn0fAKCuVVWW5itjAABgJbfffvvlz3/+c84888z85Cc/Wex2Bx54YK688spcccUVn/vb+QCAhbmnFAAA9ca//vWvXHfddWnevHkOP/zwuh4OANRrLt8DAOBL79BDD820adNyxx13ZO7cufn5z3+etm3b1vWwAKBeE6UAAPjSGzJkSBo0aJCuXbvmhBNOyI9+9KO6HhIA1HvuKQUAAABAce4pBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnG/fq0OTJ0/O3Llz63oY8IVr37593nvvvboeBhRhvlNfmOvUJ+Y79Yn5zvLQsGHDtGnT5rO3KzAWFmPu3LmZM2dOXQ8DvlBVVVVJPp7vvuyTLzvznfrCXKc+Md+pT8x3SnP5HgAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxVZVKpVLXg6ivXvzZ4MwY/XpdDwMAAACoY53Ovryuh7DcVFdXp3379p+5nTOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UWg6OPvro/P3vf6/rYQAAAACsNBrW9QA+y5QpU3LTTTflqaeeyqRJk9KqVat07949u+66azbeeOO6Hh4AAAAAy2CFjlITJkzIL37xizRr1iz77bdfunXrlnnz5uXZZ5/NkCFDct5559X1EAEAAABYBit0lBoyZEiqqqpy5plnpnHjxjXLu3btmm233TZJctttt+X+++/PhAkT0rx583z1q1/NfvvtV7P9e++9lyFDhmTUqFGZO3du2rdvn/322y99+/bNiBEj8qc//Sl/+tOfap77scceyznnnJPrr78+STJ+/PgMGzYsr776ambOnJkuXbrke9/7Xnr16rXExzFnzpzMmTOn5nFVVVWaNGnyed4aAAAAgJXaChulpk6dmmeeeSYDBw6sFaQWaNasWZKPA89BBx2UDh06ZMKECbn88stz9dVX59BDD03ycdiaO3duTjvttDRq1CjvvPPOIp9vcWbOnJk+ffpk4MCBqa6uzsiRI3PWWWfl/PPPT7t27ZboOW6++ebceOONNY/XWmutnHXWWUs8BgAAAIAvmxU2So0fPz6VSiVrrLHGp26366671vy6Q4cOGThwYC677LKaKDVx4sRsscUW6datW5Jk9dVXX6pxrLnmmllzzTVrHg8cODCPP/54nnjiifTv33+JnmP33XfPgAEDah5XVVUt1RgAAAAAvmxW2ChVqVSWaLvnnnsut9xyS8aOHZsZM2Zk3rx5mTNnTmbNmpVGjRpl5513zuWXX57nnnsuG2+8cbbYYot07959iccxc+bMXH/99Xn66aczefLkzJs3L7Nnz87EiROX+Dmqq6tTXV29xNsDAAAAfNmtsFGqU6dOqaqqytixYxe7zYQJE3LWWWflm9/8ZgYOHJjmzZvn5ZdfzqWXXpq5c+emUaNG2X777bPJJpvkqaeeynPPPZebb745BxxwQHbeeedUVVUtFL/mzZtX6/GwYcPyr3/9K/vvv386duyYVVddNeeee27mzp37hRw3AAAAQH3QoK4HsDjNmzfPJptskrvuuiszZ85caP20adPyxhtvZP78+TnggAPSo0ePdO7cOZMnT15o23bt2mXHHXfMCSeckN122y3Dhw9PkrRs2TIzZ86s9fyjR4+ute+oUaPSr1+/bL755unWrVtat26d9957b/keLAAAAEA9s8JGqSQ55JBDMn/+/Pz0pz/No48+mnfffTfvvPNObr/99vz85z9Px44dM2/evNx5553597//nX/84x+55557aj3Hn/70pzzzzDOZMGFC3njjjbzwwgs196lab731suqqq+Yvf/lLxo8fnwcffDAjRoyotX+nTp3y2GOPZfTo0Rk9enTOP//8Jb60EAAAAIBFW2Ev30s+vin5WWedlZtuuilXXXVVJk+enJYtW2bttdfOoYcemjXXXDMHHHBA/u///i/XXHNNNthgg+yzzz658MILa55j/vz5GTJkSCZNmpQmTZqkd+/eGTRoUJKPz8YaPHhwrr766gwfPjwbbbRRvvvd7+Z///d/a/Y/4IADcskll+TnP/95WrRokW9961uZMWNG8fcCAAAA4MukquK0nzrz4s8GZ8bo1+t6GAAAAEAd63T25XU9hOWmuro67du3/8ztVujL9wAAAAD4chKlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACguKpKpVKp60HUV++9917mzJlT18OAL1RVVVU6deqUd999N3674cvOfKe+MNepT8x36hPzneWluro67du3/8ztnCkFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxTWs6wHUZ++d98vMGP16XQ9jpdLp7MvreggAAADAcuBMKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4hp+np3nzJmTN998Mx988EF69uyZli1bLq9xAQAAAPAltsxR6vbbb88NN9yQ6dOnJ0l+8YtfZKONNsqHH36Y4447Lvvuu2+222675TZQAAAAAL48lunyvfvvvz9XXnllevfunSOPPLLWupYtW+YrX/lKHn744eUyQAAAAAC+fJYpSt12223ZdNNNc+yxx+arX/3qQuvXXnvtjBkz5nMPDgAAAIAvp2WKUuPHj0+fPn0Wu7558+aZOnXqMg8KAAAAgC+3ZYpSTZs2zYcffrjY9e+8805at269rGMCAAAA4EtumaJUnz59Mnz48EybNm2hdWPGjMnw4cMXeVkfAAAAACTL+O17AwcOzM9+9rMcf/zxNfFpxIgRue+++/LPf/4zbdq0yZ577rlcBwoAAADAl8cyRam2bdvmN7/5Tf7yl7/UfMveAw88kMaNG2fLLbfMvvvum5YtWy7XgQIAAADw5bFMUSpJWrVqlSOOOCJHHHFEPvzww8yfPz8tW7ZMgwbLdEUgAAAAAPXI5y5IlUollUolVVVVqaqqWh5jAgAAAOBLbpnPlHrnnXdy3XXX5dlnn82sWbOSJI0aNcomm2yS7373u+nWrdtyGyQAAAAAXy7LFKVeeumlnHnmmalUKtl0003TuXPnJMm4cePyxBNP5JlnnslPf/rTbLDBBst1sCuiCRMm5Jhjjslvf/vbrLnmmnU9HAAAAICVwjJFqSuvvDKtWrXKqaeemnbt2tVaN3HixJxyyikZNmxYfv3rXy/zwC666KKMHDlyoeV/+MMf0rFjx2V+XgAAAADq3jJFqTFjxmTvvfdeKEglSbt27bLjjjvmhhtu+NyD6927d4466qhay5blW/3mzp2bhg2X+UpFAAAAAJazZSo17du3z9y5cxe7fu7cuVlttdWWeVALNGzYMK1bt15o+Ysvvpirrroqb731Vpo3b55+/fpl4MCBWWWVVZIkp556arp27ZpVVlklDzzwQLp165Y999wzp512Wn7605/mmmuuydixY9OjR4/88Ic/zBtvvJFhw4Zl0qRJ6du3b4444og0atQoSfLMM8/kr3/9a8aMGZMGDRqkR48eOfDAA52tBQAAAPA5LFOU2nPPPXPllVemb9++C91H6c0338ydd96ZQYMGLY/xLWTSpEn59a9/nX79+uWYY47J2LFj88c//jHV1dXZa6+9arYbOXJkdtxxx5x++ulJksmTJydJbrjhhhx88MFp1KhRfv/73+f3v/99qqur84Mf/CAzZ87MOeeckzvuuCPf/va3kyQzZ87MgAED0r1798ycOTPXXXddzjnnnPz2t79NgwZL9uWFc+bMyZw5c2oeV1VVpUmTJsvpHQEAAABY+SxTlHrllVfSqlWrnHTSSenZs2fNWUPvvvtuXnnllXTr1i2vvPJKXnnllZp9qqqqctBBBy3V6zz11FPZf//9ax736dMnnTp1ymqrrZZDDjkkVVVVWWONNTJ58uT8+c9/zp577lkTijp16pT99tuvZt8FUWrgwIFZf/31kyTbbbddrrnmmlxwwQVZffXVkyRbbLFFXnjhhZoo9bWvfa3WmI488sgceuiheeedd5b4GwZvvvnm3HjjjTWP11prrZx11llL9V4AAAAAfJksU5S66667an49atSojBo1qtb6t99+O2+//fZC+y1tlPrKV76Sww47rOZxo0aNMmTIkPTo0SNVVVU1y3v27JmZM2dm0qRJNfe5WmuttRb5nN27d6/5datWrdKoUaOaIJUkrVu3zuuvv17z+N133811112X1157LR999FHmz5+f5OMbui9plNp9990zYMCAmsefHDsAAABAfbRMUeq6665b3uNYpEaNGi3zvZsaN268yOUL7juVfByHPvl4gQXhKUnOOuustG/fPocffnjatGmTSqWS448//lPvqfWfqqurU11dvRSjBwAAAPhyW7KbIq1A1lhjjbzyyiupVCo1y0aNGpUmTZqkbdu2y/W1Pvroo4wbNy7f+c53svHGG6dLly6ZNm3acn0NAAAAgPpomaLUcccdl5tuuinvvffe8h7PZ9ppp53y/vvvZ+jQoRk7dmwef/zxXH/99dl1112X+MbjS6pZs2Zp0aJF7r333owfPz7PP/98rrzyyuX6GgAAAAD10TJVnNVWWy033HBDBg8enFNOOSXDhw/P9OnTl/fYFqlt27b5yU9+ktdeey0nnnhiLrvssmy33XbZY489lvtrNWjQIMcee2zeeOONHH/88bnyyitr3XgdAAAAgGVTVfnkdXBLYcqUKXnwwQfz0EMP5Y033kjDhg3Tt2/fbL311unTp08aNlym21XVKy/+bHBmjH79szekRqezL6/rIbCUqqqq0qlTp7z77rtZxt9uYKVhvlNfmOvUJ+Y79Yn5zvJSXV2d9u3bf+Z2y1yOWrdunQEDBmTAgAEZN25c/vGPf+Shhx7KY489lmbNmuXrX/96vvGNb6Rnz57L+hIAAAAAfEktl9OZOnfunIEDB6Z///654oor8uijj+aee+7JPffck9VXXz277LJLdtxxx+V+zycAAAAAVk6fO0rNnDkzjz32WB544IE8//zzSZK+ffumX79+adiwYe69995cccUVefvtt/P973//cw8YAAAAgJXfEkepF198MV26dEnLli0zf/78PPPMM3nggQfyxBNPZPbs2Vl77bVzwAEHZMstt0zLli1r9tt0001zzTXX5K677hKlAAAAAEiyFFHqtNNOy+DBg7PVVlvlsMMOy9SpU9O2bdvsvPPO2XrrrdOlS5fF7tu9e/fMnDlzuQwYAAAAgJXfMl2+t+Bb9jbaaKNUVVV95vZbbrllttxyy2V5KQAAAAC+hJYpSh199NHLexwAAAAA1CO+Dg8AAACA4pbqTKkLLrggF1xwwRJtW1VVlWuvvXaZBgUAAADAl9tSRalevXqlU6dOX9RYAAAAAKgnlipK9evXL1tttdUXNRYAAAAA6gn3lAIAAACgOFEKAAAAgOJEKQAAAACKW+J7Sl133XVf5DgAAAAAqEecKQUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFBcw7oeQH3W/ocnZ86cOXU9DAAAAIDinCkFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxTWs6wHUZ++d98vMGP16XQ9jmXQ6+/K6HgIAAACwEnOmFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUt0JFqYsuuii//e1v63oYAAAAAHzBVqgoBQAAAED90LCuB7CkXnzxxVx11VV566230rx58/Tr1y8DBw7MKquskiQ5+uijs8suu2TXXXet2efEE0/MZpttlr322itJstdee+Xwww/PU089lWeffTZt27bNAQcckE033bRmnyeeeCLDhg3L+++/nx49eqRfv365+OKLc8UVV6RZs2ZJkpdffjnXXHNNXn/99bRs2TKbbbZZ9tlnnzRu3HiRY58zZ07mzJlT87iqqipNmjRZ7u8RAAAAwMpipYhSkyZNyq9//ev069cvxxxzTMaOHZs//vGPqa6urglOS+rGG2/Mvvvum/333z933HFH/vCHP+Tiiy9O8+bNM2HChJx77rnZZZddsv322+fNN9/MVVddVWv/8ePH51e/+lUGDhyYI488Mh9++GGGDh2aoUOH5qijjlrka95888258cYbax6vtdZaOeuss5b+jQAAAAD4klgpotRdd92V1VZbLYccckiqqqqyxhprZPLkyfnzn/+cPffcMw0aLPlViP369ctWW22VJPne976XO+64I6+99lp69+6de+65J507d87++++fJOncuXPGjBmTm266qWb/W265Jd/4xjdqzsjq1KlTDjrooJxyyik59NBDs+qqqy70mrvvvnsGDBhQ87iqqmqZ3gcAAACAL4uVIkqNHTs2PXr0qBVzevbsmZkzZ2bSpElp167dEj9X9+7da37duHHjNGnSJB988EGSZNy4cVlnnXVqbb/uuuvWevzWW2/lrbfeygMPPFBreaVSyYQJE9KlS5eFXrO6ujrV1dVLPEYAAACAL7uVIkotiaqqqlQqlVrL5s2bt9B2C+5B9Wn7fZqZM2dmhx12yC677LLQuqWJYwAAAAD12UoRpdZYY43885//TKVSqTlbatSoUWnSpEnatm2bJGnZsmWmTJlSs8/06dMzYcKEpXqdzp075+mnn6617LXXXqv1eK211srYsWPTsWPHZTgSAAAAAJJkyW/GVMiMGTMyevToWv/tsMMOef/99zN06NCMHTs2jz/+eK6//vrsuuuuNfeT2mijjfKPf/wjL730Ut5+++1cdNFFS3WvqST55je/mbFjx+bqq6/OuHHj8vDDD2fkyJFJ/v99oL71rW9l1KhRGTJkSEaPHp133303jz/+eIYMGbJ83wgAAACAL7EV7kypF154IT/60Y9qLdtuu+3yk5/8JFdddVVOPPHENG/ePNttt1322GOPmm2+/e1vZ8KECfnNb36Tpk2bZu+9917qM6U6dOiQ448/PsOGDcsdd9yRHj16ZPfdd8/ll1+ehg0/fqu6d++eU089Nddee21OPvnkVCqVdOzYMf/1X//1+Q8eAAAAoJ6oqizNDZXqoZtuuin33HNPLrnkkuX+3C/+bHBmjH59uT9vCZ3Ovryuh8BKoqqqKp06dcq77767VPdvg5WR+U59Ya5Tn5jv1CfmO8tLdXV12rdv/5nbrXBnStW1u+66K+uss05atGiRUaNG5dZbb03//v3relgAAAAAXyqi1H949913c9NNN2Xq1Klp165dBgwYkN13372uhwUAAADwpSJK/YcDDzwwBx54YF0PAwAAAOBLbYX79j0AAAAAvvxEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAACiuYV0PoD5r/8OTM2fOnLoeBgAAAEBxzpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACgOFEKAAAAgOJEKQAAAACKE6UAAAAAKE6UAgAAAKA4UQoAAACA4hrW9QDqs4YNvf3UH+Y79Yn5Tn1hrlOfmO/UJ+Y7n9eSzqGqSqVS+YLHwn+YM2dOqqur63oYAAAAAHXG5Xt1YM6cOTn//PMzY8aMuh4KfOFmzJiRk046yXynXjDfqS/MdeoT8536xHynNFGqjjz00ENxkhr1QaVSyZtvvmm+Uy+Y79QX5jr1iflOfWK+U5ooBQAAAEBxohQAAAAAxYlSdaC6ujp77rmnm51TL5jv1CfmO/WFuU59Yr5Tn5jvlObb9wAAAAAozplSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFNazrAdRHd955Z/72t79lypQp6d69ew4++OCsu+66dT0sWGLXX399brzxxlrLOnfunPPOOy9JMnv27AwbNiwPP/xw5syZk0022SSHHnpoWrduXbP9xIkTc9lll+WFF15I48aN069fv+yzzz5ZZZVVCh4JLOzFF1/MrbfemjfffDOTJ0/OCSeckM0337xmfaVSyfXXX5/hw4dn2rRpWX/99XPooYemU6dONdtMnTo1Q4cOzZNPPpmqqqpsscUWOeigg9K4ceOabd56660MGTIkr7/+elq2bJn+/fvnW9/6VtFjpX77rLl+0UUXZeTIkbX22WSTTfKzn/2s5rG5zsri5ptvzmOPPZaxY8dm1VVXTY8ePbLffvulc+fONdssr88vL7zwQoYNG5YxY8ZktdVWyx577JFtttmm4NFSny3JXD/11FPz4osv1tpvhx12yPe///2ax+Y6pYhShT388MMZNmxYDjvssKy33nr5+9//nl/96lc577zz0qpVq7oeHiyxrl275he/+EXN4wYN/v+Jl1deeWWeeuqp/M///E+aNm2aIUOG5Nxzz83pp5+eJJk/f35+/etfp3Xr1jnjjDMyefLkXHjhhVlllVWyzz77FD8W+KRZs2ZlzTXXzHbbbZdzzjlnofX/93//lzvuuCNHH310OnTokOuuuy6/+tWv8rvf/S6rrrpqkuQPf/hDJk+enJ///OeZN29eLr744vzxj3/MsccemySZPn16zjjjjGy88cY57LDD8vbbb+eSSy5Js2bNssMOOxQ9Xuqvz5rrSdK7d+8cddRRNY8bNqz90dFcZ2Xx4osvZqeddso666yTefPm5S9/+UvOOOOM/O53v6uJqMvj88uECRPym9/8Jt/85jczePDgPP/887n00kvTunXr9O7du64On3pkSeZ6kmy//fbZe++9ax4v+AyTmOuU5fK9wm677bZsv/322XbbbdOlS5ccdthhWXXVVXP//ffX9dBgqTRo0CCtW7eu+a9ly5ZJPv4LyH333ZdBgwZlo402ytprr52jjjoqo0aNyiuvvJIkefbZZ/POO+9k8ODBWXPNNdOnT5/svffeueuuuzJ37ty6PCxInz59MnDgwFpnjCxQqVRy++235zvf+U4222yzdO/ePcccc0wmT56cxx9/PEnyzjvv5JlnnskRRxyR9dZbL+uvv34OPvjgPPzww5k0aVKS5MEHH8zcuXNz1FFHpWvXrtlyyy2z884757bbbit6rNRvnzbXF2jYsGGt3+ubN29es85cZ2Xys5/9LNtss026du2aNddcM0cffXQmTpyYN954I8ny+/xy9913p0OHDjnggAPSpUuX9O/fP1/72tfy97//vc6Onfrls+b6Ao0aNar1+3vTpk1r1pnrlCRKFTR37ty88cYb2XjjjWuWNWjQIBtvvHHNH3awshg/fnwOP/zwHHPMMfnDH/6QiRMnJkneeOONzJs3r9Y8X2ONNdKuXbuaef7KK6+kW7dutU6H7927d2bMmJExY8YUPQ5YGhMmTMiUKVPSq1evmmVNmzbNuuuuW2t+N2vWLOuss07NNhtvvHGqqqry2muv1WyzwQYb1DrrZJNNNsm4ceMyderUQkcDn+3FF1/MoYcemmOPPTaXXXZZPvroo5p15jors+nTpydJTWhdXp9fXn311VrPkXw8533Wp67851xf4IEHHsghhxyS448/Ptdcc01mzZpVs85cpySX7xX04YcfZv78+bV+uJOkdevWGTduXN0MCpbBeuutl6OOOiqdO3fO5MmTc+ONN+bkk0/OueeemylTpqRhw4Zp1qxZrX1atWqVKVOmJEmmTJmy0M/BgstXF2wDK6IF8/M/L7f+z/m94MzBBVZZZZU0b9681jYdOnSotc2Cn4kpU6Ys9MER6kLv3r2zxRZbpEOHDhk/fnz+8pe/5Mwzz8yvfvWrNGjQwFxnpTV//vz86U9/Ss+ePdOtW7ckWW6fX6ZMmbLIPyNmzJiR2bNn17pECr5oi5rrSbLVVlulXbt2adu2bd566638+c9/zrhx43LCCSckMdcpS5QCllqfPn1qft29e/eaSPXII4/4AwjgS2LLLbes+XW3bt3SvXv3DB48OC+88MJC/zoOK5MhQ4ZkzJgx+eUvf1nXQ4Ev1OLm+ifv6detW7e0adMmv/zlLzN+/Ph07Nix9DCp51y+V1DLli1r/mXxkxZVomFl0qxZs3Tu3Dnjx49P69atM3fu3EybNq3WNh988EHNPG/duvVCPwcffPBBzTpYUS2Ynwvm6wL/Ob8//PDDWuvnzZuXqVOnfurPwILHfgZYUa2++upp0aJFxo8fn8RcZ+U0ZMiQPPXUUznllFOy2mqr1SxfXp9fWrduvcg/I5o0aeIf7ihqcXN9URZ8E/wnf3831ylFlCqoYcOGWXvttfP888/XLJs/f36ef/759OjRow5HBp/PzJkza4LU2muvnVVWWSX/+te/ataPGzcuEydOrJnnPXr0yNtvv13rD7LnnnsuTZo0SZcuXYqPH5ZUhw4d0rp161rze/r06Xnttddqze9p06bVuqHo888/n0qlUvOhr0ePHnnppZdq3dj/ueeeS+fOnV3OxArr/fffz9SpU9OmTZsk5jorl0qlkiFDhuSxxx7LySefvNBlpcvr88t6661X6zkWbOOzPqV81lxflNGjRydJrd/fzXVKEaUKGzBgQIYPH54RI0bknXfeyeWXX55Zs2Zlm222qeuhwRIbNmxYXnzxxUyYMCGjRo3K2WefnQYNGmSrrbZK06ZNs91222XYsGF5/vnn88Ybb+Tiiy9Ojx49av6Q2mSTTdKlS5dceOGFGT16dJ555plce+212WmnnVJdXV3HR0d9N3PmzIwePbrmA9qECRMyevToTJw4MVVVVdlll11y00035Yknnsjbb7+dCy+8MG3atMlmm22WJOnSpUt69+6dP/7xj3nttdfy8ssvZ+jQofn617+etm3bJvn4Xg4NGzbMpZdemjFjxuThhx/OHXfckQEDBtTVYVMPfdpcnzlzZq666qq88sormTBhQv71r3/lt7/9bTp27JhNNtkkibnOymXIkCF54IEHcuyxx6ZJkyaZMmVKpkyZktmzZyfJcvv8suOOO2bChAm5+uqrM3bs2Nx111155JFHsuuuu9bZsVO/fNZcHz9+fG688ca88cYbmTBhQp544olcdNFF2WCDDdK9e/ck5jplVVUqlUpdD6K+ufPOO3PrrbdmypQpWXPNNXPQQQdlvfXWq+thwRI777zz8tJLL+Wjjz5Ky5Yts/7662fgwIE116DPnj07w4YNy0MPPZS5c+dmk002yaGHHlrrUo333nsvl19+eV544YU0atQo/fr1y7777ptVVlmljo4KPvbCCy/ktNNOW2h5v379cvTRR6dSqeT666/Pvffem+nTp2f99dfPIYccks6dO9dsO3Xq1AwZMiRPPvlkqqqqssUWW+Tggw9O48aNa7Z56623MmTIkLz++utp0aJF+vfvn29/+9slDhGSfPpcP+yww3L22WfnzTffzLRp09K2bdv06tUre++9d63fy811VhZ77bXXIpcfddRRNf84vLw+v7zwwgu58sor884772S11VbLHnvs4R+gKeaz5vrEiRNzwQUXZMyYMZk1a1ZWW221bL755vnOd76Tpk2b1mxvrlOKKAUAAABAcS7fAwAAAKA4UQoAAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAAChOlAIAAACguIZ1PQAAAGobP358br311jz33HOZPHlyGjZsmG7duuW//uu/ssMOO2TVVVet0/HdddddadSoUbbZZps6HQcAsHITpQAAViBPPfVUfve736W6ujpbb711unbtmrlz5+bll1/OVVddlTFjxuTwww+v0zHefffdadGihSgFAHwuohQAwApiwoQJOe+889K+ffucfPLJadOmTc26/v37Z/z48XnqqafqcIQAAMtPVaVSqdT1IAAASC677LLcc889Of3009OzZ89P3XbevHm5+eabM3LkyLz//vtp06ZNttxyy3z3u99NdXV1zXZ77bVX9txzz+y111619j/66KOz4YYb5uijj06SjBgxIhdffHF++ctf5p///Gf+8Y9/ZPbs2enVq1cOP/zwtGzZsma/9957r9Zzbbjhhjn11FOXwzsAANQnzpQCAFhBPPnkk1l99dU/M0glyaWXXpqRI0fma1/7WgYMGJBXX301t9xyS8aOHZsTTzxxmcdwxRVXpFmzZvnud7+bCRMm5Pbbb8+QIUNy3HHHJUkGDRqUK664Io0bN87uu++eJGnduvUyvx4AUH+JUgAAK4Dp06dn0qRJ2XTTTT9z29GjR2fkyJHZbrvtcsQRRyRJdtppp7Rq1Sp/+9vf8vzzz2ejjTZapnE0b948P//5z1NVVZUkqVQqueOOOzJ9+vQ0bdo0m2++ea677rq0aNEiW2+99TK9BgBAkjSo6wEAAJDMmDEjSdKkSZPP3Pbpp59OkgwYMKDW8t122y1JPtd9p3bYYYeaIJUkG2ywQebPn7/QJXsAAJ+XKAUAsAJYEKMWxKlP895776WqqiodO3astbx169Zp1qxZJk6cuMzjaNeuXa3HzZo1S5JMmzZtmZ8TAGBRRCkAgBVA06ZN06ZNm4wZM2aJ9/nkGU1La/78+Ytc3qDBoj8e+m4cAGB5E6UAAFYQX/3qV/Pvf/87r7zyyqdu1759+1Qqlbz77ru1lk+ZMiXTpk2rdbZTs2bNMn369FrbzZ07N5MnT15+AwcAWAaiFADACuK///u/06hRo1x66aWZMmXKQuvHjx+f22+/PX369EmS3H777bXW33bbbUmSvn371izr2LFjXnrppVrb3XvvvYs9U2pJNG7c2OV8AMDn5tv3AABWEB07dsyxxx6b3//+9znuuOPSr1+/dO3aNXPnzs2oUaPy6KOPZptttskuu+ySfv365d577820adOy4YYb5rXXXsvIkSOz2Wab1frmve222y6XXXZZzjnnnPTq1StvvfVWnn322bRo0WKZx7nWWmvlnnvuyV//+td07NgxrVq1WuZv+wMA6i9RCgBgBbLpppvmnHPOya233prHH388d999d6qrq9OtW7cccMAB2X777ZMkRxxxRFZfffWMGDEijz32WFq3bp1vf/vb+e53v1vr+bbffvtMmDAh9913X5599tmsv/76+fnPf57TTz99mce45557ZuLEibn11lszY8aMbLjhhqIUALDUqiruWgkAAABAYe4pBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUNz/A9HbXg9Vn+XjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Top 5 Categories:\n", "Category\n", "Tops 1259\n", "T-Shirt 514\n", "Pants 386\n", "Shoes 173\n", "Jeans 160\n", "Name: count, dtype: int64\n", "\n", "Top 5 Types:\n", "Type\n", "Casual 2754\n", "Formal 208\n", "Lounge 128\n", "Work Casual 15\n", "Workout 3\n", "Name: count, dtype: int64\n" ] } ], "source": [ "plt.style.use('ggplot')\n", "\n", "# Create a figure with two subplots\n", "fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(12, 16))\n", "\n", "# Plot distribution of Categories\n", "sns.countplot(data=result, y='Category', ax=ax1, order=result['New_Category'].value_counts().index)\n", "ax1.set_title('Distribution of Categories', fontsize=16)\n", "ax1.set_xlabel('Count', fontsize=12)\n", "ax1.set_ylabel('Category', fontsize=12)\n", "\n", "# Plot distribution of Types\n", "sns.countplot(data=result, y='Type', ax=ax2, order=result['New_Type'].value_counts().index)\n", "ax2.set_title('Distribution of Types', fontsize=16)\n", "ax2.set_xlabel('Count', fontsize=12)\n", "ax2.set_ylabel('Type', fontsize=12)\n", "\n", "# Adjust layout and display the plot\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "# Optional: Save the figure\n", "# plt.savefig('category_type_distribution.png', dpi=300, bbox_inches='tight')\n", "\n", "# Additional analysis: Print top 5 categories and types\n", "print(\"Top 5 Categories:\")\n", "print(result['Category'].value_counts().head())\n", "\n", "print(\"\\nTop 5 Types:\")\n", "print(result['Type'].value_counts().head())\n" ] }, { "cell_type": "code", "execution_count": 75, "id": "1a1bbaff-da3c-40f3-bde1-21b9350d3900", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Distribution of Categories in Sampled Data:\n", "New_Category\n", "Jeans 100\n", "Other 100\n", "Pants 100\n", "Shoes 100\n", "Shorts 100\n", "Skirts 100\n", "T-Shirt 100\n", "Tops 100\n", "Name: count, dtype: int64\n", "\n", "Distribution of Types in Sampled Data:\n", "New_Type\n", "Casual 700\n", "Formal 64\n", "Lounge 36\n", "Name: count, dtype: int64\n", "\n", "Percentage Distribution of Categories:\n", "New_Category\n", "Jeans 12.5\n", "Other 12.5\n", "Pants 12.5\n", "Shoes 12.5\n", "Shorts 12.5\n", "Skirts 12.5\n", "T-Shirt 12.5\n", "Tops 12.5\n", "Name: count, dtype: float64\n", "\n", "Percentage Distribution of Types:\n", "New_Type\n", "Casual 87.5\n", "Formal 8.0\n", "Lounge 4.5\n", "Name: count, dtype: float64\n", "\n", "Total number of items in the sampled dataset: 800\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_525083/1300003174.py:8: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " sampled_data = result.groupby('New_Category').apply(sample_category).reset_index(drop=True)\n" ] } ], "source": [ "def sample_category(group):\n", " if len(group) > 100:\n", " return group.sample(n=100, random_state=42)\n", " else:\n", " return group\n", "\n", "# Group by New_Category and apply the sampling function\n", "sampled_data = result.groupby('New_Category').apply(sample_category).reset_index(drop=True)\n", "\n", "# Print the distribution of categories in the sampled data\n", "print(\"Distribution of Categories in Sampled Data:\")\n", "print(sampled_data['New_Category'].value_counts())\n", "\n", "# Print the distribution of types in the sampled data\n", "print(\"\\nDistribution of Types in Sampled Data:\")\n", "print(sampled_data['New_Type'].value_counts())\n", "\n", "# Calculate and print percentages\n", "total = len(sampled_data)\n", "print(\"\\nPercentage Distribution of Categories:\")\n", "category_percentage = (sampled_data['New_Category'].value_counts() / total * 100).round(2)\n", "print(category_percentage)\n", "\n", "print(\"\\nPercentage Distribution of Types:\")\n", "type_percentage = (sampled_data['New_Type'].value_counts() / total * 100).round(2)\n", "print(type_percentage)\n", "\n", "# Print the total number of items in the sampled dataset\n", "print(f\"\\nTotal number of items in the sampled dataset: {len(sampled_data)}\")" ] }, { "cell_type": "markdown", "id": "08ce5180", "metadata": {}, "source": [ "We can now re-sample and have a nice and balanced dataset:" ] }, { "cell_type": "code", "execution_count": 78, "id": "6e09e47a-6bef-4259-b6b7-51b3d677b1ff", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_525083/3643476101.py:8: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " sampled_data = result.groupby('New_Category').apply(sample_category).reset_index(drop=True)\n", "/tmp/ipykernel_525083/3643476101.py:16: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n", " axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right')\n", "/tmp/ipykernel_525083/3643476101.py:21: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.\n", " axs[0, 1].set_xticklabels(axs[0, 1].get_xticklabels(), rotation=45, ha='right')\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB80AAAXRCAYAAAAUqwytAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5hXVaE//vfADDCAzoBAgshFaaK8AN5vBVknOupJsQsnqDAbTh3ULv465QVDTDM6UZ2y45cEL+QVSbRvRy3TrMxO4t3URATzAgokMwUkzMDn90cPn68joIDAMOzX63l4ntlrrb332nvNp1zz/uy1K0qlUikAAAAAAAAAUEDtWrsDAAAAAAAAANBahOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAUyYsSIVFRUtNr5TznllFRUVOTZZ58tlz377LOpqKjIKaec0mr9Slr/3mwrTz/9dEaNGpU999wzFRUVqa2tbe0u7dJ2lt9fAADYlbX2fM1cdvszlwUAWpvQHKCNqaioaPGvY8eO6dmzZw466KDU19fntttuy9q1a7fLuQcMGJABAwZsl2Nvbxv7I8euZu3atTnppJNy66235oQTTsikSZNy1llnbfb+f/rTn3LGGWdk//33T01NTTp06JA+ffrk+OOPz4wZM7J69eq31L9d5Y85AADAljOX3Trmsht6/e/Sm/278sord9zFAABtVmVrdwCArTNp0qQk/5hcNjQ05PHHH8+Pf/zjzJgxI4ccckiuueaa1NXVtdhn5syZWbVqVWt0N0ly8cUX56yzzspee+3Van3YlNa+N9vCwoUL88QTT2T8+PH50Y9+tEX7XnDBBZk8eXLWrVuXI488MuPGjUvXrl3z8ssv5+677059fX0uvfTS3H///dup923TXnvtlSeffDI1NTWt3RUAAGgTzGW3rda+N9vCls5l1/8Ovdb3vve9NDY25gtf+MIGT6kPHTp0G/UUANiVCc0B2qjzzz9/g7KXX345Z5xxRm688ca8//3vz/33359evXqV6/v167cDe7ih3r17p3fv3q3ah01p7XuzLSxatChJ0qdPny3a7xvf+EYmTZqUvffeOzfeeGMOP/zwDdr87Gc/y9SpU7dJP3clVVVVGTx4cGt3AwAA2gxz2W2rte/NtrClc9mN/Q5deeWVaWxszBe/+MU2u6oAANC6LM8OsAt529veluuvvz4jRozI888/n2984xst6je2PHapVMpVV12Vo446Kj179kynTp2y9957Z+TIkbnhhhuSJHfffXcqKiry5z//OX/+859bLHP22ve3VVRUZMSIEXnppZdSX1+fvfbaK+3bty8vhfZmy8r96U9/ykknnZTu3bunS5cuOeaYY/KLX/xig3bnn39+Kioqcvfdd29Qt7H3ylVUVOSqq65KkgwcOLDc99dOpDe1dPi6devyf/7P/8mhhx6arl27pkuXLjn00ENz6aWXZt26dRu0X38Pli1bln/7t39L796907Fjx+y333654oorNnrdb+SBBx7Ihz/84fTq1SsdO3ZM//79M2HChCxevHiD8w4fPjxJMnny5PI1buyPCa/17LPP5vzzz09VVVVuvfXWjQbmSXLCCSfk9ttvb1F25ZVX5sMf/nD22WefVFdXZ/fdd8/RRx+dq6++eoNzVFRU5Ne//nW5r+v/jRgxokXbF154Iaeffnr22WefdOzYMXvssUc+9KEPZe7cuRvt1+LFi/PpT386vXr1SnV1dYYOHZqrrrqq/Du7set/+umn86lPfSp77bVXeQn6T33qU3n66ac3aPva37Vrr702hx9+eLp27Vr+3Xmj9xiuWrUqF198cYYOHZouXbqka9euOfLII3Pddddt0HZzPocAALCrMpc1l022bC77ZtauXZu99947u+++e1asWLHRNmeccUYqKioye/bsFv0ZMWJEFi1alE9+8pPluebBBx+ca6+9dpPn+/nPf57jjjsuPXr0SMeOHbPvvvvmP/7jP9LQ0LBB20cffTQf//jHM2DAgBavKfjiF7+Ypqamt3TdAMDW86Q5wC6mXbt2mThxYu6+++5cd911+e53v/uG75E+99xzc/HFF2fgwIH52Mc+lpqamixevDhz587NjTfemNGjR2fAgAGZNGlSvve97yVJvvjFL5b3f/0yZ6+88kqOOOKIdO3aNSeffHLatWuXt73tbW/a74ULF+bII4/MAQcckM9+9rNZvHhxbrjhhvzzP/9zrr322owePXprbkeSfyzddvPNN+eRRx5psVTb65ds25hPfvKTufbaa7P33nunvr4+FRUVmTNnTiZMmJB77rkn11xzzQb7NDQ05Oijj06HDh3ykY98JKtXr86NN96YU089Ne3atcu4ceM2q98/+9nP8uEPfzilUikf+chH0r9//zzwwAO59NJLc8stt+See+7JwIEDy9f47LPP5qqrrsrw4cPLYfTrQ+nXu+KKK9LU1JR//dd/zf777/+GbTt27Nhi+9///d+z33775T3veU969+6dv/zlL7n11lvzyU9+Mk899VS+/vWvJ/nHfZ40aVKuvPLK/PnPf26xlN5r/9jz4IMP5gMf+EBeeeWVjBw5MieffHKWLVuWm2++Occcc0zmzJmT4447rtx+yZIlOfLII/PnP/8573nPe3LUUUflpZdeyoQJE/KBD3xgo9cwd+7cvP/978/f/va3fOhDH8q73vWu/OlPf8rVV1+dW265Jb/85S9z6KGHbrDf1KlTc8cdd+Rf/uVf8t73vjeNjY1veK8aGhpy7LHH5qGHHspBBx2UU089NevWrcvPf/7zjBkzJo8//nguvPDCcvvN+RwCAMCuzFx2Q+ayW699+/YZP358Jk2alOuuuy7jx49vUf/3v/89V199dfbcc8+ceOKJLeqWL1+eo446KrW1tfn0pz+dhoaGzJo1K2PHjs2LL76Y//iP/2jRfvLkyTn//PPTvXv3nHDCCenVq1ceffTRfPvb386tt96a3//+99l9992T/CMwP/zww1NRUZEPfehDGThwYP76179m/vz5+e///u9ceOGFqaqqekvXDgBspRIAbUqS0pv9z/err75aqqysLCUpLViwoFw+fPjwDfbt3r17aa+99iqtXLlyg+MsXbq0xXb//v1L/fv3f9O+ffKTnyw1NTVtUD9u3LhSktLChQvLZQsXLizv9+Uvf7lF+7lz55YqKytLtbW1pcbGxnL5pEmTSklKv/rVrzY4x/rjjRs37k3P/VobuzfXXnttKUlp2LBhpb/97W/l8hUrVpQOPvjgUpLSNddcs9F78JnPfKbU3NxcLn/88cdL7du3L73zne/c6Plf729/+1upe/fupXbt2pV+85vftKj75je/WUpS+qd/+qcW5b/61a9KSUqTJk3arHOUSqXSscceW0pSuuyyyzZ7n/Xmz5+/Qdnq1atLxx57bKmysrL0wgsvtKjb2D1er6mpqbTvvvuWOnbsWLr77rtb1L344oulPn36lPbcc8/Sq6++Wi4/9dRTS0lKX/nKV1q0f/jhh0sdOnTY4F6sW7euNHjw4FKS0tVXX91in+uvv76UpPSOd7yjtHbt2nL5+t+1zp07lx588MEN+v1mv29TpkxpUf73v/+9NHLkyFJFRUXpoYceKpdvyecQAADaInNZc9ltOZd9vf79+29wnxYtWlSqrKwsHXzwwRu0v+KKK0pJSuecc06L8vX34aMf/WiLueGCBQtK3bp1K1VVVZWeeeaZcvldd91VSlI68sgjS8uXL9/oOb74xS+Wy84888xSktLNN9+8QZ9eeeWVFucEAHYsy7MD7ILWL2udJEuXLn3T9lVVVWnfvv0G5T169Njic3fo0CHf/va3U1m5ZYuZ1NTU5Gtf+1qLskMOOSRjx45NQ0ND5syZs8V9easuv/zyJMk3v/nNdO3atVzepUuXTJkyJUkyffr0Dfbr3LlzvvOd77S4p+9617ty9NFH58knn9zk0nCvdcstt+SVV17J6NGj8+53v7tF3f/3//1/GTBgQO64444899xzW3Vt661fGq9v375bvO++++67QVmHDh1y2mmnpbm5OXfeeedmH+t//ud/8swzz+SMM84oL823Xp8+ffKVr3wlL730UvmYa9asyXXXXZeamppMnDixRfshQ4bkU5/61AbnuPfee/OnP/0pRx55ZMaOHduibvTo0TnmmGPy1FNP5Z577tlg33/7t3/LsGHDNuta/vKXv+Tqq6/OIYcckq985Sst6jp16pQpU6akVCptsLTftvwcAgBAW2Quu20UYS67OXr37p2TTjopDzzwQB544IEWddOmTUu7du02eAI9+cdT6lOmTEm7dv/vT+cDBw7M5z//+TQ1NeXHP/5xufz73/9+kuSyyy7bYAWAU045JUOHDt3oU/3V1dUblHXr1q3FOQGAHcvy7AC7qFKplCRvuJxdkowdOzY/+MEP8q53vSsf+9jHMnz48Bx55JGpqanZqvMOGDAgvXr12uL9DjrooOy2224blI8YMSJXXXVVHnrooc1eCm5befDBB9OuXbuNLgs3fPjwtG/fPg899NAGdW9/+9vLS6+91t57753kH0u9vfYPF5s6d5Ice+yxG9RVVlbmPe95T5599tk89NBD6dev3+Zczjb33HPPZcqUKbnzzjvz3HPP5e9//3uL+hdffHGzj/X73/8+SfLnP/95k+8hT5Inn3wyxx13XJ566qn8/e9/zyGHHLLR35tjjjlmgz8CvdE9XV9+zz335KGHHsp73vOeFnWHHXbYZl/L3Llzs3bt2k2+h2/9O+qefPLJctm2/hwCAEBbZS771pnL/j8TJkzI7NmzM23atPzoRz9Kkjz22GP53//93/zzP/9zi1eGrdevX7/y8vGvNWLEiEyePLnFvfv973+fqqqq3Hjjjbnxxhs32GfNmjVZunRp/vKXv2SPPfbI6NGj81//9V856aST8pGPfCTvf//7c/TRR2/0S+kAwI4lNAfYBb366qt55ZVXkiQ9e/Z8w7bf/e53s88+++SKK67IN7/5zXzzm99MZWVljjvuuEydOjWDBg3aonPvueeeW9XnTb0rbv3x3uwd0ttDY2Njunfvng4dOmxQV1lZmR49emTJkiUb1G3q/XLrn1hYu3btZp07+cc34zdmfXlDQ8ObHuuN9O7dO08++eQWBdxJsmDBghx22GFZvnx53v3ud+cDH/hAampq0r59+/L76FavXr3Zx/vLX/6SJBv9I8NrrX+yYf392dTvzcbK38o93ZLf6/XXMnfu3MydO3eT7V77lMa2/hwCAEBbZC67bRRhLru53vve9+ad73xnrrvuukydOjW77bZbOTz/7Gc/u9F9tmRM//KXv6S5uTmTJ09+w36sWLEie+yxRw477LD89re/zUUXXZTZs2eXn1p/xzvekUmTJuXjH//4Fl8jALBtWO8FYBd0zz33pLm5OW9729s2+q3p12rfvn2++MUv5pFHHsnLL7+cn/zkJxk1alR++tOf5oMf/OAWBZ/Jmz8NsCkvv/zyRstfeumlJGnxtMD65cqam5s3aL8tJ941NTV55ZVXyk8Gv1Zzc3OWLVu20W/hb6tzJ//v+l9v/bLqb/VJ5GOOOSZJtmgp9ST5zne+k7/85S+ZMWNG7r777nz/+9/P17/+9Zx//vkZOXLkFvdj/XXccsstKZVKm/w3adKkJCnf90393mys/K3c0y35vV6//5e+9KU3vJZf/epX5X229ecQAADaInPZbaMIc9kt8bnPfS4rVqzINddck7///e+5+uqrs9dee+WEE07YaPstGdOampp069btDed+pVIp/fv3L+9z5JFH5mc/+1mWL1+e3/3udznvvPPy8ssvZ8yYMfnlL3+5Da8cANgSQnOAXcy6dety0UUXJUnGjBmzRfv26tUrJ598cmbNmpVjjz02zzzzTP74xz+W69u3b79Z3yzfGg8++GD+9re/bVB+9913J0mL90l369YtSfL8889v0P7+++/f6PHXv5NtS/o/bNiwrFu3Lr/5zW82qPvNb36TtWvX5qCDDtrs422J9de7/vpfq7m5Ob/97W+T5C2f/9Of/nSqqqryk5/8JE888cQbtn3tH53mz5+fJPnwhz+8Qbtf//rXG93/jcbgiCOOSJLydb2ZwYMHp7q6Oo8++uhGf2829l7yN7qnScoh9lu9p4cddljatWu32dfyem/2OQQAgF2Ruay57PYybty4dO7cOT/60Y9yww03pKGhIZ/5zGdavLv9tZ577rk8++yzG5RvbEyPOOKILF++PI8//vgW96tjx4456qijcsEFF5TfjX7LLbds8XEAgG1DaA6wC1myZEn+9V//NXfffXf69euXc8455w3br169Or/73e82KG9qaiovide5c+dy+R577JGlS5du8O7qbaGxsTEXXHBBi7L7778/11xzTWpqajJq1Khy+fr3S19xxRUtvqH//PPPb3CM1/Y9+cfkd3OdeuqpSZKzzz47q1atKpevWrUqZ511VpLkM5/5zGYfb0ucdNJJ6d69e6677rr87//+b4u6733ve1m4cGHe//73v+V3wA0YMCDnn39+1qxZk+OPP36Tf6i5/fbb88///M8t9ks2/EPIz3/+8w3eJb7eG43BiSeemH333Tc//OEPc+utt250/9///vflcejQoUNGjx6dxsbGXHjhhS3aPfLII5k5c+YG+x999NF5xzvekXvuuSezZ89uUTd79uz89re/TV1dXfnp+63Vq1evjB07Nvfff3++/vWvb/SPW88880wWLlyYZMs/hwAAsKsxlzWX3Z5qamoyZsyYPPTQQ5k4cWLat2+f8ePHb7L92rVr89WvfjXr1q0rly1cuDDf//73U1lZmU984hPl8i996UtJkvHjx2fRokUbHGvlypUt7sO999670d/D9U+3m/sBQOvxTnOANur8889P8o9v4zc0NOTxxx/PPffckzVr1uSwww7LNddckx49erzhMf7+97/nmGOOyaBBg3LwwQenf//+efXVV3PHHXfkySefzIc+9KG8853vLLd/3/vel7lz5+aDH/xg3vOe96Rjx44ZMmRI/uVf/uUtX8973vOeTJ8+PX/4wx9y9NFHZ/Hixbnhhhuybt26TJs2rcXScYcffnje85735De/+U0OO+ywHHvssXn55Zfzf//v/83IkSM3+q39973vffnP//zPjB8/Ph/+8Iez2267pba2Nqeffvom+zRmzJjccsstmTVrVvbbb7+cdNJJqaioyM0335yFCxdm9OjRGTt27Fu+9o3p2rVrLr/88nz0ox/N8OHD89GPfjT9+vXLAw88kF/84hfZc889M23atG1yrnPOOaf8DrZDDz00Rx11VA455JB07do1L7/8cn7zm9/k6aefziGHHFLeZ8KECbniiivy0Y9+NB/5yEfSp0+f/PGPf8ztt9+ej33sY7nhhhs2OM/73ve+3HjjjTn55JNz3HHHpbq6Ov37988nP/nJVFVV5aabbsrIkSNz/PHH56ijjsrQoUPTuXPnPP/885k7d24WLFiQxYsXl/+I8M1vfjN33XVXvvWtb+UPf/hDjjrqqCxevDizZs3Kcccdl5tvvrm8/GHyj+UWr7rqqvzTP/1TRo8enRNPPDGDBw/OU089lZtvvjm77bZbZs6c2WKfrXXJJZfk6aefzte+9rX8+Mc/zjHHHJO3ve1tWbRoUZ588snMnTs31113XQYOHLjFn0MAAGjLzGXNZbfVXHZLTJgwIdOnT8+LL76Yf/mXf0nfvn032fbAAw/MH/7whxx88MH5wAc+kIaGhsyaNSsNDQ351re+lX333bfc9n3ve1+++c1v5uyzz87b3/72HHfccRk4cGBWrFiRP//5z/n1r3+dY445JrfffnuS5Fvf+lbuuuuuvPvd787AgQPTtWvXPP7447ntttvSrVu3/Nu//dt2vxcAwCaUAGhTkrT416FDh9Iee+xROuigg0r19fWl2267rbR27dqN7jt8+PDSa/+nf82aNaUpU6aUPvjBD5b23nvvUseOHUs9evQoHX744aVLL720tHr16hb7r1ixovS5z32utNdee5Xat29fSlIaN25ci74NHz58k30fN25cKUlp4cKF5bKFCxeWj/PEE0+UPvShD5Vqa2tL1dXVpaOOOqp0++23b/RYy5cvL9XX15d69uxZ6tChQ2m//fYrTZs2rcXxXm/q1KmlwYMHlzp06FBKUurfv/8m7816a9euLf3whz8sHXzwwaXq6upSdXV16aCDDipdcsklG73Pb3QPNnb9b+a+++4rnXTSSaUePXqUqqqqSnvvvXfpc5/7XOnFF1/coO2vfvWrUpLSpEmTNvv4r/XEE0+UTj/99NJ+++1X2m233UpVVVWlPffcs/TBD36wNH369NKrr77aov3vfve70nvf+95SbW1tqWvXrqWjjz66NGfOnE32o7m5uXT22WeXBg4cWKqsrNzovXr55ZdLX/3qV0v77bdfqbq6utSlS5fSoEGDSh/+8IdLP/7xj0tNTU0t2r/wwgulT33qU6UePXqUOnXqVBoyZEjpyiuvLN14442lJKXvfve7G1znn/70p9InPvGJ0p577lmqrKws7bnnnqWxY8eW/vSnP23QdtKkSaUkpV/96lcbvWdv9Pu2evXq0g9+8IPSkUceWdp9991LHTp0KO29996lY489tvTd7363tGzZslKptOWfQwAAaIvMZf/BXHbbz2VLpVKpf//+b9rHoUOHlpKUfvazn22yzfr78OKLL5bGjh1b6tmzZ6ljx46lYcOGla655ppN7vfb3/629NGPfrTUu3fvUlVVValHjx6lIUOGlL70pS+V5s6dW27385//vHTKKaeU3vnOd5Z23333UufOnUt1dXWlM844o/Tss89u1bUDANtGRalUKm3PUB4AYEc799xz841vfCO33357Ro4c2drdAQAAoBX97W9/S58+fdK9e/csXLhwkyuMVVRUZPjw4Rt9JzsAsGvzTnMAoM3a2DvjHnvssXz/+99P9+7dM3z48FboFQAAADuTSy+9NCtWrMiECRO2ySu5AIBdj3eaAwBt1iGHHJJBgwZl//33T5cuXfL000/nf/7nf8rvD+zUqVNrdxEAAIBW0NjYmEsvvTQvvvhiLrvssvTu3TsTJkxo7W4BADspoTkA0GZ99rOfzc0335zrrrsuf/vb31JbW5uRI0fmy1/+ckaMGNHa3QMAAKCVLF++PGeffXY6duyYgw8+OD/4wQ+y2267tXa3AICdlHeaAwAAAAAAAFBYXuACAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIVV2dod2JktX748zc3Nrd0NAACAnU5lZWW6devW2t1oU8wxAQAANs4ck9YmNH8Dzc3NaWpqau1uAAAAsAswxwQAAICdk+XZAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYVW2dgde64knnshPf/rTLFy4MMuXL8+Xv/zlHHbYYeX6UqmUWbNm5c4778zKlSszePDg1NfXp3fv3uU2K1asyOWXX54HHnggFRUVOfzww/PpT386nTp1ao1LAgAAoJWcdtppWbp06QblH/jAB1JfX581a9Zk5syZuffee9PU1JQhQ4akvr4+tbW15bbLli3LZZddlscffzydOnXK8OHDM2bMmLRv334HXgkAAACwPe1UT5qvXr06AwYMyGc+85mN1t9yyy257bbbMn78+HzjG99Ix44dc9FFF2XNmjXlNt///vfz/PPPZ+LEiTnrrLPy5JNPZtq0aTvqEgAAANhJXHzxxfnRj35U/jdx4sQkyZFHHpkkueqqq/LAAw/kzDPPzOTJk7N8+fJMnTq1vP+6dety8cUXp7m5ORdeeGFOO+203H333bnhhhta5XoAAACA7WOnetJ82LBhGTZs2EbrSqVSbr311px88sk59NBDkySnn356xo8fn7lz5+boo4/OCy+8kIcffjgXX3xx9t133yTJqaeemosvvjif/OQn0717940eu6mpKU1NTeXtioqKVFdXl38GAACg7dl9991bbN98881529velne9611ZtWpV7rrrrnzhC1/I/vvvnySZMGFCvvSlL2XevHmpq6vLI488khdeeCHnnXdeamtrM2DAgIwePTrXXHNNPvaxj6WycuNTanNMAAAAaFt2qtD8jSxZsiQNDQ058MADy2WdO3fOoEGDMm/evBx99NGZN29eunTpUg7Mk+SAAw5IRUVF5s+f32Kp99eaM2dOZs+eXd4eOHBgpkyZkp49e75pvx4Ye9xbuCo25uBrbt3mxzRO255x2vltjzFKjNO25rPUNhintsE4tQ3Gaee3vf4borU1Nzfnt7/9bY4//vhUVFRkwYIFWbt2bQ444IBym7322is9evQoh+bz5s1Lv379WizXPnTo0EyfPj3PP/98Bg4cuNFzvZU55rbicwGtb1f931MAANgVtZnQvKGhIUlSU1PTorympqZc19DQsMGTBO3bt0/Xrl3LbTZm1KhROeGEE8rb67/5v3Tp0jQ3N7/1zrNFFi9e3NpdYDMYp52fMWobjFPbYJzaBuPUNhinnd/mjlFlZeUODYHfqvvuuy8rV67MiBEjkvxj/lhZWZkuXbq0aPf6OeZrA/P19evrNsUcE0j8fx4AwJZoa3NMdj1tJjTfnqqqqlJVVbXRulKptIN7g3veNhinnZ8xahuMU9tgnNoG49Q2GKed3646Rr/61a8ydOjQTb62a1syxwQSn3cAAGhL2rV2BzbX+m/3NzY2tihvbGws19XW1uavf/1ri/q1a9dmxYoVGzwdAAAAQDEsXbo0jz76aN73vveVy2pra9Pc3JyVK1e2aPv6OebrnyhfPyc1xwQAAIBdR5sJzXv16pXa2to89thj5bJVq1Zl/vz5qaurS5LU1dVl5cqVWbBgQbnNH//4x5RKpQwaNGiH9xkAAIDW96tf/So1NTU56KCDymX77LNP2rdv32KOuWjRoixbtqzFHPO5555r8eXtRx99NNXV1enbt++OuwAAAABgu9qplmd/9dVX89JLL5W3lyxZkmeffTZdu3ZNjx49ctxxx+Wmm25K796906tXr1x//fXp1q1bDj300CRJ3759M3To0EybNi3jx49Pc3NzLr/88hx11FE7ZAk+AAAAdi7r1q3L3XffneHDh6d9+/bl8s6dO+fYY4/NzJkz07Vr13Tu3DmXX3556urqyqH5kCFD0rdv31xyySUZO3ZsGhoacv3112fkyJGbXH4dAAAAaHt2qtD8mWeeyeTJk8vbM2fOTJIMHz48p512Wk488cSsXr0606ZNy6pVqzJ48OCcc8456dChQ3mfz3/+85kxY0YuuOCCVFRU5PDDD8+pp566w68FAACA1vfYY49l2bJlee9737tB3bhx41JRUZGpU6emubk5Q4YMSX19fbm+Xbt2OeusszJ9+vRMnDgxHTt2zPDhwzN69OgdeQkAAADAdrZTheb77bdfZs2atcn6ioqKjB49+g3/QNG1a9d84Qtf2B7dAwAAoI0ZMmTIJueZHTp0SH19fYug/PV69uyZs88+e3t1DwAAANgJtJl3mgMAAAAAAADAtiY0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwKlu7AwAAALC9vPLKK7n66qvz8MMPZ/Xq1dlzzz0zYcKE7LvvvkmSUqmUWbNm5c4778zKlSszePDg1NfXp3fv3uVjrFixIpdffnkeeOCBVFRU5PDDD8+nP/3pdOrUqbUuCwAAANiGPGkOAADALmnFihU577zzUllZmXPOOSff/e5386lPfSpdunQpt7nlllty2223Zfz48fnGN76Rjh075qKLLsqaNWvKbb7//e/n+eefz8SJE3PWWWflySefzLRp01rjkgAAAIDtQGgOAADALumWW27JHnvskQkTJmTQoEHp1atXhgwZkj333DPJP54yv/XWW3PyySfn0EMPTf/+/XP66adn+fLlmTt3bpLkhRdeyMMPP5zPfe5zefvb357Bgwfn1FNPzb333ptXXnmlNS8PAAAA2EYszw4AAMAu6f7778+QIUPyne98J0888US6d++eD3zgA3n/+9+fJFmyZEkaGhpy4IEHlvfp3LlzBg0alHnz5uXoo4/OvHnz0qVLl/Jy7klywAEHpKKiIvPnz89hhx22wXmbmprS1NRU3q6oqEh1dXX5Z6AYfN4BAKDtEJoDAACwS1qyZEnuuOOOHH/88Rk1alSeeeaZXHHFFamsrMyIESPS0NCQJKmpqWmxX01NTbmuoaEhu+++e4v69u3bp2vXruU2rzdnzpzMnj27vD1w4MBMmTIlPXv23GbX9mYW7bAzAZvSu3fv1u4CAACwmYTmAAAA7JLWrVuXfffdN2PGjEnyj/D6ueeeyx133JERI0Zst/OOGjUqJ5xwQnl7/dOmS5cuTXNz83Y7L7BzWbx4cWt3AQCgzaisrNyhXzSG1xOaAwAAsEvq1q1b+vbt26Ksb9+++cMf/pAkqa2tTZI0NjamW7du5TaNjY0ZMGBAuc1f//rXFsdYu3ZtVqxYUd7/9aqqqlJVVbXRulKptBVXArRFPu8AANB2tGvtDgAAAMD28I53vCOLFrVcqHzRokXlpxd69eqV2traPPbYY+X6VatWZf78+amrq0uS1NXVZeXKlVmwYEG5zR//+MeUSqUMGjRoB1wFAAAAsL0JzQEAANglHX/88Xn66adz00035aWXXso999yTO++8MyNHjkzyj2XTjzvuuNx00025//7789xzz+WSSy5Jt27dcuihhyb5x5PpQ4cOzbRp0zJ//vz86U9/yuWXX56jjjoq3bt3b83LAwAAALYRy7MDAACwSxo0aFC+/OUv59prr81PfvKT9OrVK+PGjcu73/3ucpsTTzwxq1evzrRp07Jq1aoMHjw455xzTjp06FBu8/nPfz4zZszIBRdckIqKihx++OE59dRTW+OSAAAAgO1AaA4AAMAu6+CDD87BBx+8yfqKioqMHj06o0eP3mSbrl275gtf+ML26B4AAACwE7A8OwAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhVbZ2B7bEunXrMmvWrPz2t79NQ0NDunfvnuHDh+fDH/5wKioqkiSlUimzZs3KnXfemZUrV2bw4MGpr69P7969W7n3AAAAAAAAAOxs2tST5jfffHPuuOOOfOYzn8l3v/vdjB07Nj/96U9z2223ldvccsstue222zJ+/Ph84xvfSMeOHXPRRRdlzZo1rdhzAAAAAAAAAHZGbSo0nzdvXg455JAcdNBB6dWrV4444ogceOCBmT9/fpJ/PGV+66235uSTT86hhx6a/v375/TTT8/y5cszd+7cVu49AAAAAAAAADubNrU8e11dXe68884sWrQoffr0ybPPPpunnnoqn/rUp5IkS5YsSUNDQw488MDyPp07d86gQYMyb968HH300Rs9blNTU5qamsrbFRUVqa6uLv/MjuWetw3GaednjNoG49Q2GKe2wTi1DcZp52eMAAAAgKJpU6H5SSedlL///e/50pe+lHbt2mXdunX513/917z73e9OkjQ0NCRJampqWuxXU1NTrtuYOXPmZPbs2eXtgQMHZsqUKenZs+eb9mnRll8Gb2J7vH/eOG17xmnntz3GKDFO25rPUttgnNoG49Q2GKed3/b6bwgAAACAnVWbCs1///vf55577snnP//57L333nn22Wdz5ZVXplu3bhkxYsRWH3fUqFE54YQTytvrn6xYunRpmpub32q32UKLFy9u7S6wGYzTzs8YtQ3GqW0wTm2DcWobjNPOb3PHqLKycrO+aAwAAACws2tTofnVV1+dE088sbzMer9+/bJ06dLcfPPNGTFiRGpra5MkjY2N6datW3m/xsbGDBgwYJPHraqqSlVV1UbrSqXSNus/m8c9bxuM087PGLUNxqltME5tg3FqG4zTzs8YAQAAAEXTrrU7sCVWr16ddu1adrldu3blP+r06tUrtbW1eeyxx8r1q1atyvz581NXV7dD+woAAAAAAADAzq9NPWl+8MEH56abbkqPHj3St2/fPPvss/nZz36W9773vUn+saz6cccdl5tuuim9e/dOr169cv3116dbt2459NBDW7n3AAAAAAAAAOxs2lRofuqpp+aGG27I9OnT09jYmO7du+ef/umf8pGPfKTc5sQTT8zq1aszbdq0rFq1KoMHD84555yTDh06tGLPAQAAAAAAANgZtanQvLq6OqecckpOOeWUTbapqKjI6NGjM3r06B3XMQAAAAAAAADapDb1TnMAAAAAAAAA2JaE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIVV2dodAAAAgO1h1qxZmT17douyPn365Hvf+16SZM2aNZk5c2buvffeNDU1ZciQIamvr09tbW25/bJly3LZZZfl8ccfT6dOnTJ8+PCMGTMm7du334FXAgAAAGxPQnMAAAB2WXvvvXfOO++88na7dv9vwbWrrroqDz74YM4888x07tw5M2bMyNSpU/P1r389SbJu3bpcfPHFqa2tzYUXXpjly5fnkksuSfv27TNmzJgdfi0AAADA9mF5dgAAAHZZ7dq1S21tbfnf7rvvniRZtWpV7rrrrowbNy77779/9tlnn0yYMCFPPfVU5s2blyR55JFH8sILL+SMM87IgAEDMmzYsIwePTo///nP09zc3JqXBQAAAGxDnjQHAABgl/XSSy/ls5/9bKqqqlJXV5cxY8akR48eWbBgQdauXZsDDjig3HavvfZKjx49Mm/evNTV1WXevHnp169fi+Xahw4dmunTp+f555/PwIEDN3rOpqamNDU1lbcrKipSXV1d/hkoBp93AABoO4TmAAAA7JLe/va3Z8KECenTp0+WL1+e2bNn52tf+1qmTp2ahoaGVFZWpkuXLi32qampSUNDQ5KkoaGhRWC+vn593abMmTOnxbvUBw4cmClTpqRnz57b5Lo2x6IddiZgU3r37t3aXQAAADaT0BwAAIBd0rBhw8o/9+/fvxyi//73v0+HDh2223lHjRqVE044oby9/mnTpUuXWtYdCmTx4sWt3QUAgDajsrJyh37RGF5PaA4AAEAhdOnSJX369MlLL72UAw88MM3NzVm5cmWLp80bGxvLT5fX1tZm/vz5LY7R2NhYrtuUqqqqVFVVbbSuVCq9tYsA2gyfdwAAaDvatXYHAAAAYEd49dVX89JLL6W2tjb77LNP2rdvn8cee6xcv2jRoixbtix1dXVJkrq6ujz33HPloDxJHn300VRXV6dv3747vP8AAADA9uFJcwAAAHZJM2fOzCGHHJIePXpk+fLlmTVrVtq1a5djjjkmnTt3zrHHHpuZM2ema9eu6dy5cy6//PLU1dWVQ/MhQ4akb9++ueSSSzJ27Ng0NDTk+uuvz8iRIzf5JDkAAADQ9gjNAQAA2CW98sor+a//+q/87W9/y+67757Bgwfnoosuyu67754kGTduXCoqKjJ16tQ0NzdnyJAhqa+vL+/frl27nHXWWZk+fXomTpyYjh07Zvjw4Rk9enRrXRIAAACwHQjNAQAA2CV98YtffMP6Dh06pL6+vkVQ/no9e/bM2WefvY17BgAAAOxMvNMcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFiVrd2BLfXKK6/k6quvzsMPP5zVq1dnzz33zIQJE7LvvvsmSUqlUmbNmpU777wzK1euzODBg1NfX5/evXu3cs8BAAAAAAAA2Nm0qdB8xYoVOe+887LffvvlnHPOye67757FixenS5cu5Ta33HJLbrvttpx22mnp1atXbrjhhlx00UX5zne+kw4dOrRi7wEAAAAAAADY2bSp0PyWW27JHnvskQkTJpTLevXqVf65VCrl1ltvzcknn5xDDz00SXL66adn/PjxmTt3bo4++uiNHrepqSlNTU3l7YqKilRXV5d/Zsdyz9sG47TzM0Ztg3FqG4xT22Cc2gbjtPMzRgAAAEDRtKnQ/P7778+QIUPyne98J0888US6d++eD3zgA3n/+9+fJFmyZEkaGhpy4IEHlvfp3LlzBg0alHnz5m0yNJ8zZ05mz55d3h44cGCmTJmSnj17vmmfFr3Fa2JD22MpfeO07Rmnnd/2ei2Fcdq2fJbaBuPUNhintsE47fy82goAAAAomjYVmi9ZsiR33HFHjj/++IwaNSrPPPNMrrjiilRWVmbEiBFpaGhIktTU1LTYr6amply3MaNGjcoJJ5xQ3l7/ZMXSpUvT3Ny8za+DN7Z48eLW7gKbwTjt/IxR22Cc2gbj1DYYp7bBOO38NneMKisrN+uLxgAAAAA7uzYVmq9bty777rtvxowZk+QfT4Q/99xzueOOOzJixIitPm5VVVWqqqo2Wlcqlbb6uGwd97xtME47P2PUNhintsE4tQ3GqW0wTjs/YwQAAAAUTbvW7sCW6NatW/r27duirG/fvlm2bFmSpLa2NknS2NjYok1jY2O5DgAAAAAAAADWa1Oh+Tve8Y4sWtTyjYWLFi0qLwnYq1ev1NbW5rHHHivXr1q1KvPnz09dXd0O7SsAAAAAAAAAO782FZoff/zxefrpp3PTTTflpZdeyj333JM777wzI0eOTPKPd5Efd9xxuemmm3L//ffnueeeyyWXXJJu3brl0EMPbeXeAwAAAAAAALCzaVPvNB80aFC+/OUv59prr81PfvKT9OrVK+PGjcu73/3ucpsTTzwxq1evzrRp07Jq1aoMHjw455xzTjp06NCKPQcAAAAAAABgZ9SmQvMkOfjgg3PwwQdvsr6ioiKjR4/O6NGjd2CvAAAAAAAAAGiL2tTy7AAAAAAAAACwLQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCqmztDgAAAMD2dvPNN+faa6/Ncccdl1NOOSVJsmbNmsycOTP33ntvmpqaMmTIkNTX16e2tra837Jly3LZZZfl8ccfT6dOnTJ8+PCMGTMm7du3b50LAQAAALY5T5oDAACwS5s/f37uuOOO9O/fv0X5VVddlQceeCBnnnlmJk+enOXLl2fq1Knl+nXr1uXiiy9Oc3NzLrzwwpx22mm5++67c8MNN+zoSwAAAAC2I0+aAwAAsMt69dVX84Mf/CCf/exnc9NNN5XLV61albvuuitf+MIXsv/++ydJJkyYkC996UuZN29e6urq8sgjj+SFF17Ieeedl9ra2gwYMCCjR4/ONddck4997GOprNz4lLqpqSlNTU3l7YqKilRXV5d/BorB5x0AANoOoTkAAAC7rOnTp2fYsGE58MADW4TmCxYsyNq1a3PAAQeUy/baa6/06NGjHJrPmzcv/fr1a7Fc+9ChQzN9+vQ8//zzGThw4EbPOWfOnMyePbu8PXDgwEyZMiU9e/bc9he4CYt22JmATendu3drdwEAANhMQnMAAAB2Sb/73e+ycOHCXHzxxRvUNTQ0pLKyMl26dGlRXlNTk4aGhnKb1wbm6+vX123KqFGjcsIJJ5S31z9tunTp0jQ3N2/FlQBt0eLFi1u7CwAAbUZlZeUO/aIxvJ7QHAAAgF3OsmXLcuWVV2bixInp0KHDDj13VVVVqqqqNlpXKpV2aF+A1uPzDgAAbYfQHAAAgF3OggUL0tjYmK9+9avlsnXr1uXJJ5/M7bffnnPPPTfNzc1ZuXJli6fNGxsby0+X19bWZv78+S2O29jYWK4DAAAAdg1CcwAAAHY5BxxwQL797W+3KLv00kvTp0+fnHjiienRo0fat2+fxx57LEcccUSSZNGiRVm2bFnq6uqSJHV1dbnpppvS2NhYXpb90UcfTXV1dfr27btjLwgAAADYboTmAAAA7HKqq6vTr1+/FmUdO3bMbrvtVi4/9thjM3PmzHTt2jWdO3fO5Zdfnrq6unJoPmTIkPTt2zeXXHJJxo4dm4aGhlx//fUZOXLkJpdfBwAAANoeoTkAAACFNG7cuFRUVGTq1Klpbm7OkCFDUl9fX65v165dzjrrrEyfPj0TJ05Mx44dM3z48IwePboVew0AAABsa1sdmv/617/OO9/5zvTq1Wuj9UuWLMmTTz6Z4cOHb3XnAAAAKIYdMcc8//zzW2x36NAh9fX1LYLy1+vZs2fOPvvsrT4nAAAAsPNrt7U7/vd//3fmzZu3yfr58+fnv//7v7f28AAAABSIOSYAAADQWrY6NH8zr776atq3b7+9Dg8AAECBmGMCAAAA28sWLc/+5z//Oc8++2x5+8knn8zatWs3aLdy5crccccd6d2791vuIAAAALsmc0wAAABgZ7BFofl9992X2bNnl7d/+ctf5pe//OVG23bu3Dmnn376W+sdAAAAuyxzTAAAAGBnsEWh+fvf//4cfPDBKZVKOeecc/Kxj30sw4YN26Bdp06d8ra3vc3SeQAAAGySOSYAAACwM9ii0Lxbt27p1q1bkmTSpEnZa6+9UlNTs106BgAAwK7NHBMAAADYGWxRaP5a73rXu7ZlPwAAACgwc0wAAACgtWx1aJ4kDz/8cO66664sWbIkK1euTKlUalFfUVGRH/zgB2+pgwAAABSDOSYAAADQGrY6NP/pT3+aa665JrW1tdl3333Tr1+/bdkvAAAACsQcEwAAAGgtWx2a33rrrdl///1z9tlnp7LyLT2wDgAAQMGZYwIAAACtpd3W7rhy5cocccQR/pgBAADAW2aOCQAAALSWrQ7NBw0alEWLFm3LvgAAAFBQ5pgAAABAa9nq0Pwzn/lM7rvvvtxzzz3bsj8AAAAUkDkmAAAA0Fq2et27733ve1m7dm1+8IMf5LLLLssee+yRdu1aZvAVFRX5z//8z7fcSQAAAHZt5pgAAABAa9nq0Lxr167Zbbfd0rt3723ZHwAAAArIHBMAAABoLVsdmp9//vnbsBsAAAAUmTkmAAAA0Fq2+p3mAAAAAAAAANDWbfWT5k888cRmtXvXu961tacAAACgIMwxAQAAgNay1aH55MmTN6vdDTfcsLWnAAAAoCDMMQEAAIDWstWh+aRJkzYoW7duXZYsWZI777wz69aty9ixY99S5wAAACgGc0wAAACgtWx1aP5GS+KNGDEikyZNyuOPP579999/a08BAABAQZhjAgAAAK2l3XY5aLt2Oeqoo3LXXXdtj8MDAABQIOaYAAAAwPa0XULzJFmxYkVWrly5vQ4PAABAgZhjAgAAANvLVi/PvmzZso2Wr1y5Mk8++WR++tOf5p3vfOdWdwwAAIDiMMcEAAAAWstWh+annXbaG9a//e1vz/jx47f28AAAABSIOSYAAADQWrY6NP/3f//3DcoqKirSpUuX7Lnnnunbt+9b6hgAAADFYY4JAAAAtJatDs1HjBixDbsBAABAkZljAgAAAK1lq0Pz13rhhReydOnSJEnPnj09AQAAAMBWM8cEAAAAdqS3FJrPnTs3M2fOzJIlS1qU9+rVK+PGjcshhxzyljoHAABAcZhjAgAAAK1hq0PzBx98MFOnTk3Pnj3z8Y9/vPzN/xdeeCF33nlnvv3tb+ess87K0KFDt1VfAQAA2EWZYwIAAACtZatD85/85Cfp379/Jk+enE6dOpXLDznkkHzwgx/M1772tdx4443+oAEAAMCbMscEAAAAWku7rd3xueeey/Dhw1v8MWO9Tp06ZcSIEXnuuefeUucAAAAoBnNMAAAAoLVsdWheVVWVFStWbLJ+xYoVqaqq2trDAwAAUCDmmAAAAEBr2erQfP/998+tt96aefPmbVD39NNP57bbbssBBxzwljoHAABAMZhjAgAAAK1lq99p/olPfCLnnntuzjvvvAwaNCh9+vRJkixatCjz589PTU1Nxo4du806CgAAwK7LHBMAAABoLVsdmvfq1Svf/va3M2fOnDz88MO59957kyQ9e/bMcccdl5NOOik1NTXbrKMAAADsuswxAQAAgNay1aH52rVrU1VVlVNOOWWj9atWrcratWvTvn37rT0FAAAABWGOCQAAALSWrX6n+RVXXJHzzjtvk/XnnXdeZs6cubWHBwAAoEDMMQEAAIDWstWh+cMPP5zDDz98k/VHHHFEHnrooa09PAAAAAVijgkAAAC0lq0OzZcvX57u3btvsr5bt2555ZVXtvbwAAAAFIg5JgAAANBatjo079q1axYtWrTJ+hdffDHV1dVbe3gAAAAKxBwTAAAAaC1bHZoPHTo0v/zlL7Nw4cIN6hYsWJBf/vKXGTZs2FvqHAAAAMVgjgkAAAC0lsqt3XH06NF5+OGHc8455+Tggw/O3nvvnSR5/vnn88ADD2T33XfP6NGjt1lHAQAA2HWZYwIAAACtZatD8+7du+eb3/xmrrnmmtx///2ZO3dukqS6ujrHHHNMPv7xj7/h++gAAABgPXNMAAAAoLVsdWieJN26dcvpp5+eUqmUv/71r0mS3XffPRUVFdukcwAAABSHOSYAAADQGt5SaL5eRUVFampqtsWhAAAAKDhzTAAAAGBHatfaHQAAAAAAAACA1iI0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCqmztDgAAAMD28Itf/CK/+MUvsnTp0iRJ375985GPfCTDhg1LkqxZsyYzZ87Mvffem6ampgwZMiT19fWpra0tH2PZsmW57LLL8vjjj6dTp04ZPnx4xowZk/bt27fGJQEAAADbgdAcAACAXVL37t0zZsyY9O7dO6VSKb/+9a/zrW99K9/61rey995756qrrsqDDz6YM888M507d86MGTMyderUfP3rX0+SrFu3LhdffHFqa2tz4YUXZvny5bnkkkvSvn37jBkzppWvDgAAANhWLM8OAADALumQQw7JQQcdlN69e6dPnz75+Mc/nk6dOuXpp5/OqlWrctddd2XcuHHZf//9s88++2TChAl56qmnMm/evCTJI488khdeeCFnnHFGBgwYkGHDhmX06NH5+c9/nubm5la+OgAAAGBb8aQ5AAAAu7x169bl97//fVavXp26urosWLAga9euzQEHHFBus9dee6VHjx6ZN29e6urqMm/evPTr16/Fcu1Dhw7N9OnT8/zzz2fgwIEbPVdTU1OamprK2xUVFamuri7/DBSDzzsAALQdQnMAAAB2Wc8991zOPffcNDU1pVOnTvnyl7+cvn375tlnn01lZWW6dOnSon1NTU0aGhqSJA0NDS0C8/X16+s2Zc6cOZk9e3Z5e+DAgZkyZUp69uy5Ta5pcyzaYWcCNqV3796t3QUAAGAzCc0BAADYZfXp0yf/+Z//mVWrVuV///d/88Mf/jCTJ0/eruccNWpUTjjhhPL2+qdNly5dall3KJDFixe3dhcAANqMysrKHfpFY3g9oTkAAAC7rMrKyuy5555Jkn322SfPPPNMbr311hx11FFpbm7OypUrWzxt3tjYWH66vLa2NvPnz29xvMbGxnLdplRVVaWqqmqjdaVS6S1cDdCW+LwDAEDb0a61OwAAAAA7yrp169LU1JR99tkn7du3z2OPPVauW7RoUZYtW5a6urokSV1dXZ577rlyUJ4kjz76aKqrq9O3b98d3ncAAABg+/CkOQAAALuka6+9NkOHDk2PHj3y6quv5p577skTTzyRc889N507d86xxx6bmTNnpmvXruncuXMuv/zy1NXVlUPzIUOGpG/fvrnkkksyduzYNDQ05Prrr8/IkSM3+SQ5AAAA0PYIzQEAANglNTY25oc//GGWL1+ezp07p3///jn33HNz4IEHJknGjRuXioqKTJ06Nc3NzRkyZEjq6+vL+7dr1y5nnXVWpk+fnokTJ6Zjx44ZPnx4Ro8e3VqXBAAAAGwHQnMAAAB2Sf/+7//+hvUdOnRIfX19i6D89Xr27Jmzzz57W3cNAAAA2Il4pzkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKq7K1O/BW3Hzzzbn22mtz3HHH5ZRTTkmSrFmzJjNnzsy9996bpqamDBkyJPX19amtrW3VvgIAAAAAAACw82mzT5rPnz8/d9xxR/r379+i/KqrrsoDDzyQM888M5MnT87y5cszderUVuolAAAAAAAAADuzNhmav/rqq/nBD36Qz372s+nSpUu5fNWqVbnrrrsybty47L///tlnn30yYcKEPPXUU5k3b14r9hgAAAAAAACAnVGbXJ59+vTpGTZsWA488MDcdNNN5fIFCxZk7dq1OeCAA8ple+21V3r06JF58+alrq5uo8drampKU1NTebuioiLV1dXln9mx3PO2wTjt/IxR22Cc2gbj1DYYp7bBOO38jBEAAABQNG0uNP/d736XhQsX5uKLL96grqGhIZWVlS2ePk+SmpqaNDQ0bPKYc+bMyezZs8vbAwcOzJQpU9KzZ8837c+ize86m6l3797b/JjGadszTju/7TFGiXHa1nyW2gbj1DYYp7bBOO38ttd/QwAAAADsrNpUaL5s2bJceeWVmThxYjp06LDNjjtq1KiccMIJ5e31T1YsXbo0zc3N2+w8bJ7Fixe3dhfYDMZp52eM2gbj1DYYp7bBOLUNxmnnt7ljVFlZuVlfNAYAAADY2bWp0HzBggVpbGzMV7/61XLZunXr8uSTT+b222/Pueeem+bm5qxcubLF0+aNjY2pra3d5HGrqqpSVVW10bpSqbTN+s/mcc/bBuO08zNGbYNxahuMU9tgnNoG47TzM0YAAABA0bSp0PyAAw7It7/97RZll156afr06ZMTTzwxPXr0SPv27fPYY4/liCOOSJIsWrQoy5Yt2+T7zAEAAAAAAAAorjYVmldXV6dfv34tyjp27JjddtutXH7sscdm5syZ6dq1azp37pzLL788dXV1QnMAAAAAAAAANtCmQvPNMW7cuFRUVGTq1Klpbm7OkCFDUl9f39rdAgAAAAAAAGAn1OZD8/PPP7/FdocOHVJfXy8oBwAAAAAAAOBNtWvtDgAAAAAAAABAaxGaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMKqbO0OAAAAwPYwZ86c3HfffXnxxRfToUOH1NXV5ROf+ET69OlTbrNmzZrMnDkz9957b5qamjJkyJDU19entra23GbZsmW57LLL8vjjj6dTp04ZPnx4xowZk/bt27fCVQEAAADbmifNAQAA2CU98cQTGTlyZC666KJMnDgxa9euzYUXXphXX3213Oaqq67KAw88kDPPPDOTJ0/O8uXLM3Xq1HL9unXrcvHFF6e5uTkXXnhhTjvttNx999254YYbWuOSAAAAgO1AaA4AAMAu6dxzz82IESOy9957Z8CAATnttNOybNmyLFiwIEmyatWq3HXXXRk3blz233//7LPPPpkwYUKeeuqpzJs3L0nyyCOP5IUXXsgZZ5yRAQMGZNiwYRk9enR+/vOfp7m5uTUvDwAAANhGLM8OAABAIaxatSpJ0rVr1yTJggULsnbt2hxwwAHlNnvttVd69OiRefPmpa6uLvPmzUu/fv1aLNc+dOjQTJ8+Pc8//3wGDhy4wXmamprS1NRU3q6oqEh1dXX5Z6AYfN4BAKDtEJoDAACwy1u3bl2uvPLKvOMd70i/fv2SJA0NDamsrEyXLl1atK2pqUlDQ0O5zWsD8/X16+s2Zs6cOZk9e3Z5e+DAgZkyZUp69uy5bS5mMyzaYWcCNqV3796t3QUAAGAzCc0BAADY5c2YMSPPP/98Lrjggu1+rlGjRuWEE04ob69/2nTp0qWWdIcCWbx4cWt3AQCgzaisrNyhXzSG1xOaAwAAsEubMWNGHnzwwUyePDl77LFHuby2tjbNzc1ZuXJli6fNGxsby0+X19bWZv78+S2O19jYWK7bmKqqqlRVVW20rlQqvYUrAdoSn3cAAGg72rV2BwAAAGB7KJVKmTFjRu6777587WtfS69evVrU77PPPmnfvn0ee+yxctmiRYuybNmy1NXVJUnq6ury3HPPlYPyJHn00UdTXV2dvn377pgLAQAAALYrT5oDAACwS5oxY0buueeefOUrX0l1dXX5HeSdO3dOhw4d0rlz5xx77LGZOXNmunbtms6dO+fyyy9PXV1dOTQfMmRI+vbtm0suuSRjx45NQ0NDrr/++owcOXKTT5MDAAAAbYvQHAAAgF3SL37xiyTJ+eef36J8woQJGTFiRJJk3LhxqaioyNSpU9Pc3JwhQ4akvr6+3LZdu3Y566yzMn369EycODEdO3bM8OHDM3r06B11GQAAAMB2JjQHAABglzRr1qw3bdOhQ4fU19e3CMpfr2fPnjn77LO3ZdcAAACAnYh3mgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFhCcwAAAAAAAAAKS2gOAAAAAAAAQGEJzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYla3dgS0xZ86c3HfffXnxxRfToUOH1NXV5ROf+ET69OlTbrNmzZrMnDkz9957b5qamjJkyJDU19entra29ToOAAAAAAAAwE6pTT1p/sQTT2TkyJG56KKLMnHixKxduzYXXnhhXn311XKbq666Kg888EDOPPPMTJ48OcuXL8/UqVNbsdcAAAAAAAAA7Kza1JPm5557bovt0047LfX19VmwYEHe9a53ZdWqVbnrrrvyhS98Ifvvv3+SZMKECfnSl76UefPmpa6ubqPHbWpqSlNTU3m7oqIi1dXV5Z/ZsdzztsE47fyMUdtgnNoG49Q2GKe2wTjt/IwRAAAAUDRtKjR/vVWrViVJunbtmiRZsGBB1q5dmwMOOKDcZq+99kqPHj3eMDSfM2dOZs+eXd4eOHBgpkyZkp49e75pHxa9lQtgo3r37r3Nj2mctj3jtPPbHmOUGKdtzWepbTBObYNxahuM085ve/03BAAAAMDOqs2G5uvWrcuVV16Zd7zjHenXr1+SpKGhIZWVlenSpUuLtjU1NWloaNjksUaNGpUTTjihvL3+yYqlS5emubl523eeN7R48eLW7gKbwTjt/IxR22Cc2gbj1DYYp7bBOO38NneMKisrN+uLxgAAAAA7uzYbms+YMSPPP/98Lrjggrd8rKqqqlRVVW20rlQqveXjs2Xc87bBOO38jFHbYJzaBuPUNhintsE47fyMEQAAAFA07Vq7A1tjxowZefDBBzNp0qTsscce5fLa2to0Nzdn5cqVLdo3NjamtrZ2B/cSAAAAAAAAgJ1dmwrNS6VSZsyYkfvuuy9f+9rX0qtXrxb1++yzT9q3b5/HHnusXLZo0aIsW7Zsk+8zBwAAAAAAAKC42tTy7DNmzMg999yTr3zlK6muri6/p7xz587p0KFDOnfunGOPPTYzZ85M165d07lz51x++eWpq6sTmgMAAAAAAACwgTYVmv/iF79Ikpx//vktyidMmJARI0YkScaNG5eKiopMnTo1zc3NGTJkSOrr63dwTwEAAAAAAABoC9pUaD5r1qw3bdOhQ4fU19cLygEAAAAAAAB4U23qneYAAAAAAAAAsC0JzQEAAAAAAAAoLKE5AAAAAAAAAIUlNAcAAAAAAACgsITmAAAAAAAAABSW0BwAAAAAAACAwhKaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsoTkAAAAAAAAAhSU0BwAAAAAAAKCwhOYAAAAAAAAAFJbQHAAAAAAAAIDCEpoDAAAAAAAAUFiVrd0BAAAA2B6eeOKJ/PSnP83ChQuzfPnyfPnLX85hhx1Wri+VSpk1a1buvPPOrFy5MoMHD059fX169+5dbrNixYpcfvnleeCBB1JRUZHDDz88n/70p9OpU6fWuCQAAABgO/CkOQAAALuk1atXZ8CAAfnMZz6z0fpbbrklt912W8aPH59vfOMb6dixYy666KKsWbOm3Ob73/9+nn/++UycODFnnXVWnnzyyUybNm1HXQIAAACwA3jSHAAAgF3SsGHDMmzYsI3WlUql3HrrrTn55JNz6KGHJklOP/30jB8/PnPnzs3RRx+dF154IQ8//HAuvvji7LvvvkmSU089NRdffHE++clPpnv37hs9dlNTU5qamsrbFRUVqa6uLv8MFIPPOwAAtB1CcwAAAApnyZIlaWhoyIEHHlgu69y5cwYNGpR58+bl6KOPzrx589KlS5dyYJ4kBxxwQCoqKjJ//vwWS72/1pw5czJ79uzy9sCBAzNlypT07Nlz+13Q6yzaYWcCNuW1r3oAAAB2bkJzAAAACqehoSFJUlNT06K8pqamXNfQ0JDdd9+9RX379u3TtWvXcpuNGTVqVE444YTy9vqnTZcuXZrm5ua33nmgTVi8eHFrdwEAoM2orKzcoV80htcTmgMAAMA2VFVVlaqqqo3WlUqlHdwboLX4vAMAQNvRrrU7AAAAADtabW1tkqSxsbFFeWNjY7mutrY2f/3rX1vUr127NitWrCi3AQAAANo+oTkAAACF06tXr9TW1uaxxx4rl61atSrz589PXV1dkqSuri4rV67MggULym3++Mc/plQqZdCgQTu8zwAAAMD2YXl2AAAAdkmvvvpqXnrppfL2kiVL8uyzz6Zr167p0aNHjjvuuNx0003p3bt3evXqleuvvz7dunXLoYcemiTp27dvhg4dmmnTpmX8+PFpbm7O5ZdfnqOOOirdu3dvrcsCAAAAtjGhOQAAALukZ555JpMnTy5vz5w5M0kyfPjwnHbaaTnxxBOzevXqTJs2LatWrcrgwYNzzjnnpEOHDuV9Pv/5z2fGjBm54IILUlFRkcMPPzynnnrqDr8WAAAAYPsRmgMAALBL2m+//TJr1qxN1ldUVGT06NEZPXr0Jtt07do1X/jCF7ZH9wAAAICdhHeaAwAAAAAAAFBYQnMAAAAAAAAACktoDgAAAAAAAEBhCc0BAAAAAAAAKCyhOQAAAAAAAACFJTQHAAAAAAAAoLCE5gAAAAAAAAAUltAcAAAAAAAAgMISmgMAAAAAAABQWEJzAAAAAAAAAApLaA4AAAAAAABAYQnNAQAAAAAAACgsofn/z959h0VxtW0Av3fpHZWqICgWsAB2BaXZSxQVu0axRY2xRKOxJFhjT9So0Rh7713EhoINe0FBbKg0EZEmddn5/vDbeVlBhURZkft3XV4JU3afnWGHOeeZ8xwiIiIiIiIiIiIiIiIiIiq1mDQnIiIiIiIiIiIiIiIiIqJSi0lzIiIiIiIiIiIiIiIiIiIqtZg0JyIiIiIiIiIiIiIiIiKiUotJcyIiIiIiIiIiIiIiIiIiKrWYNCciIiIiIiIiIiIiIiIiolKLSXMiIiIiIiIiIiIiIiIiIiq1mDQnIiIiIiIiIiIiIiIiIqJSi0lzIiIiIiIiIiIiIiIiIiIqtZg0JyIiIiIiIiIiIiIiIiKiUotJcyIiIiIiIiIiIiIiIiIiKrXUVR0AERERERERERERlSyxPw1WdQhEpZ7lgn9UHQIREdFXgyPNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUYtKciIiIiIiIiIiIiIiIiIhKLSbNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUYtKciIiIiIiIiIiIiIiIiIhKLSbNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUYtKciIiIiIiIiIiIiIiIiIhKLSbNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUUld1AERERERERERERERERHnF/jRY1SEQlXqWC/5RdQhExYYjzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUYtKciIiIiIiIiIiIiIiIiIhKLSbNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUYtKciIiIiIiIiIiIiIiIiIhKLSbNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUYtKciIiIiIiIiIiIiIiIiIhKLSbNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotJs2JiIiIiIiIiIiIiIiIiKjUYtKciIiIiIiIiIiIiIiIiIhKLSbNiYiIiIiIiIiIiIiIiIio1GLSnIiIiIiIiIiIiIiIiIiISi0mzYmIiIiIiIiIiIiIiIiIqNRi0pyIiIiIiIiIiIiIiIiIiEotdVUH8LkcO3YMhw4dQlJSEmxsbDBw4EBUqVJF1WERERERERFRCcQ2JhEREREREdHX66scaX7hwgVs3LgRPj4+mDdvHmxsbDB79mwkJyerOjQiIiIiIiIqYdjGJCIiIiIiIvq6fZVJ88OHD6N58+bw9PSElZUVhgwZAk1NTQQGBqo6NCIiIiIiIiph2MYkIiIiIiIi+rp9deXZZTIZHj9+DG9vb3GZVCpF7dq1ERERUeA+OTk5yMnJEX+WSCTQ0dGBuvrHD4+Ord1/jpmUaWhofPLX5Hn69Hievnyf4xwBPE+fGr9LJQPPU8nA81Qy8Dx9+Qp7jgrTXvoaFHcb81Ph94JI9T5Xm+xLwesMkerxOkNEn1txXmdKSxuTvlwSQRAEVQfxKSUmJmLYsGGYNWsWqlWrJi7fvHkz7t27h99++y3fPjt37sTu3bvFn11dXTF69OhiiZeIiIiIiIi+XGxjEhEREREREX39vsry7EXVuXNnrF+/Xvw3ZMgQpVEBX4OMjAxMnDgRGRkZqg6F3oPnqGTgeSoZeJ5KBp6nkoHn6cvHc1Qy8DyVLqWhjUmfF68ZRPS58TpDRJ8brzNEVNJ8dbUODA0NIZVKkZSUpLQ8KSkJxsbGBe6joaHx1ZeyEQQBT548wVdWWOCrwnNUMvA8lQw8TyUDz1PJwPP05eM5Khl4nkoutjFJFXjNIKLPjdcZIvrceJ0hopLmqxtprq6ujsqVKyM0NFRcJpfLERoaqlRKj4iIiIiIiOhj2MYkIiIiIiIi+vp9dSPNAaBDhw5Yvnw5KleujCpVquDo0aPIysqCh4eHqkMjIiIiIiKiEoZtTCIiIiIiIqKv21eZNHdxcUFKSgp27tyJpKQk2NraYvLkye8tnVcaaGhowMfHhyUCv2A8RyUDz1PJwPNUMvA8lQw8T18+nqOSgeepZGMbk4obrxlE9LnxOkNEnxuvM0RU0kgETihBRERERERERERERERERESl1Fc3pzkREREREREREREREREREVFhMWlORERERERERERERERERESlFpPmRERERERERERERERERERUajFpTkREREREREREREREREREpRaT5kREREREREREn5lMJlN1CERERERERPQeTJqXUHK5XNUhEBEREdFnkPc+T5Fg4b3fl0kQhA/+TESkcPz4cRw/fhzp6emqDoWIiIiIiIgKwKR5CSSXyyGVvj11Z86cwc2bN1UbEH2QovP00aNHiIqKUnE0RCWX4ruUnJyM7OxsFUdD76M4T2/evOFoqhKEib4vi1QqRWJiIjIzM6Guro7r16/j0qVLTJx/YeRyOSQSCQAgPj4eubm54s9ERO+6e/cujhw5gosXLzJxTkSfxcmTJ9nvRERERPQfMGlewgiCICbMN2/ejF27duHhw4dIS0tjh/cXSiKR4MaNG/j111+RmJiI3NxcVYdEH6D4HvH79GURBAESiQRXr17FypUrce3aNSZkv0CK83Tt2jWsWLECDx484Hn6QimucVFRUcjMzGSi7wuTnp6O5cuXY+nSpQgKCsK8efOgrq4u3gOS6uV9iHX37t3YunUr7t69y/sHIspHcV0YO3YsnJyccODAAVy4cIGJcyL6pLKzs3Ho0CEsWLAAsbGxqg6HiL5SfJCbiL527HkrYRSd2gcPHkRgYCDGjRsHHx8f6Ovrs8P7C5WWlobIyEj06NEDjo6OUFNTU3VI9A5FR9b9+/cRGBiIrKwsfp++MBKJBJcvX8bixYtRvXp12NnZQV1dXVzPm/Yvg+I8LV26FDY2NihTpozSeaIvg+LhhitXruC3335DQEAAcnJyVB0W5aGpqQlPT088f/4cK1euxJAhQ9CwYUM+ePcFUSTMt2zZAn9/f7i4uMDGxkbp/oF/m4gIeHt/pLgeDB06FDVq1MDBgweZOCeiT0pTUxOzZs2CgYEB5s+fj5iYGFWHRERfmbwPDj99+hTPnj1DZGSkaoMiIvrEmDQvgTIzMxEREYEePXqgcuXKePHiBS5fvozZs2dj7dq1iI6OVnWI9P+ioqIwdOhQnDp1CkZGRqoOhwqgSB5dunQJ8+bNQ0JCAl68eCGu44ixL8OLFy+wZcsWDBgwAN7e3jAxMUF2djYiIiKQlJQEqVTK5MQXIDY2Fhs2bECfPn3QvXt3mJubQxAEREVF4fXr16oOj/6fomrDkiVL4O3tjSZNmkBDQ0PVYdH/y83Nhbq6OipXrgxBEGBkZITQ0FBkZmZCTU2N17ovyK1bt3DhwgX88ssvaNiwIfT09JCUlIQ7d+4gMzOTf5uISJT3ejBs2DA4ODgwcU5En5yBgQEmTpwIHR0dLFiwgIlzIvpk8la/3b59O/78808sWrQIc+fOxZYtW/ggPhF9NTj8qwRQJPUUtLW1kZGRgeDgYJiYmMDf3x85OTkwMzPD+fPnkZ6ejpEjR6owYlKcMysrK7Rq1Qr+/v54+fKl0hN59GWQSCS4d+8e/vrrL/Tr1w8tWrQQ1yluCN/9DpJqaGhooHz58sjJycHRo0dx9epVvHjxAmpqavjll19Qvnx5VYdYarzvO5GTkwMDAwPUqlULb968wdmzZ3H58mVER0fD1tYWvXr1QuXKlVUQMeWVkZGBgIAAeHt7o1WrVsjOzkZSUhIuX74MGxsbWFpawtDQUNVhllpqamoIDg7G+fPnMXr0aMTFxeHo0aNYtmwZRo4cCW1tbfF+Ijc3lxVsVExbWxsGBgaIiopCcHAwzp07B0EQoKWlhd9++w06OjqqDpGIVEhxzySXy5XagsOHD8eKFStw8OBBAICLiwt0dXVVGSoRfQUEQYCBgQEmTZqEOXPmYMGCBfjpp5/YViai/0zRB7R//34cP34cEyZMgI2NDXbu3ImDBw/C1dUVtra2qg2SiOgTYPbuCyeXy8U/SnlHvHbt2hW5ubn4888/UaVKFfTs2RMjRoyAj48P0tLS+HSXiijOUd5k0oABA9CqVSvs27cPV69eVVVolMe7I8hv3LgBJycntGjRAunp6QgNDcXKlSsxf/58REZGKpVUJNVQJCD27duHESNG4P79+6hTpw7Gjx8PPT09XL58WdUhlioSiQTJyclISUkBAFy+fBnnz5+Hrq4uoqOjsX37dowfPx53795FrVq1MGjQIMTHxyMqKkrFkZcuea9birLe6enp0NLSQkJCAnR1dZGeno6dO3fijz/+wLZt2/DHH3/gypUrAMBKG8VMcbwzMjLg7++P2rVro2rVqmjSpAlatWqFxMRErFixAllZWZBKpTh+/DguX77M81RMCroPUFNTg0QiwdKlS+Hn54ekpCR06dIFo0aNQlZWFu7du6eCSInoS6FImN+8eRN///03pk+fjhMnTuDp06cAgBEjRsDe3h4HDx7ExYsXOeKciP6VvPeCir4oReJcW1ubI86J6JPJzc3F48ePMWDAANjb2+POnTs4c+YMBg8eDFtbW8hkMlWHSET0n0kE9rR9sfKO5Dt27Bju378Pc3NzODs7w97eHgCQkJAAExMTcZ+ZM2fC3NwcQ4cOVUnMpZnifIWHhyM8PBzp6emwtrZGs2bNAACrV6/G2bNnMWbMGNSvX1/F0ZZe2dnZ0NTUBADExcXBzMwMhw8fRmBgILp27YqQkBBkZ2cjJycHmpqaiIiIwLJlyzjyoxgpvksJCQlIS0uDrq4uzMzM8PjxY9y+fRtSqRRubm4wNjYG8Pa616hRI7Rq1Uq1gZcScrkcWVlZGDlyJDw9PVG+fHmsWrUK33//Pdzc3BAeHo4LFy7A2NgY7u7uKFeuHADAz88Pbm5uaN68uYo/QekSExODpKQk1KhRA5cuXcK5c+cwZswY7N27F/v374eWlhZq1KiBOnXqoEWLFli4cCEAYPz48SqOvHRISkoSr2XA23LfFy9ehEwmQ79+/cSpXWQyGc6dO4cTJ05AJpOhevXqCAgIwKJFi2BlZaWi6EuPvKND4+PjkZ2dLR730NBQPHz4EOXLl0eNGjWgr6+P5ORkzJ49G99++y1q1aqlytCJSMUuX76MZcuWwc3NDTo6Orh8+TLs7OzQokUL1KhRAwCwcuVKXLlyBf369YO7uzsrXBFRoSnazmFhYbh37x6SkpLg6uoq9hmmpaVh9uzZyMzMxIQJE2BpaaniiImoJHm3ymB6ejrGjh2LYcOGQVNTE/PmzUPfvn3RqlUryGQy7N69G05OTnBwcFBh1ERE/w3Ls3+h8v5R2r17N44cOYI6dergypUruHv3Ljw9PeHl5QUTExOkp6cjIiICR48eRXJyMiZNmpTvNejzk0gkCAkJwYoVK9CgQQNkZmbiypUruHz5MsaNG4chQ4ZAIpHgzz//xLBhw9CkSRNVh1zqJCQkYMuWLejduzeePn2KJUuWYOHChahatSoiIyOxbt061KlTBy1btkStWrVw//59bNy4kZUbipHiunX58mVs3boVgiBAU1MT5ubm6N27N7y9vcVts7OzsXfvXkRFRWHIkCGqC7qUkUql0NHRwciRI7FgwQLk5ubC19cXbm5ukMvlsLe3R9WqVZVKRm/btg1xcXGoXbu2CiMvfeRyOQICAnDs2DF07doVe/bswYgRI6Curg4fHx/UqFED6enpqFu3rpgQNDQ0hJqaGst+F4OjR48iMDAQc+bMgbr621vyV69eITAwEAYGBujbty+A/81x3rRpUxgaGuL8+fN48eIFFixYwIR5MVF8P7Zs2YILFy4gLS0NZmZmcHd3h5eXl5gYl8lkSElJwV9//SU+kEJEpdfTp0+xefNmfPvtt2jRogVyc3Nx4sQJhIWFITs7G1KpFPb29hg2bBg0NDRgb2/P9jsRFYmi7bxy5UpUqVIFmpqamD59OgYMGAAXFxcYGBhgypQpmDt3Lvz8/DBjxgxYWFioOmwiKiHevS/R1dWFq6srAgICcPfuXfj6+sLLywvA24d0Hj9+DDMzMybNiahEY9L8C6X4o/T48WOkpKRgwoQJcHBwwLNnz3D06FEEBARAIpHA09MTUVFRuHTpEtTV1TFv3jx2dqtIXFwcNm/ejD59+qBVq1aIiYnBlClTlJJEgwcPRnp6OtavX486depAW1tbhRGXPpGRkUhMTMQff/yBp0+fYvjw4TA3N4e5uTkqVaqEtLQ0pcoN165dg1QqhYaGhgqjLl0Uc8wvW7YMvXv3Rps2bXDs2DGsW7cOtWvXFudiCwoKQmhoKG7duoWff/6ZDf9ipBhxaWRkBB0dHaSlpeH169dITk4WR8Uq/oadPn0aN27cQEREBH7++WeYmZmpMvRSRyqVwtfXF8+fP8fevXvRsWNHuLu7i1O/5B0Bm5CQgJMnT+LChQuYOXMm7yGKgYeHB5ydnaGuro7MzExoa2ujWbNm0NTUxF9//YUDBw6gf//+UFNTg1wuh7q6OurWrYu6desqVU2hzyfvCPOgoCAEBQXB19cXJiYmOHXqFC5evIhXr17Bx8cHenp6OHbsGG7duoW0tDTMnDkTUqlU6TWIqHSRyWRo1KgRPDw8kJCQIFbdcXR0xJIlSyCVSpGdnQ1HR0cMGjRI1eESUQn04MEDrFmzBn379oWXlxeys7PRv39/bNq0CW/evEGrVq2gr6+PCRMmYPHixaoOl4hKiLxtmBMnTiAoKAgzZsyARCKBra0tzp8/j5o1a8LZ2RkAxAeHMzMz4eHhobrAiYg+ASbNv2AhISHYvXs3AIijKytWrIj27dvjyJEjCAgIgIaGBpo2bYoyZcqgXLlykEqlTJirSFJSErS0tNCqVSu8fPkSM2fORJMmTTBw4EAAQHh4OOzt7TFq1CgkJSUxYa4C9evXx9OnT7Fz507Y2NigcuXK4jotLS3xnDx69Ahnz55FcHAw/Pz8WJq9mOSd99HV1RVt2rRBYmIiDh06hJYtW6J169YA3o66tLS0RExMDKZNm8YSc8VMKpXi8uXLOHLkCMaOHYvs7GzMmzcPOTk56NSpE4yMjMTGVbVq1fDo0SP8+uuvqFChgoojL10UjdyIiAi8evUKVatWxdGjR+Ho6IjatWuLiXPg7d+nI0eOIDIyEtOmTYO1tbWKoy8ddHV1oauri4iICCxduhQTJ06EtbU1GjdujJycHPz999/Q1NREr169xOSrRCKBRCJhwryYKK5lly9fRkpKCjp16oTGjRsDAKpUqYK9e/fi4sWLsLe3R6NGjWBmZobatWujffv2fIiVqBR6t9Kbubk5WrZsCalUis2bN6NmzZro06cPtLS0UKlSJYSGhkJXVxfVq1eHpqYmR5kTUZHI5XLExcWJlShfvnwJPz8/tG3bFkZGRti2bRu0tLTQrFkzGBoaYurUqXyQj4g+Km/C/ObNm0hJSUFERASWLFmCMWPGwM3NDUlJSTh16hTmzJkDPT095OTkQCaTYfbs2XxwmIhKPCbNv2C6urooW7YswsLCEBERIXbSWVtbo0OHDjh69Cg2b94MPT091KlTB8DbP2zsnFMNTU1NGBsb4+HDh1i0aBHq1KmDwYMHA3g7wvn8+fMwMDBAhQoVlOYvpeIhk8mgrq4OIyMjeHt7IzIyEhs3bkS3bt1gZ2cndnJFR0cjODgYUVFRmDZtGmxsbFQdeqmh6CjMzs6GqakpXr9+jcmTJ6Nu3bri6JurV68iPT0dbm5uqFSpkljSmD4/xXckPj4ehw8fhoeHB2rUqAGpVIoxY8Zg8eLFkEql+Oabb2BkZIT9+/fDysqKpfNVRCqV4urVq1i7di2GDh0KBwcHrFu3DnPnzsXPP/8sJs6lUim0tLTQtm1bmJiYsBqAClSoUAE6Ojr4/fffMW7cOFhZWcHNzQ2CIGD16tWQSqXo0aMHOx1UJCUlBX/++Seys7PRtm1bpXVdunTBnTt3cObMGTRq1AgNGzYU1/GenKj0UVRM2rZtG2bOnAl9fX3o6ekhOzsbL168QLNmzaClpQWZTAYLCws0bNgQjRs3hpaWlqpDJ6ISRNEuk0qlqFKlCqytrZGdnY1Vq1bB0dERffr0QVZWFo4cOYKNGzdCEAS0a9eO95JEVCiKa8XmzZsREhICFxcX1K1bF9evX8fs2bMxZcoUdOzYETY2NoiNjUVCQgKsrKzQrFkzPjhMRF8FZhu+EAU9gVW7dm1oaWlh7969OHr0KDQ0NFCvXj0AgJWVFVq1agUzMzM4OTmJ+/Am+PMRBAHA286QguaL19fXR3R0NKZMmYLmzZtj6NCh4rozZ84gKioKhoaGxRoz/a9BKZfLAQAtWrQAAFy4cAGnTp3Crl270L17d6VR5x4eHjAxMYG+vr5KYi6t8ibwgoKCcPLkSdSvX198+EQmkyEkJARGRkbiQxBUfCQSCR49eoTg4GDo6+ujYcOG4sjXJk2aAACWLl2K+Ph4cTT67NmzVRx16aO45qWlpeHq1ato166dWDJNMUf2vHnzMGHCBDg6OuLAgQN48uQJhg8fzk77YlDQ/Z6enh6mT5+O3377DfPnz8eECRNgZWUFd3d3SKVS/PXXX1BXV0fXrl1VFHXp8u49nqGhIebMmYM//vgD9+7dQ3x8vNLDJQ4ODnjw4EG+v0u8JycqvaKjozF9+nT4+flBIpEgNTUVampqiI2Nxa1btxAWFoawsDD069cPBgYGqg6XiEoIxT1KTk6OWHVIUXXt5cuXSElJQYcOHaCmpobs7Gw0atQIpqamcHZ25n0JERVJREQETp8+jR9//BG1atWCTCZDaGgoVqxYISbOnZyclHISAB8cJqKvA++avgB5O1CfPn2KiIgIxMXFAXhb2rZjx44wMDDA4cOHce3aNXE/W1tbeHt7i2VP6PPKycmBRCKBTCaDRCJBeHg4Dh06hOPHjyMxMRFmZmYYPnw4pFKpuP7x48fYuHEjzpw5A19fX3aKFDNFo/L69etYsGABfv/9d+zduxcA4OLigubNm0Mmk2HHjh24ffs2du7ciV9++QXlypVjwrwYKB5ESU5ORlpaGlJSUgAAPXv2hKGhITIyMuDj4wO5XA6ZTIadO3fizp078PLyYsJcRS5evIizZ8/i0aNHYoJILpdDEAQ0adIE48ePhyAIkMlkmDNnDipVqqTqkEuF69evIzExEQDEvz9TpkzB8+fPYWtrK26nr6+Pvn37wt3dHbNnz8aMGTOwY8cOdOrUiQnzzyw9PR3A/xKpT548QVBQEO7du4fMzEzo6upi8uTJMDQ0xPz58xEVFQU1NTU0a9YMI0eORKNGjVQZfqmRd9qC3Nxc5ObmAnj7sOqYMWOQnJyMVatW4fnz58jMzERWVhZu3boFAwMD/l0iIgCAvb09fvrpJ8THx8PPzw8AYGJiAg8PD9y5cwerV69GcHAwxo4dy7YhERWaom/jxo0b+P3337FixQqcPn1aXJ+cnIyoqCikpKQgMTERx48fx8OHD9G2bVtYWVmpMHIiKonS0tKgpqYm9ieoq6ujVq1a8PX1xe3bt7F06VJx27w5CT6gQ0RfA4mgyFqQSuQdzbJt2zZcvXoVCQkJqFKlCipVqiSOCrt79y78/f2RkZGBli1biqXaqXgEBQVh8+bNmD9/PoyNjXHx4kX89ddfsLCwQFZWFuRyOX7++WdUqFABly5dwoYNGyCXy6GrqwttbW189913SokLKj737t3DrFmz4OnpidTUVNy/fx8ODg4YM2YMACAkJASBgYGIjIyEhoYGRo8ejSpVqqg26FJAce27fPky9u/fj5SUFOjq6qJevXro0aMHIiMj8fvvvyM3NxfGxsbQ19fH48ePMXnyZCZiVWzv3r0ICAhAo0aN0LVrVxgZGSnNtZydnQ2JRAINDQ1Vh/rVEwQBYWFhWLVqFaZPn6409cfEiRMRGRmJQYMGoWXLlvmqo5w/fx4vX75Eo0aNxBEq9Hn4+/vj+fPn6NixIywsLHDlyhUsXrwYFhYWiIqKQsuWLeHl5YXKlSsjPT0dv/32G968eYOxY8eiYsWKqg6/1MjIyICOjg4A4NChQ3j06BFiY2Ph6uqKGjVqoEqVKnj27BnmzJkDmUyG8uXLw8jICC9evMDs2bOhrq5eYCUiIvr6PX36VGlKJ7lcjvDwcCxfvhxly5bFzJkzAQDPnj2Dmpoa9PT0OF0XERVZeHg4Zs+eDXd3dzx//hzZ2dmoUqWKOJXZ+vXr4e/vDwsLC6SlpWHKlClKFfWIiApSUBsmISEBkyZNQq9eveDl5SUuf/nyJaZPn46XL1+iXr16mDBhQnGHS0T02TFp/oXYu3cv/P39MXr0aNjY2GDTpk0ICQmBq6urWOb73r172LFjB2xsbDBw4EAVR1y63Lt3D1u3bkVmZiYmTZoEf39/cc7RyMhI7Ny5E/fv38fs2bNRvnx5JCYmIi0tDerq6jA0NOSoZRWJjY1FTEwMXrx4gXbt2iEzMxO3b9/GihUr4OTkhLFjxwIA4uPjkZGRAQMDA5QtW1bFUZcet2/fxrx589C7d2/o6ekhJSUFO3bsgLu7O4YOHYrc3FwcOnQImZmZKFu2LJycnGBubq7qsEsNRcMpOTlZLPGn+H5s27YNN2/eRN26ddG2bVsYGhoWWHaaikdKSgoMDQ0RGxsLiUQCCwsLAMCUKVOQlJSEUaNGoVq1avkawkzwFY9jx45hz549aNasGVxcXLBr1y40aNAA7u7uuH79OrZv3w47Ozu0bdsWdnZ2SE9Px5QpU6CpqSkmY+nzCgoKQnx8PHx8fLBlyxacOnUKbdu2xYsXLxATEwN1dXV0794dtWrVwvPnz7F48WKkpaVh3LhxqFq1qliJiOeKqPRJSkrCxIkTYWdnp9RxnJubizt37mDhwoVwdHRkpzIR/St579cvXLiA+Ph4eHt7Iy0tDWfOnMGZM2dQrVo1sd/w+vXrAABra2uYmpqqLG4iKhny9uNkZ2dDKpVCXV0dGRkZWLt2LV6/fo3WrVujQYMGAN72PWzYsAENGjTA+vXr0bNnT3h4eKjwExARfXpMmn8Bnj17hpUrV6Jnz55wdHTE7du3sWDBAtStWxePHz+Gs7Oz+OTokydPYGNjw8SECty/fx+bN29GcnIyTExM8O2334qjx+Pi4rBu3Trcv38fv/32G8qXL6/aYAkJCQmYOHEiZDIZevXqhTZt2gB4Oy/29evXsWLFCtStWxejRo1ScaSlkyAIWLNmDbKzszFixAhxuSKR3qVLF87fq0IfqwQAAFu2bMHt27dRr149tG7dGkZGRiqOuvRRNHDlcjlevXqFyZMnw83NDa1btxbnXJ44cSKysrIwYsQIMbnHZPnn9+4xPn36NHbt2oUmTZrg5cuXGDJkCAwNDQEAV69exdatW1G5cmW0a9cOlStXRkZGBlJTU5XmzqbP48SJE/jnn38wadIkmJubY968eRg8eDBq1aoFAAgNDcXJkyeRmpqKIUOGiBUCZs6cCRsbG4wePRq6urr8ThGVIoprvFwuh1wux4ULF7Bz505UqVJFrGYFAJmZmZg5cyYePnwIR0dHTJkyRXVBE1GJo7jWPH78GG/evEFISAjKlSuHzp07AwDevHmDwMBAnDlzBvb29hg8eLCKIyaikmrv3r148OABUlNT0a1bNzg5OeH58+fYsmULUlNT4eDggCpVqiAgIABSqRSjR4+Gn58fXFxc0K1bN1WHT0T0STHz+gWoWLEiPD09YWtri3v37mHZsmUYMGAAxo4diwoVKuDUqVP4/fffAQCVKlXiHObFQHF88z5TUr16dQwePBiWlpYICwsTRxPJ5XJYWFjA19cXNWrUwNixY/HixQuVxE3/o62tja5du0JbWxuPHz8Wl6urq6Nu3boYOXIkzp8/j5UrV6owytJLEATExMQgKytLXCaXy+Ho6Ahvb2/cunULaWlpBX4X6fOTSCS4ffs2lixZAldXV/j4+KBp06Y4dOgQVqxYAQDo06cPnJ2dERQUhFOnTvHvkgooknTZ2dkwNTVF+/btcenSJZw+fVr8OzRv3jxoaWlh1apVCA8PZ8K8GCimK0hLS8Pz588BAF5eXvDx8UFgYCBCQ0ORkJAgbl+/fn306dMHT58+xZ49e/DkyRPo6OgwYV4MgoKCsHbtWkycOBHOzs7IzMwUq2so1KpVCx4eHoiLi0NiYiKAt3OcT506FdHR0ZgzZw7evHmjqo9ARMVM8Xf03r17OHv2LDIyMuDi4oJevXrh/v37WLx4sbitlpYWKlWqhHHjxmHIkCGqC5qISiSJRIJLly7Bz88Py5Ytw/nz53Hv3j1xvZ6eHry8vODl5YVr165h48aNKoyWiEqSvP03hw4dwuHDh2FjYwNdXV0sWLAAhw8fhrW1Nb799ls4Ozvj4sWL2Lt3L6RSKX7++WcYGhrC2NgYenp6ANhnR0RfF9YQLGbvK1/bsmVLAG/LLTVq1Aju7u4A3nbKZWVl5St9y5Hmn5dUKkVCQgKio6Ph5OSEoKAg3Lx5E6NGjULnzp2RlpaGefPmYfbs2TA0NIQgCLCwsEDfvn2hoaGB3NxcVX+EUk9fXx9NmzaFVCrF1q1bYWBggH79+gF4mzh3dnbGxIkTxTLGVLykUikaNmyIgIAAREREoFq1auJ1TU9PD2/evIGGhoa4jEm+4iUIAi5fvgxXV1e0b99eXG5ra4t58+bBzMwMPj4+6NWrFzQ1NcXvGhUvxcMNhw4dwoQJE+Dt7Q0NDQ0cOnQIAODp6SmOnP3++++xceNGTJ8+HZqamiqO/OuluFeLiorC2rVrUbFiRTRr1gx2dnZo3rw5dHR0sHbtWpw+fRq6urri36B69epBJpPh4MGDrNpQTM6cOYO//voLtWvXRt26dQEAampqMDQ0xMuXL+Hg4CAmx5ydnaGuro6wsDDUqFEDwNuypxMmTMDixYuRmZnJqXiISgHFNSEkJAQrVqxAhw4dkJqaCgMDA9SrVw8SiQQbNmzAb7/9hlatWuHOnTsIDQ2Fj48P5zAnokJTXGuys7Nx9uxZDB48GNWqVcPdu3exY8cOLF68WKxqoaurC3d3d6irq8PJyUm1gRNRiaHov4mLi8OrV68wduxY1K5dGwCwY8cO7N69GwDQunVrdOvWDZ06dYJMJoOuri4AYPPmzYiJiUG9evUAsM+OiL4uTJoXo7xJ7+vXryMhIQG6urqwsrISy3zHx8dDTU0N6urqkMvliI+PR9OmTeHl5SWWgGNi4vOTy+VYvXo1kpKScO/ePRw4cEAskW9vb4/+/ftj8+bNmDZtGvz8/GBkZARBEFC+fHn88MMPnNOymCkalc+fP0dCQgIEQUDt2rVhaGgIV1dXSCQS7NixAwCUEueKTnL6vBTXrcTERGRmZsLS0hISiQRVq1ZFSEgIjh8/DgCoVq0agLel9Y2NjfmkqgopKgEYGBiIy/JWArh9+zZatWoFQ0NDltEvRsePH0eFChXg4OAg3gs8evQIZcuWhYaGBgCIDzkoEudeXl4wMzPD8uXLER8fz4T5Z6S41j179gzTp09HkyZN0LhxY9jZ2YnbuLi4IDMzEzt37oSmpiZat24Nc3NzAECjRo3g5OQEbW1tVX2EUuPkyZNYvXo1PD09cePGDaxduxYDBw5ExYoVUaVKFWzatAnm5uaoXr06ACAtLQ1aWlooV66c0uvY2NhgwYIFvO8jKiUkEgnCwsKwcuVK+Pr6Ks3hqampCRcXFxgbG2PNmjXYtGkT1NTUMHr0aCbMiahIFNUsdu7cCWNjY9SoUQOmpqYoV64cdHR0sHnzZqXEuZ6eHlq2bMmkFREVmiAIuHbtGhYsWIAyZcqgfv364jrFlHx79uyBVCoV7280NTXx4MEDnDhxArdv38bPP/8stmWJiL4m7OEpRooO7s2bN+P8+fPiKPK0tDR06dIFTZs2hZOTE86ePYvZs2cjMzMT6enpGDNmjDgHKRPmxUMqlWLSpEkYN24c9u/fj/bt24vVAIC3yb0+ffpg69atmDVrFqZMmSJ2hrDjtHjlnXt548aNUFNTg5aWFnbs2IGpU6fCwMAALi4uAIDdu3cjKyuLc30Vg+PHj6N8+fJwcHCAmpoaLl26hA0bNgB4+zT8wIEDUbNmTXzzzTc4dOgQ/vzzT1haWkIqlSIsLAzTp09n4kiFClMJQEtLS8VRlh6K69zRo0eRnZ2N0aNHw87ODurq6khJSREfMFEkbRWJ86NHjyIrKwtt27aFmZkZy31/ZlKpFK9fv8bixYvRvHlz9O7dW2m94vx4eXlBLpdj165dkEqlaN68OSwtLQGA36ticOTIEWzcuBE///wz6tSpgxMnTmD79u0QBAGDBg3CDz/8gLlz52L+/Plwc3ODoaEh7t69C7lcjmbNmuV7Pd73EZUu9+/fR7Vq1eDh4YHs7GyEh4fj9OnTEAQB9erVg5ubGxYtWoSXL19CV1dXLFtKRPQxinv+yMhICIKAly9f4smTJ+jbty+Atw/n1K9fHxKJBNu2bcOcOXMwadIkABzlSUQfl3cgnkQiQf369dG6dWsEBAQgMjIS1apVEx+y79Gjh1hBx9jYWOxXrVKlCmJiYtC1a1cmzInoq8UMbDFRdGgHBwcjODgYY8eOxZQpU9C4cWO8ePFCnDvR1dUVHh4e0NfXR8WKFTF//nxxDnPeBH8+irlcsrOzkZOTg5iYGKSlpUFbWxsVK1bEgwcPcO3aNaU5X6pXr44+ffogNzcXCxYsgFwu58hYFZBIJAgNDcXy5cvh7e2NP/74A3379kVkZCR+/fVXvHr1CgYGBnB1dUXHjh1x69YtJCcn81x9JorjevToUaxYsQKPHj3Cs2fPsHnzZrRt2xYjR45E2bJlsWzZMly6dAl169aFr68vunTpAl1dXdja2mL27Nli9Q36/BTXtcTERMTExIjnsGrVqjA2Nsbx48cREREhbs9KAMUr79//xYsXw8zMDMuWLcPDhw8BALm5ueJ6xf0CAPFhr5s3b/IBlGL07NkzcQR53mVnzpzB0qVL8c8//0Amk6FFixbo3r07/P39cfbsWchkMgDs8CwOlSpVwqhRo1CnTh0Ab++9e/XqhQsXLmDNmjUAgJ9//hnNmzdHbGwsrl+/DmNjY8ydOxdqampK94JEVHrkfUAtKSkJp0+fxuLFi3H06FGkpqZCW1sbe/bsQXR0NADA1NSUCXMiKhKJRILr169j9uzZyM3Nxffffw8dHR38888/4jZaWlqoX78+fHx8kJCQgMTERBVGTEQliSJhHhISgps3bwIABg4cCE9PT+zYsQNXr15FTk6OuH337t0xdOhQNGrUCMD/+ibc3d2ZMCeir5pEYK/3ZxUREQF9fX2UL18eALB161YkJydj+PDh4lxoffv2RcuWLZGRkYGMjAyULVtW6TVyc3PFpDp9ennnH92+fTtiY2MRExODGjVqwNLSEoMGDcKMGTOQk5ODzp07o06dOkoj/qOioqCpqckRfMUoMTER4eHhkMvlMDY2RlhYGNTV1dG5c2ckJiZi6tSpsLe3R2xsLN68eYNp06ahbNmySEtLAwDOO/qZvDt9xLRp05CcnAxvb288f/5cfEIeABYtWoSHDx+if//+qF+/vjglBatpFI/CVgK4fv06Dh06hISEhHyVAPhgw+en+E7Ex8fj+vXrcHZ2hoWFBaZMmYKkpCSMHz8eAQEBKFeuHLp164b09HSoqalBQ0MDSUlJKFu2LN68ecNO+2J04cIF7NixAz/99BOsrKxw5swZBAcHIykpCYaGhoiJiYGhoSHmzZsHqVSK4OBgVKlSRRxpTsVHMZoLANLT03HhwgVs27YNLi4u4pQ8WVlZkEgk4ogL3pMTUVxcHNasWYOEhARUrVoVzZo1Q+3atXHv3j1s3LgREyZMyNeeJyL6EMU9yatXr7Bjxw7Y2dmJD2DevXsXixcvRtWqVTFhwgRxn+zsbOTm5kJHR0dVYRNRCaToM7W1tUW7du1Qq1YtAMCKFStw8eJFDB8+HA0aNBCnf1NgO4iIShMmzT+j+Ph4LFmyBEZGRujbty/Kly+PrVu3QltbG1WqVMHChQvRr18/tGzZEnK5HOfOnUNqaiqaN28ujgrL26FHn57i+D579gy//vormjVrhkqVKkFXVxdBQUG4du0a3N3d0bNnTyxfvhxZWVnw9vZG/fr1sWXLFrx+/RojR45U9ccoVZ4+fYqFCxdCQ0MDsbGxsLKygrW1NXr27AldXV3MnDkTdnZ2GDp0KC5cuIAlS5aICQp2YH0+70vuTZ48GY8ePYKjoyMmTpyoVMZ20aJFiIyMRLdu3dC4cWPOtVwMFNe8MWPGIDs7G2PGjIG2tjbmz5+PVq1awc7ODvv370dUVBT69++Pxo0b49mzZ3j06BFu3boFCwsLNG3aFFZWVqr+KF+9vPNjL1q0CNbW1nBzc0PDhg0BAJMmTUJmZqb40JednR1evnwJTU1NsfNs5syZ7EgrZrGxsfj1119hamoq3l+0b98eDRs2ROXKlXH//n3MmTMH33//PRo0aKDqcCkPReJ8+/btcHV1ha+vr9J63pMTlS6K7/zjx4/x5MkTSCQSVK1aFdbW1khPT0dmZqZS22L79u24desWJk+eDAMDAxVGTkQl0cOHD3Hw4EEkJCRg8ODBqFy5MoC316J79+5h8eLFsLe3x7hx41QcKRGVJAW1YcLDw7F+/XqYmpqidevWYuL8r7/+wqVLlzBgwAA0a9aM01ARUanFpPlndvLkSVy8eBF6enro378/Hj16hEWLFkEqleK7776Dh4cHgLcddYsWLYKdnV2+OTDp80pJScHs2bPh5OSkdOxTUlJw4cIFbNy4Ec2bN8eAAQMwZ84cJCYmQk9PD1FRUZg0aRKqVaumwuhLl6dPn2Lq1Klo3bo12rVrh8ePHyMgIABpaWkYN24cnj17hn379uGHH36AmZkZQkNDcfjwYUilUvTr148j+T6TjyX3Zs2ahUePHmHcuHGoUaOG0mjyWbNmITk5GTNmzGBy7zNjJYCSJzo6GlOnTkXLli3Rpk2bfA/+zJ49G7dv34aPjw9q166NrKwsCIIAbW1tGBsbw8LCQkWRf/0U34e8T9wrlj158gTBwcHIzs6Gp6cnKlasKD6p//DhQyxfvhw//PCD2BlKXw5F4nz16tXo378/2rVrp+qQiEgFFB3MISEhWLt2LcqUKQMtLS1ERUXhp59+gr29vbjt7du3cfPmTZw+fRrTpk1jJR4i+ldCQ0Oxfv16REdHK/UVAm+vSWFhYZgxYwZcXFwwatQo1QVKRCVSSkoKDA0NxZ/v37+PNWvWwNzcHG3btkWNGjUAAAsXLkRGRgZ++eUXVYVKRKRyTJp/Jnmf5Dpz5gwCAwNRpkwZDBgwAKdPn8auXbswadIkmJmZQS6XY926dUhNTcXs2bNZ7qSYPXnyBMuWLcPo0aNhZWUlzgkrlUqRnp6OY8eOYffu3fj1119RsWJFBAYGIjMzE40bN0aFChVUHX6pkZCQgIkTJ6JmzZr48ccfxeUnT57Ehg0bMH/+fISFhWHdunVYv3491NTUsG3bNrx+/RpDhgzJV1qIPq2PJfd++eUXJCYm4ocffkC1atWUkq+vXr1CuXLlijvkUoWVAEqe7OxsLFu2DEZGRmKpaACQyWRITEyEpqYmjI2NMWfOHMTExGDMmDGws7NTYcSlh+L79Pz5c4SEhKB9+/biQz8ymeyDT+Rv27YNd+7cwcSJE2FkZFRcIVMRvHnzBvfu3UO9evX4oBBRKVHQKKx79+5h0aJF6NWrF1q0aIFHjx5h8uTJ0NDQwPjx4+Hs7Iy0tDRs3LgRCQkJGDBgACpWrKiiT0BEX4P79+9j48aN0NTUROfOneHo6CiuEwQB9+/fh6GhoTj9IxFRYRw7dgzh4eHo2rUrrK2txeXh4eFYsmQJKlasiE6dOomJcw6YIKLSjlfAz0QikUDxPIKHhwc8PDyQmJiIdevWoUaNGmjbti0WLFiAqVOnYunSpcjOzsasWbOgpqYGuVyu4uhLl6dPnyIuLg4VK1aEVCqFIAjizYGuri6aNm0KTU1NhIeHQ1dXF+3bt0fXrl2ZMC9mcrkcZmZmkMlkCA8PF5ebmZlBU1MTubm5cHZ2hqmpKYYNG4aZM2fi6NGj6NChAxPmn1l2djZ27NiBpk2bonfv3mLCXCaTIT4+HikpKZg5cyYqVKiApUuX4sGDB0rXOSbMP6+8lQBmz56N0NBQPHv2DADw22+/oXbt2nj48CHCw8OVzsu4ceNgbm6OQ4cOITc3V1Xhl1pqampITk5W+ltz8+ZNbN68GT/99BMmTZqE33//HZMmTYKFhQVmzJiBiIgIFUZcOii+T5GRkRg/fjzU1dXFhLlcLoe6ujpSU1MRFRWltF98fDw2btyI48ePY+jQoUyYf8H09PTQoEEDsZIAEX3d5HI5JBIJUlJS8OjRIzx69AjA21GfrVu3RosWLZCYmIhFixbB3d0djRs3xoIFC3D37l3o6+vj22+/xdixY5kwJ6JCEQRB7CuMiYlBeHg4IiIiIJPJUL16dfTp0wcymQwBAQEIDQ0V95NIJLC3t2fCnIiKzMjICPfu3YO/v79SO9Xe3h4+Pj4IDw/H3r17xXsgxWAyIqLSipNTfEaKxLlEIoGnpycAICgoCP7+/hg8eDBatGiBly9fQldXF3Z2dvnKfFLxUJSvvXTpEho3bpxvlIGZmRnMzc2RlJSkguhIwczMDKNGjcK6deuwZ88e9O/fHyYmJli6dCk8PT1hZWUFQRDw448/4syZM5BIJPD19eXcy8VAkdxTPJUKvE3u3bx5E4GBgdDV1UXVqlUxefJk/Pbbb5gzZw6mTJmCqlWrqjDq0kMqlSI6Ohp+fn4FVgKYOnUqfvnlF/z111/5KgFMnToVr169Yul8FcjKykJKSgqePn2KmJgYhISE4OzZs7C2tkaPHj2gra2NPXv2YM+ePZgyZQpmzpypVG6NPj1FwjwqKgpTp05F165d4e3tDQDi/dvLly8xY8YMdOvWTfz7s3XrVjx48ADp6emYNm0abGxsVPgpqCh4T070dct7XV+1ahV0dHSgqamJ8ePHo379+pDJZMjIyMCiRYvg7OyMoUOHIjw8HMHBwZgxYwYmTZoEZ2dnVX8MIiphJBIJLl26hE2bNonXIQ0NDUyYMAE1atRAjx49sGPHDhw/fhwymYzXGSIqtIJGiTdp0gRSqRTr16+HXC5H+/btxRHnampqcHBwgLGxMSpVqiTuw5HmRFSaMWn+mRWUOA8MDMSaNWvQq1cvODk5idvK5XJ2zqmAqakpdHV1ERQUBDs7O5iamgL4341GWloaNDU1OffoF8DS0hK+vr5Yv349/vnnHzx9+hTu7u7o27ev+D2zsrJC3759WU6oGBUluTd58mTMnDkTBgYGqg671Hi3EoCCosy3trY2Zs6cid9++w1Lly7F6NGjUbVqVfH7w0oAqqGrq4tBgwaJ85anpaWhb9++qF27NiwsLCCTyXDx4kXxSXHOOfZ55a3YMH36dJiamqJ79+4AlBPmEyZMQJMmTdCsWTNxXw8PD1hYWMDJyYnfJyKiL4Siutjz58/x66+/olWrVmjZsqX4YKGi7ffw4UOxgxl4W42icePGMDU1hYmJicriJ6KSQXEPmZWVBS0tLUgkEkRERGDFihXo378/7O3t8ebNG+zatQvTpk3DjBkzUKtWLQDAunXrEBwcDAcHB2hpaan4kxDRly5vP+idO3fw5s0bqKurw9HREY0aNYJEIsG6desAAI0bN0a1atVw+fJlNGzYEF5eXvleg4iotGLSvBgUlDg/c+YMdu7cid69e4sdqPyjpBrlypXD4MGDsWTJEuzYsQOdOnWCtbW1eD4OHz6MxMREODg4qDhSAt4mzgcMGIDVq1dDV1cXDRs2BKA8JYJEIuH3qRgxufdlYyWAkqtWrVr4888/kZKSAhMTE6WR5FKpFDo6OjA3NxdLp/G693nkLcn+yy+/oEqVKoiJicG6devg6+srTq3z5MkTuLq6YtCgQWLVGrlcjvLly8PS0jJfJRsiIlIdiUSCtLQ0rF69Gm5ubujVq5e4Lm+HcWpqKh4/fixO13D+/HlkZmaiW7duTGIR0QcpriWPHz/GH3/8gV9//RWmpqZ4+vQpqlatCk9PT/Fa8+OPP2LhwoVYtGgR5syZg1q1amHo0KEoU6YMrzVEVCiK68mmTZtw8eJFABDboBMnTkTDhg0hlUqxb98+XL9+HRoaGtDV1YWbmxsAKE1XSkRUmjFpXkzeTZwLgoBTp07h1q1b8PLyEteRajRo0AC+vr5Yu3YtHj58iOrVq6NMmTKIj4/HjRs3xMYNfRksLS0xdOhQrF27Fvv27YNUKoW9vT2/QyrE5N6Xi5UASjYTE5N8I9lkMhl2796N+/fvo1evXvw+fWZSqRSPHj3C1KlT0aVLF3Tt2hWnT5/Gtm3bAAC+vr6QSqVo2LCh+CBX3n0B8O8TEdEXKCkpCa9fv0bPnj2VEuWK/wqCgNq1a6NBgwb46aefULlyZURHR2PGjBlMYhHRB+V96HL69Onw9PQU+5SSkpLw7Nkz8VqTm5sLHR0ddOzYEatXr0ZsbCysra1RvXp1VX4EIiqBAgMDERgYiMmTJ6NcuXJ48+YNNm3ahFmzZmH27NmoX78+zM3NkZiYiLS0NLF0O6eLJSL6HybNi1HexLmXlxcuX76Mq1evwsvLi52pKiaVStGyZUvY2triwIEDePjwIXR1dWFjY4NZs2ahQoUKqg6R3mFhYQFfX19s2LABmzZtQv/+/VGtWjVVh1WqMbn3ZWIlgK9LUFAQHj16hAsXLmDy5MmwtLRUdUilQlZWFlq1aoVu3boBAFxcXABAKXEOsJwdEVFJEhkZiYSEBDg4OEAikeS7hkskEuTm5sLLywtubm6Ij49HvXr1+LeXiD5IcS15+vQpfvnlF7Rr106pmoWTkxNu3LiBAwcOoH379lBXf9s1a2BgAEEQxAfNiYiKKjY2Fs7OzqhSpQoAoEyZMhg9ejTmzZuHP//8E35+frC2thbnNAc4XSwR0buYNC9meRPnJiYmSEtLg0wmE2+SSbWqVq2KH3/8ERKJpMCOE/qyWFpaol+/ftixY4c4/yB9OZjc+3KwEsDXISYmBoGBgdDT04Ofnx+srKxUHVKpUaNGDXGKA0EQoKurW2DiXCqV8t6BiKiEMDU1hVQqRUhICBo3blzgtfvMmTO4cuUKpk6dqoIIiagkkkqlSEhIwIwZM1C3bl2lhLm/vz+ePXuGihUr4ubNmxAEAd7e3sjMzMTly5ehqakJY2Nj1QVPRCXamzdvEBkZKf4sl8uhq6sLLy8v7Nu3D6mpqfmuMWy7EhEpY6ZWBSQSiVgqd8iQIUyYf2EUCXPF/9OXrUKFChg1ahS/R18YJve+PKwEUPKVL18eY8aMEeceI9VQ3Bu8mziXSqXo378/v0dERCWEqakpdHV1ERQUBDs7O7F0ct6p0168eIFKlSpxOjUiKhK5XA4zMzPk5OQgPDwc9vb22LdvH/bu3YuZM2fC1NQU27dvx9mzZ7Fv3z5YWVkhLi4OU6dOhZGRkarDJ6IvXGpqaoHT6jVq1Ajh4eE4cuQI2rRpI44gNzIygkQigUwmK+5QiYhKHIkgCIKqgyitsrOzoampqeowiIg+i+TkZCb3vmDvVgKoVKmSqkMiKpHS09Nx8eJF/P333+jUqRN69+6t6pCIiKiQQkJCsHTpUjRp0gTe3t7ig55ZWVnYs2cPzp8/jylTpqB8+fIqjpSISprY2FisW7cO6urqMDIywtWrVzFy5Eg4OTkBADIzM5GUlIQbN27A2NgYdnZ2MDMzU3HURPSlCwsLw86dO9GtWzelamgSiQRv3rzB5s2bERcXhxo1aqB9+/ZIS0vDmjVrAAA///wzHwIkIvoIJs2JiIhKmZiYGKxevRp6enro2bMnKwEQ/Ufp6em4fPkyqlWrxsQKEVEJIpfLcerUKaxduxYWFhaoWrUqNDU1kZiYiAcPHvDBQiL6T2JiYrB27VqEh4ejR48e+OabbwCA0/kQ0b8WExODv//+G9ra2vD29oa9vT2A/11XkpOTsXfvXoSGhiImJgbly5eHuro6Zs+eDXV1dV5/iIg+gklzIiKiUoiVAIg+LZbuJSIquR4+fIiDBw8iLi4OOjo6qFatGry8vGBpaanq0IiohIuLi8OaNWsglUrRuXNnMcHFe0ci+rcUlSwEQUDXrl3F64pMJoO6ujpkMhlkMhmOHz+O2rVrw8bGBlKpFLm5uWLJdiIiKhiT5kRERERERERUqnHkFRF9Lu9LcBER/Vvvu64IgoDXr19j1apVMDU1xeDBgwHwPoeIqLB4pSQiIiIiIiKiUi3viE+OLSCiT8nS0hK+vr5QU1PDpk2bEBERoeqQiKiEU1xXJBIJ9uzZg/DwcABvqwouWbIEMTExGDBggLg9E+ZERIXDkeZEREREREREREREn1F0dDR27NiBb7/9FiYmJqoOh4i+AooR5xKJBC1btsSxY8fw6tUrLFiwAOrq6izJTkRUREyaExEREREREREREX1mijmHiYg+ldjYWKxfvx43b95E+fLlmTAnIvoPmDQnIiIiIiIiIiIiIiIqgaKjoxEQEID+/ftDTU2NCXMion+JSXMiIiIiIiIiIiIiIqISjglzIqJ/j0lzIiIiIiIiIiIiIiIiIiIqtaSqDoCIiIiIiIiIiIiIiIiIiEhVmDQnIiIiIiIiIiIiIiIiIqJSS13VARAREf0XZ86cwYoVK6ChoYE///wTZcuWVVo/bdo0pKamYtGiRSqKsGB3796Fv78/7t+/j7S0NOjp6aFKlSrw9PREo0aNivRaWVlZOHDgAGrWrImaNWt+poiJiIiIiIiIiIiIiL5OHGlORERfhZycHOzfv1/VYRTKzp07MX36dDx//hwtW7bEkCFD0LFjR2RlZWHRokU4d+5ckV4vKysLu3fvxt27dz9TxEREREREREREREREXy+ONCcioq+Cra0tTp06BW9v73yjzb8kly5dwu7du9G4cWOMGjUK6ur/+1PcsWNH3Lx5E7m5uSqM8PPKysqClpaWqsMgIiIiIiIiIiIiIhIxaU5ERF+Fzp07Y+nSpdi/fz8GDhz4wW2DgoJw5MgRREVFQVNTE05OTujbty9MTEwAAEePHsWGDRuwdu1a6OnpAQAOHTqETZs2oX379ujfvz8AQC6XY8CAAWjVqhX69u1bqDh37NgBfX19DB8+XClhruDs7Cz+v0wmw549e3D9+nXExcVBLpejUqVK6N69O2rVqgUAiI+Px8iRIwEAu3fvxu7duwEAPj4+6N69OwAgOjoa27dvR2hoKLKzs2FtbQ0fHx/Ur19f6b2fPn2KtWvX4uHDhzAwMEDLli1RtmxZ/PXXX1i2bBnMzMzEbQMCAhAQEIC4uDgYGBigQYMG6NWrl3i8gP+Vxv/++++xYcMGPHr0CC1atEBaWhpu3LiBVatW5TsGs2bNwsuXL7FkyZJCHU8iIiIiIiIiIiIiov+K5dmJiOirYGZmBjc3N5w6dQqJiYnv3W7v3r1Yvnw5LC0t0b9/f7Rv3x537tyBn58f3rx5AwBwcHCAIAgIDw8X9wsLC4NEIlFa9uTJE2RmZqJGjRqFijE2NhbR0dFo0KABdHR0Prp9eno6Tp8+jZo1a6JPnz7o1q0bUlJSMHv2bERGRgIADA0NMXjwYABAw4YNMXLkSIwcOVKcF/358+eYMmUKoqOj4e3tjX79+kFLSwsLFizA5cuXxfdKTEzE9OnTERUVhc6dO6N9+/Y4d+4cjh49mi+unTt3Ys2aNShTpgy+/fZbNGrUCCdPnsSsWbMgk8mUtk1NTcVvv/0GGxsbDBgwADVr1oSbmxtSU1Nx69YtpW2TkpIQGhqKZs2aFep4EhERERERERERERF9ChxpTkREX40uXbogKCgIBw4cgK+vb771L1++xM6dO9GjRw906dJFXN6wYUNMnDgRAQEB6NKlC2xsbKCjo4OwsDDUq1cPgiDg/v37aNSoES5fvozMzExoa2uLifTq1asXKr7o6GgAQMWKFQu1vb6+PpYvX640Grt58+YYM2YM/P39MXz4cGhra6Nx48b4559/ULFiRbi5uSm9xvr162FiYoI5c+ZAQ0MDANC6dWv8+uuv2LJlCxo2bAgA2L9/P968eYN58+bB1tYWAODp6YlRo0YpvV5KSgr2798PJycnTJo0CVLp2+fvypcvj7Vr1yI4OBienp7i9klJSRgyZAhatmwpLpPL5ShXrhyCg4NRr149cfm5c+cgCEK+z0BERERERFQSnTlzBitWrICGhgb+/PPPfFOJKapzLVq0SEURvnX37l1Mnz69UNvu3LnzM0dDREREpBocaU5ERF8Nc3NzNGvWDCdPnsTr16/zrQ8JCYEgCHBxcUFKSor4z9jYGBYWFrh79y4AQCqVonr16ggLCwPwNtmdmpoKb29vCIKAiIgIAEB4eDgqVqyoVJL8Q9LT0wGgUKPMFXEoEuZyuRxpaWnIzc2FnZ0dnjx58tH909LSEBoaiiZNmiAjI0P8vKmpqXByckJsbKw4Kv/WrVuoVq2amDAH3ibtmzZtqvSat2/fhkwmQ7t27cSEOQC0aNECOjo6uH79utL2GhoaSkl0xedq2rQprl69ioyMDHH5uXPnUK1aNaUy8ERERERERCVdTk4O9u/fr+ow3qtChQpi1TLFv3LlyhW4nIiIiOhrxZHmRET0VenatSuCg4Oxf//+fKPN4+LiIAhCvtHTCnlHdNvb22PXrl3Izs5GWFgYypQpg8qVK8PW1hZhYWFwdHREeHg4mjRpUujYdHV1AUApUfwxZ86cweHDhxEdHY3c3FxxeWESy4rPu2PHDuzYsaPAbZKTk1G2bFm8fPkSVatWzbfewsJC6eeEhAQAb0eW56Wurg5zc3NxvULZsmULnLvd3d0dBw4cwOXLl+Hu7o6YmBg8fvwYQ4YM+ejnIiIiIiIiKklsbW1x6tQpeHt75xtt/iUwNjbOV/HrwIEDMDAwYCUwIiIiKjWYNCcioq9K3tHm3t7eSuvkcjkkEolSWfG8tLW1xf+3t7dHbm4uIiIiEBYWBnt7e3F5eHg4oqOjkZKSAgcHh0LHpkg0P3v2rFDbBwUFYcWKFWjQoAE6duwIQ0NDSKVS7N+/Hy9evPjo/nK5HADwzTffwMnJqcBt3k2Kf2qampoFLreyskLlypURHBwMd3d3BAUFQV1dvUgPIRAREREREZUEnTt3xtKlS7F//34MHDjwg9sGBQXhyJEjiIqKgqamJpycnNC3b1+YmJgAAI4ePYoNGzZg7dq1YtWzQ4cOYdOmTWjfvj369+8P4G17cMCAAWjVqhX69u37n+IXBAEjR46EjY0NJkyYoLQuOzsbQ4YMgaurK4YOHSqWeh8zZgwiIyMRGBiIzMxM1KpVC4MGDRI/h8KDBw+wc+dOREREiJXVevXqJbbBiYiIiIoLy7MTEdFXp0uXLpDL5Thw4IDScgsLCwiCADMzMzg6Oub7V61aNXHbKlWqQF1dHWFhYQgPDxeT4w4ODnjw4AHu3Lkj/lxY5cuXR/ny5XH16lVkZmZ+dPtLly7B3Nwc48ePh5ubG5ydneHo6IicnByl7SQSSYH7m5ubAwDU1NQK/LyOjo5iqXhTU9MCE/FxcXFKPys6OGJiYpSWy2QyxMfH5+sA+RA3NzeEhobi9evXOH/+POrWrQt9ff1C709ERERERFQSmJmZwc3NDadOnRKnyCrI3r17sXz5clhaWqJ///5o37497ty5Az8/P7x58wbA2zaoIAgIDw8X9wsLC4NEIlFa9uTJE2RmZqJGjRr/OX6JRIJmzZrhxo0bSEtLU1p37do1ZGRkoFmzZvk+y40bN9CpUye0bdsWt2/fxsyZM5GdnS1uExoaCj8/P2RkZKBbt27o1asX0tPTMWPGDDx8+PA/x01ERERUFEyaExHRV8fCwgLNmjXDiRMnkJSUJC5v2LAhpFIpdu/eDUEQlPYRBAGpqaniz5qamrCzs8P58+eRkJAgPuXu4OCA7Oxs+Pv7w9zcHGXKlClSbN27d0dqaipWrlypVG5d4datW7h27RoAiKPh88b64MEDcU51BS0tLQD/mzNdwcjICDVr1nzvHO8pKSni/zs5OSEiIgKRkZHisrS0NJw7d05pH0dHR6irq8Pf318prtOnTyM9PR1169b94OfPq2nTppBIJFi3bh1evHiRr5OFiIiIiIjoa/G+h7sVXr58iZ07d6JHjx4YM2YMWrVqBR8fH/j5+SExMREBAQEAABsbG+jo6CAsLAzA2/bi/fv30ahRIzFRDvwvkV69evVPEr+bmxtyc3Nx4cIFpeXBwcEwNTXNNzI8LS0NM2bMQIcOHdC7d2+MHDkSsbGxOHnypBj36tWrUbNmTcycORMdOnRA+/btMXv2bJQtWxbbt2//JHETERERFRbLsxMR0VepS5cuCAoKQkxMDKytrQG8Tab37NkTW7duxcuXL9GgQQNoa2sjPj4eV65cQfPmzdGxY0fxNRwcHLB//37o6uqiYsWKAN4mosuXL4+YmBh4eHgUOS4XFxc8e/YMe/fuxZMnT+Dq6gpTU1Okpqbi1q1buHPnjjjner169XD58mUsXLgQdevWRXx8PE6cOAErKyulkeqampqwsrLChQsXYGlpCX19fVhbW6NixYoYNGgQfvnlF4wfPx7NmzeHmZkZkpOTERERgcTERCxYsAAA0LFjRwQHB2PmzJlo27YttLS0cPr0aZiYmCAtLU0czW5oaAhvb2/s3r0bv/32G+rVq4eYmBgcP34cdnZ2RUp8GxoawsnJCZcuXYKenl6REu5EREREREQlybtTib37AHZISAgEQYCLi4vSA87GxsawsLDA3bt30aVLF0ilUlSvXl1MmkdHRyM1NRXe3t4ICQlBREQEHB0dER4ejooVK4ol3P+r8uXLo2rVqjh37hxatWoF4G1iXDGa/N0KaG5ubmJlMwBo3LgxypQpgxs3bqBdu3aIjIxEbGwsunTpovQAOwDUqlULwcHBkMvlBU6tRkRERPQ5MGlORERfJcVo87Nnzyot9/b2hqWlJY4cOYJdu3YBeFty3NHREfXr11faVvGkfPXq1ZUa6vb29oiJifnXc6z17NkTtWrVwtGjR3HixAmkpaVBT08PVatWxYQJE8Q4PDw8kJSUhJMnT+LWrVuwsrLCDz/8gIsXL+LevXtKrzls2DCsXbsWGzZsgEwmg4+PDypWrAgrKyvMnTsXu3btwpkzZ5CamgojIyPY2tqia9eu4v4mJibw8/PDunXrsG/fPhgaGqJ169bQ0tLCunXroKGhIW7bvXt3GBoaIiAgABs2bIC+vj5atGiBXr16QV29aLcW7u7uuH79Opo0aaL0HkRERERERF+brl27Ijg4GPv374evr6/Suri4OAiCID5E/a68bS17e3vs2rUL2dnZCAsLQ5kyZVC5cmXY2toiLCxMTJo3adLkk8bv5uaGtWvX4uXLlzA1NcXFixeRm5sLNze3fNtaWloq/SyRSGBhYYGXL18CAGJjYwEAy5cvf+/7paencwovIiIiKjZMmhMRUYnm4eHx3hHf33//Pb7//vt8yxs1aoRGjRp99LXr1q2LnTt35ls+bNgwDBs2rMix5lWrVi3UqlXrg9tIJBJ07twZnTt3zhfXu6pVq4a5c+cW+Drm5uYYOXLkR2OytbXF9OnTlZatX78eGhoaMDQ0VFrepk0btGnT5oOvN23atI++p6Ljh6XZiYiIiIjoa/fuaPO85HI5JBIJJk2aVODoam1tbfH/7e3tkZubi4iICISFhYkPdNvb2yM8PBzR0dFISUmBg4PDJ43f1dUVGzZsQHBwMLp06YLg4GDY2dmhfPnyRX4txXRfffv2ha2tbYHb5P3MRERERJ8bk+ZEREQEAMjOzoampqb4c2pqKoKCgmBvb//ZSuKdOnUK5ubm/3rUPhERERERUUmiSDa/O7e5hYUFBEGAmZnZR5PQVapUgbq6OsLCwhAeHi5OM+bg4IBTp07hzp074s+fkr6+PurWrYtz586hWbNmuH//Pvr371/gtoqR5AqCICAuLk6c+szc3BwAoKurC0dHx08aJxEREdG/wUlhiIiIPoG0tDQkJSW991/eOem+VFOmTMH69etx4sQJ7N69GxMnTkRGRoZSGfdP5fz589i6dSuuX7+Otm3b5pv/joiIiIiI6GukmErsxIkTSEpKEpc3bNgQUqkUu3fvFkdhKwiCoDTvt6amJuzs7HD+/HkkJCSIDyE7ODggOzsb/v7+MDc3zzdv+qfg5uaGqKgobNq0CVKpFK6urgVuFxQUhIyMDPHnS5cu4fXr16hTpw4AoHLlyjA3N8ehQ4eQmZmZb/+S0IYmIiKirwtHmhMREX0CCxcuzDfPeF6mpqYfnKvtS1CnTh2EhITg5MmTkEgkqFSpEoYNG4YaNWp88vdasmQJtLW14eXlhdatW3/y1yciIiIiIvpSdenSBUFBQYiJiYG1tTWAt8n0nj17YuvWrXj58iUaNGgAbW1txMfH48qVK2jevLk4ohx4myDfv38/dHV1xdHbRkZGKF++PGJiYt47jdl/VbduXRgYGODSpUuoU6cOjIyMCtxOX18fv/76Kzw8PJCcnIwjR47AwsICzZs3BwBIpVIMGzYMv/32G3788Ud4eHigbNmySExMxN27d6Gjo4Off/75s3wGIiIiooIwaU5ERPQJfPvtt0hLS3vv+rxlz79UvXv3Ru/evYvlvQqaK56IiIiIiKg0UIw2P3v2rNJyb29vWFpa4siRI9i1axcAwMTEBI6Ojqhfv77StorR5dWrV1eaTsve3h4xMTGfbQosdXV1NGnSBMePH0ezZs3eu13nzp3x9OlT7N+/HxkZGahduzYGDx4MLS0tcZuaNWti9uzZ2L17NwICApCZmQljY2NUqVIFLVu2/CzxExEREb2PRHi33g8RERERERERERERUQHWr1+PwMBA/P3330pJcAC4e/cupk+fjh9//BGNGzdWUYRERERERcc5zYmIiIiIiIiIiIjoo7KzsxEcHIxGjRrlS5gTERERlWQsz05ERERERERERET0lUpLS4NMJnvveqlUCkNDww++RnJyMu7cuYNLly4hLS0N7dq1+9RhEhEREakUk+ZEREREREREREREX6mFCxfi3r17711vamqK5cuXf/A1oqKisHTpUhgZGcHX1xe2trafOEoiIiIi1eKc5kRERERERERERERfqcePHyMtLe296zU1NWFvb1+MERERERF9eZg0JyIiIiIiIiIiIiIiIiKiUkuq6gCIiIiIiIiIiIiIiIiIiIhUhUlzIiIiIiIiIiIiIiIiIiIqtZg0JyIiIiIiIiIiIiIiIiKiUotJcyIiIiIiIiIiIiIiIiIiKrWYNCciIiIiIiIiIiIiIiIiolKLSXMiIiIiIiIiIiIiIiIiIiq1mDQnIiIiIiIiIiIiIiIiIqJSi0lzIiIiIiIiIiIiIiIiIiIqtZg0JyIiIiIiIiIiIiIiIiKiUotJcyIiIiIiIiIiIiIiIiIiKrWYNCciIiIiIiIiIiIiIiIiolKLSXMiIiIiIiIiIiIiIiIiIiq1mDQnIiIiIiIiIiIiIiIiIqJSi0lzIqKvyLZt21CnTh0YGBhAIpFgzJgxqg6JiIiIiIiIvnCRkZGQSCQYMGCAymKQSCTw8PBQWjZt2jRIJBKcOXNGJTEBX8ax+RxsbW1ha2tbpH3+zfnw8PCARCIpWnAl2Pr16yGRSLB+/XpVh0JERERFxKQ5ESmRSCQfbczY2tpCIpEgMjKyeIL6f2fOnIFEIsG0adOK9X1LiosXL6JPnz5ITU3F8OHD4efnhzZt2hRqX7lcjt27d6Nr166wtraGtrY29PT04ODggKFDh+L8+fP/KbavtZOhJFJ0chT2X1E7UYiIiIiIvnRFuR8uSckvRbIu7z99fX1YWVmhRYsW+PXXX/HgwYPP8t4lvb1eUMK+NGLC98t1+fJlDBo0CNWrV4eBgQG0tLRgY2MDHx8f7Ny5E7m5uf/p9f/NQxRERERfG3VVB0BERJ/GkSNHIAgCNm7cCBcXl0LvFxcXBx8fH5w/fx4GBgZo2bIl7OzsIAgCHjx4gG3btmH16tX4888/MXLkyM/4Cag4FNQRdPPmTRw4cABOTk7w9vZWWmdsbFwscRERERERFRc/P798yxYvXozk5GSMHj063z2ws7Nz8QT2ieS9r8/IyEB8fDxCQkIwc+ZMzJ49Gz/88AMWLlwIdfX/dQtWqFABYWFhMDIyUlHUQFhYGHR1dVX2/u/zJRybz+HUqVPF8j4bN25Eenp6sbzX1ygnJwejRo3CypUroaamBnd3d7Rv3x5aWlqIiorC6dOnsWfPHnTt2hW7d+9WdbhEREQlGpPmRERfiZiYGABA+fLlC71Peno62rRpg1u3bqFnz55YsWIFypQpo7RNSkoKFi5ciOTk5E8aL6mGh4dHvsT5+vXrceDAATg7O5fYkSFERERERIVV0D3v+vXrkZycjDFjxpT40Zbvu68PDAzEgAEDsGTJEmRmZmLlypXiOg0NDdjb2xdjlPmp+v3f50s4Np+DnZ1dsbxPxYoVi+V9vlbff/89Vq9ejdq1a2PXrl2oXr260vrc3Fxs3boVBw8eVFGEREREXw+WZyeiTyo8PBwDBgyAtbU1NDU1YW5ujt69e+P+/fv5to2IiMDPP/+M+vXrw9TUVCwtNXToUERFRSltO2DAAHh6egIApk+frlRuTjGXVt4yYidOnECzZs2gr68PU1NT+Pr6IikpCQBw48YNdOjQAWXKlIG+vj46duxYYKn5a9euYfTo0XByckLZsmWhra2NqlWrYty4cXj9+nW+7fO+/5EjR+Di4gI9PT2UKVMGPj4+RS6DJ5fLsXLlSjRo0AD6+vrQ09NDgwYN8Ndff0Eul+d733Xr1gEAKlWqJB6bj5XQ/+OPP3Dr1i24urpiy5Yt+RLmAGBoaIgZM2Zg/Pjx4rKYmBjMmDEDrq6usLCwgKamJsqXL4/evXvj3r17SvtPmzYNlSpVAgBs2LDhg2UOAwIC0K5dO5iYmEBLSwt2dnb46aefxHP3roCAALi6ukJPTw9ly5aFt7e3+Dv4vs+/c+dOuLm5wcjICDo6OqhduzbmzJmDrKysfNsqypOlpKTgxx9/hK2tLTQ0NDBt2jRMmjQJEokEGzZsKDC2a9euQSKRoEOHDgWuV9i+fTskEgnGjh1b4PqsrCyUKVMGlpaWkMlkAIDs7GwsXboUdevWRZkyZaCrqwtbW1t06tQJJ0+e/OD7FdaqVasgkUgwffr0AtfHxcVBQ0MDtWvXFpflnd9uw4YNqFOnDnR0dGBmZoaBAwciLi6uwNdKTEzEpEmT4ODgAB0dHRgZGaF58+Y4fvz4J/ksRERERERFlZubC2traxgaGiItLa3AbX744QdIJBKl0Z2KMt8xMTHo168fzMzMoKOjg3r16mHr1q3vfb+itoX+DU9PTwQEBEBTUxN///03bty4Ia5735RaL168wPjx41G9enXo6enB2NgY1atXx4ABA/D48WMARW+vHzt2DB4eHjAyMlKaHu5jJdIL28b4UJnpd+fkVsQFAGfPnlWKXfHgwYemG4uNjcX3338PW1tbaGpqwtTUFF26dMG1a9fybZv3GAQGBsLDwwMGBgYwNDRE+/btERYW9t7Pntf9+/chkUjQp08fpeVPnjwRYw8ODlZaN3HiREgkEpw+ffq9x8nDwwO+vr4AAF9fX6VjUVDbevfu3WjYsCF0dXVRtmxZ9OzZE9HR0fm2K2hO87zl/G/evIn27dvD2NgYurq6cHd3x4ULFwp1LPIKCQmBj4+P2EdhbW2N7777ThxgkFdR+3sUduzYgebNm4v72NraolevXrh69WqB2/+X8wwA58+fx+rVq1G2bFkEBATkS5gDgJqaGvr164fNmzeLy7Kzs7Fs2TK0a9cONjY20NLSQtmyZdGiRQv4+/sr7a84F0+fPsXTp0+Vzvu7v/NF6fMD3vb7de3aFWXKlIGenh5cXFxw5MiRD04DcO3aNXTt2hVmZmZiP+GIESMQGxubb1tF38/jx4/x559/wtHRETo6OvDw8EBAQAAkEon4O/2urKwsmJiYwMTEpMD+ICIiKp040pyIPpljx46hS5cuyMnJwTfffIMqVaogKioKe/fuxZEjRxAYGIi6deuK2+/duxcrV66Ep6cnXFxcoKmpibt37+Kff/7BoUOHcPXqVVSoUAEAxNJyGzZsgLu7u1JD+t3G8MGDB3H48GF06NABw4YNw4ULF7B+/XpERkZizpw5aN68OZo1a4ZBgwbhzp07OHToEB4/fozbt29DKv3fs0SrV6/Gvn374O7ujhYtWkAul+PatWv4/fff4e/vj5CQEBgYGOQ7Dnv37oW/vz86d+4MDw8P3Lx5E3v27EFgYCAuXLhQYCOnIP369cPWrVthbW2NwYMHQyKRYN++fRgxYgTOnTuHLVu2AHg7isDPzw/79+/HrVu3lMoJfqy09t9//w0A+OWXX5Q+e0G0tLTE/w8KCsLcuXPh6emJrl27Ql9fHw8ePMDu3btx8OBBnD9/Hk5OTgDeNpCTkpKwZMmSfOW/85Y5nD59OqZNm4ayZcuiQ4cOMDMzw+3bt7Fw4UIcPXoUFy9ehKGhobj99u3b0bt3b2hra6N79+6wtLTEhQsX0KRJE/G93zV58mTMmTMHJiYm6N27N/T19eHv74/JkycjICAAx48fh6amptI+2dnZ8PLyQmJiIlq1agVDQ0NUqlQJ7u7umD9/Pv7++2/0798/33utWrUKADBs2LAPHldvb28YGRlh69atWLBggVKJRAA4cOAAkpKSMG7cOHHdgAEDsG3bNtSqVQvffvstdHR0EBMTg3PnzuHYsWNo0aLFB9+zMPr06YMJEyZgzZo1mDp1KtTU1JTWr127FjKZDN99912+ff/44w8cP34cPXr0QJs2bXDu3DmsW7cOZ86cQUhICExNTcVtnz59Cg8PD0RGRqJZs2Zo06YN3rx5g8OHD6NNmzZYtWoVhgwZ8p8/DxERERFRUaipqWHIkCHw8/PDtm3b8t2TZmRkYPPmzbCwsECnTp2U1r1+/RouLi4wNjYWH+DeuXMn+vTpg+joaPz0009K2xe1LfRf2Nvbo3v37ti8eTO2bt2KOnXqvHfb9PR0uLq64tGjR2jZsiW++eYbCIKAp0+f4sCBA/Dx8UHlypWL1F7fvXs3jh07hrZt22LYsGF4+vRpoeIuShujKBTt6enTp8PGxkYpSfixOc6fPHmCpk2bIiYmBl5eXujVqxeeP3+OXbt24ciRI9izZ0+BD1EfPnwYBw4cEI/BvXv3cPToUVy5cgX37t2DiYnJB9+3evXqqFChglICHFAut37q1Ck0a9ZM6Wdtbe0PTuU2YMAAGBsb48CBA+jUqZNSe/3dvoUVK1bg4MGD6NixI9zd3RESEoIdO3bg1q1buHnzplL/wYdcvXoV8+fPR5MmTTB48GA8e/YMe/bsQfPmzXHz5s1C95+sXbsWQ4cOhZaWFjp27Ahra2s8ePBA7F+6dOmS0oj3ovb3CIIAX19fbNiwASYmJujSpQtMTU0RFRWFwMBAVK9eHfXr11eK6b+eZ+B/fTZDhw6FpaXlB7fNe8wTExMxevRouLi4oGXLljA1NUVsbCwOHTqEdu3aYfXq1Rg8eDCAt99RPz8/LF68GAAwZswY8XXy/g4Utc8vPDwcLi4ueP36Ndq3bw9HR0c8fvwYnTt3Rrt27Qr8DIcPH0bXrl0hCAJ8fHxgY2ODa9eu4a+//sKBAwdw7tw5cVBGXqNHj0ZwcDDat2+Pdu3aQU1NDa1atYKdnR127tyJxYsX55teYc+ePXj16hXGjRtX6N9XIiIqBQQiojwACAAEPz+/9/4zMjISAAhPnjwR90tMTBSMjY2FcuXKCXfv3lV6zTt37gh6enpCnTp1lJZHRUUJmZmZ+WIICAgQpFKpMGzYMKXlgYGBYmwFWbdunQBAUFNTE86cOSMuz83NFVq0aCEAEMqUKSNs3rxZab+BAwcKAIT9+/crLY+MjBRkMlm+9/nnn38EAMLcuXMLfH8AwqFDh5TWLV68WAAgeHl5FRj7u7Zu3SoAEOrUqSOkpqaKy9PS0oR69eoJAIQtW7Yo7dO/f/985+VDnj17JgAQ1NXVhYyMjELto/DixQshJSUl3/KbN28Kenp6Qps2bZSWP3nyRAAg9O/fv8DXO336tABAaNKkifD69WuldYrjOmbMGHFZSkqKYGxsLGhqago3b95U2n7ixIniech7LC5cuCAAEKytrYXY2FhxeU5OjtChQwcBgDB79myl17KxsREACM2bNxfS0tLyxd2+fXsBgHDnzh2l5SkpKYK+vr5gbW1d4O/Qu4YOHVrg740gCEK7du0EAMLt27cFQRCEpKQkQSKRCPXq1SvwtRMSEj76fu9SHON3z8/3339fYFxyuVyoVKmSoKurKyQlJYnL/fz8BACChoaGcP36daV9xowZIwAQBg4cqLTc3d1dkEgkwrZt25SWv379WnBychK0tbWFuLi4In8mIiIiIqKiUNz7521DxMTECOrq6kK9evXyba+4h548ebLSckVbpFu3bkJubq64/PHjx0KZMmUEDQ0N4dGjR+LyoraFPuR99/XvUrRp3dzcxGUFtdkOHjz43vfPyspSahMWtr0ukUgEf3//ArcBILi7uyst+zdtDBsbG8HGxqbA91C8XmBg4EffW+F97dlWrVoJAIRZs2YpLT9//rygpqYmlC1bVqk9n7fP4uTJk0r7/PzzzwIAYd68eQXG8K5+/foJAITQ0FBxWc+ePQUTExPB2dlZaNq0qbg8MTFRkEql+fojCjpOihjXrVtX4Psqjp+BgYHYRlXo1auXAEDYsWOH0nJ3d3fh3S5oxe9LQe+1cuVKAYAwfPjwDx0C0f379wUNDQ3Bzs5OiIqKUlp38uRJQSqVCt7e3krLi9rfs2rVKgGA0KBBA6U2sCAIgkwmE2JiYsSfP+V5rly5sgBAOHHiRKG2V8jMzBSeP3+eb3lSUpJQs2ZNoUyZMkJ6errSug99b/5Nn5+Xl5cAQFixYoXS8qNHjxZ47lNTU4WyZcsKUqlUCAoKUtpn7ty5AgChZcuWSssV/WDly5cXHj9+nC/uBQsWCACEP//8M986xe/l/fv3C/zMRERUOjFpTkRKFDeuhfmXtzNBkRRetmxZga+raMy+e3P9PrVr1xYqVaqktKywjfC+ffvmW7dhwwYBgNCsWbN8686cOSMAEKZNm1ao2ORyuWBoaCh4enoW+P4FJcZlMplgZ2cnABAiIyM/+h6KJH9AQEC+dSdPnhQA5Hv/oibNQ0JCBACCubl5obYvrG+++UbQ0tISsrOzxWUfS5p7e3vna/Dn5ezsLJiamoo/b9q0SQAg+Pr65ts2NTVVMDY2zncsBg8eLAAQVq1alW+f+/fvC1KpNN/vnKLj7N3EvMLhw4cFAMLIkSOVlisa+dOnTy9wv3edP39eACD4+PgoLY+NjRXU1NSUGp/JyckCAMHFxUWQy+WFev2PeV/nWmhoqABA6NChg9LyY8eOFXj8FR0o73ZaCcLbxrmRkZGgra0tPixz8+bNAj+3wv79+wUAwvLly//DpyMiIiIi+riCkuaCIAg+Pj4CAOHq1atKyxs3bixIpdJ82yuSZQUlcBT3y3nbnkVtC31IYZPm/v7+AgDBwcFBXPahpPmkSZM++t6Fba+/m7zM60NJ88K2MQSheJLmz58/FwAIFStWVGr7KvTt21cAIGzYsEFcpjgGffr0ybf948ePBQBC165dC4zhXevXrxcACEuWLBGXmZmZCd27dxfGjx8vaGhoiA9+79mz570Pif/bpPmUKVPyrVM8ADJu3Dil5R9Kmru6uuZ7nezs7Pc+rFIQRX/T4cOHC1zv7e0tqKmpFfjg/7ve199Tq1YtAUC+BzcK8inPs46OjgBACAsLK9T2hbFo0SIBgHD27Fml5R/63hS1z08xSKNKlSpKDw8pKPq88v6ebd68WQAg9OrVK9/2OTk5gq2trQBAePr0qbhc0Q+2ePHiAuNKSEgQtLW1hVq1aiktDw8PL7BfjYiIiOXZiahAgiC8d52trW2+EmoXL14EANy6dUuc9yuviIgIAEBYWBhq1KghvseWLVuwfv163Lp1C69fv0Zubq64z7tlsgvr3ZJYAFC+fHkAQL169fKtU5SAf3ce9ZycHKxatQrbt2/HvXv3kJycrDSXeEFzdQGAu7t7vmVqampo2rQpHj16hBs3bsDGxuaDn+H69euQSqUFloNzd3eHmpqa0vxzqnDkyBGsXLkSV69eRUJCgjjftkJCQsJHy4cpXLx4ERoaGti1axd27dqVb312djZevnyJV69eoVy5cuJnb9q0ab5t9fX14ezsLM5Rp3D9+nUAgJeXV759qlWrBisrKzx58gTJyclKZbu0tbXh6OhYYNxt27ZFpUqVsGnTJsybNw+6uroA3pZQU1dXF8udfYyLiwuqVauGQ4cO4fXr1+Lc8lu2bEFubq5SiUBDQ0N88803OHToEJydndG1a1c0a9YMjRo1Et//U6lZsybc3Nzg7++P58+fw9raWvx8wPtLzxf0HTAyMoKzszPOnj2LsLAwODs7i9eN5OTkAq8bL1++BIAizflGRERERPQpjRgxArt378aqVavE++A7d+7g0qVLaNu2bYFzZ1esWLHAEsIeHh6YPn26UluuqG2hT0HR3n93nul3ubu7o0KFCpg7dy6uX7+Odu3awdXVFc7Ozvmmbyqshg0b/qv9CtvGKC6Kc9isWTNoaGjkW+/l5YXNmzfjxo0b+Pbbb5XWFdRnoWhrfWg+7XdfH3hbdn3UqFEIDQ1FfHw8mjdvDmtrayxcuBBBQUFo27atWMa9oLbwv/UpPsP7XkdDQwPm5uaFfh1Fu/Ls2bO4cuVKvvXx8fHIzc1FRESE2CdUlP6eN2/eIDQ0FObm5h+czqAwn+3fHKN/6+7du1iwYAGCgoIQGxuLzMxMpfXv69MqSFH7/G7evAkAaNKkSYFTATZt2hQnT55UWvahPht1dXW4ubkhMjISN27cUCq1D7z/ulKuXDl0794dGzduxIULF8TpCT7Wp0FERKUXk+ZE9Em8evUKwNt5oT4kLS1N/P8ff/wRixcvhqWlJVq3bo0KFSpAR0cHALB+/fpCz232rnfnKQIgzgX9oXU5OTlKy3v06IF9+/ahcuXK6NSpEywsLMR5jhYvXoysrKwC39/c3LzA5RYWFgDeJgg/Jjk5GWXLli3wwQF1dXWYmJggPj7+o6/zIYqE9qtXr5CZmQltbe1C77tkyRKMGTMGZcqUQcuWLVGxYkXo6upCIpGIc6u/7/gU5NWrV5DJZJg+ffoHt0tLS0O5cuXEY/i+Y13QcsU+70vkW1pa4tmzZ0hKSlL6PTEzM3tvZ5JUKsV3332Hn3/+GTt27ICvry+uXbuG69evw9vbW3xYozD69++PKVOmYPv27Rg+fDiAt3MCamhooHfv3krb7tixA/PmzcPWrVvh5+cH4G1y38fHBwsXLnzvcfk3RowYgaCgIPzzzz+YPn064uLicPDgQTg7O7+3YVrY74DiunHixAmcOHHivTHkvW4QERERERUnT09PODg4YNu2bVi0aBEMDAzEhMt3331X4D5FaRMWtS30KcTExADAR+cBNzQ0xKVLl+Dn54eDBw8iICAAAGBiYoIRI0Zg6tSpBSaMP0RxDIrqU7SzP6XCtC8BICkpKd+6d+cHB/7XL5F3IMGHWFtbo2rVqjh79ixyc3PF+cybN28OCwsLaGho4NSpU2jbti1OnToFQ0NDNGjQoFCvXRif4jO873UUr1XY11G0KxcsWPDB7fK2K4vS36M4h4oBF4X1KY6RpaUlHj9+jOjoaNjb2xf6vS9dugQvLy/IZDI0b94cHTt2hKGhIaRSKW7evIkDBw4Uuc8GKHyf3+fqswEK/k596LoyYsQIbNy4EatWrYKLiwuysrKwYcMGmJmZoXPnzu//MEREVCoxaU5En4QiyXjr1q33jsrNKz4+HkuXLkWtWrVw4cIFGBgYKK3ftm3bZ4mzsK5evYp9+/ahRYsW8Pf3Fxs2ACCXyzF//vz37vvixYsCl8fFxQEoOHH/LiMjIyQmJiInJydfJ4RMJkNCQgIMDQ0L81Hey9raGhUrVsSzZ88QFBSEVq1aFWo/mUyGadOmwcLCAtevX8/XoFE8gVwURkZGkMvlSExMLNT2is/+vmNd0HLFcY+Li4OdnV2+9bGxsUrbKXxs9MXAgQPh5+eHVatWwdfXF6tWrQLw/g609+nXrx9++eUXbNiwAcOHD8eNGzdw584ddOrUCSYmJkrb6ujoYNq0aZg2bRqeP3+OoKAgrF+/Hps3b0ZkZCSCg4OL9N4f0qVLF5ibm2PNmjX49ddfsXbtWshksg9+vsJ+BxT/XbJkCUaNGvXJYiYiIiIi+pSGDRuG0aNHY8uWLejfvz82b96MChUqoEOHDgVuX5Q2YVHbQp9CYGAgAKBRo0Yf3dbKygpr1qyBIAi4d+8eTp8+jeXLl2PGjBmQy+WYOXNmkd77Y+2r9ynKMZVKpcjOzi5w+4ISbv9G3vZlQd7XvvyUvLy8sGrVKly5cgWnTp2CjY2N2NZt2LAhTp48iZiYGISHh6NDhw7/ujrAl05xjJOTkwvVT1LU/h5F8rsoI7M/laZNm+Lx48c4deoUmjdvXuj9Zs2ahYyMDAQGBuarYDhnzhwcOHCgSHEUtc/vv/bZFORD36kPXVcaNWqEOnXqYOfOnVi8eDH8/f3x6tUrTJw4scgP/RAR0dcvf30UIqJ/oXHjxgBQ6GTd48ePIZfL0apVq3wJ86ioKDx+/DjfPooGXlGeWv63Hj58CADo2LGjUgMKAC5fvoyMjIz37nv27Nl8y3Jzc3Hu3DkAKFQ5rzp16kAulyMoKCjfuqCgIOTm5qJu3boffZ2PGTp0KIC3Daq8pcgKongKOSEhAUlJSXBxccmXME9LSxNLauX1sXPXuHFjvH79Gnfv3i1U3IpjqDim78agKAVW0D7vlm0H3p7vqKgoVKpU6b1Pur+PqakpfHx8EBISgvPnz2Pbtm2oVKlSoR9CULC2toaXlxdCQkJw//59bNiwAcDbEegf269Pnz4ICAhAlSpVcO7cOfEp8E9BQ0MDgwcPRnR0NA4dOoR//vkH+vr66NOnz3v3Keg7kJycjJs3b0JbWxsODg4Ain7dICIiIiJShf79+0NXVxd///03duzYgaSkJAwaNOi9Schnz54hMjIy33JFWyRvm7CobaH/Kjw8HLt27YJEIslX0epDJBIJatasiR9++EGsErV//35x/edurxe2jQEAZcqUwYsXL/JVkwPeJkwLIpVKixR73jbpu1OVAf97MOFTtNvfR5FEDQgIQFBQkFJStXnz5rh9+zZ27NihtO3HFGe/y6dS1HZlUft79PT0UKtWLbx48aLYp8lT9Nn8/fff701AK+QdOf7w4UOULVu2wCn/CvouAW/P/Yf6bIDCH2PFVAkXL14ssK+poL6cD/XZyGQy8b3/zXdqxIgRyMzMxMaNG/H3339DIpGIx5aIiCgvJs2J6JPw9fWFsbExpk+fjsuXL+dbL5fLlW58FfO+nTt3TummPC0tDUOGDCmw0akoRffs2bNPG3wBFPG9e7MeHx+P77///oP7nj59GocPH1ZatmzZMjx69Aienp4fnc8ceDt6GQAmTZqE9PR0cXl6ejp+/vlnAMCgQYM++jofM3bsWDg5OSE4OBjffvttgU/dp6WlYfr06Vi4cCGAt+XKdXV1ce3aNaXyZjk5ORg9ejQSEhLyvUaZMmUgkUjee+7Gjh0LABgyZIhYKjCvN2/e4NKlS+LPnTp1gpGREbZs2YJbt24pbTtr1qwCP4fimM6aNUucKxt42xkwfvx4yOXyf31MFeXUe/ToIf4OFzRv18co5i5fs2YNtm3bBhMTk3yjV16+fIk7d+7k2/fNmzdIS0uDurp6gWX9/4uhQ4dCTU0NI0eOxJMnT9C7d+98D7vktWnTpnydCdOmTUNycjJ69eollr2rX78+mjVrhr1792Lt2rUFvtadO3f+81QERERERET/hZGREXr37o0bN25g6tSpUFNTw5AhQ967fW5uLiZOnKiULHry5AmWLl0KdXV19O3bV1xe1LbQf3H27Fm0adMG2dnZGD58OJycnD64/d27dwtM1CmW6erqiss+d3u9sG0M4O0oa5lMhnXr1iltv379epw/f77A1y9XrhyeP39e6HisrKzQsmVLREZGYvHixUrrQkJCsHXrVpQpU+azln/29PSERCLBihUrkJycrJQY9/LygiAImDt3rvhzYRRnv8unMnLkSGhoaGDs2LHi3Np5ZWdnKyV7/01/j6Iy2nfffZdvKgC5XC6Ogv7UXF1dMWTIELx69Qpt2rTBgwcP8m0jl8uxbds29OvXT1xma2uLxMRE3L59W2nbNWvWiNMsvKtcuXJ4+fJlgYNEitrnV7FiRXh4eODhw4diNT6FY8eO5ZvPHAC8vb1RtmxZbNu2Ld81b/HixXjy5AlatGiRbz7zwujduzeMjIwwf/58nD17Fi1btkTlypWL/DpERPT1Y3l2IvokypUrh927d6Nz585o3Lgxmjdvjpo1a0IikeD58+e4ePGiOHc28Ha+oZ49e2L79u1wdnZGq1atkJycjBMnTkBbWxvOzs75RgtXr14dFSpUwPbt26GhoQEbGxtIJBL069evUInoomjQoAFcXV2xd+9euLi4oGnTpnjx4gX8/f1RvXr1D85V/c0336Bz587o3LkzqlSpgps3b8Lf3x9ly5bFihUrCvX+vXv3xoEDB7Bz507UrFkT3t7e4nzhT548QY8ePT440rewdHV1cezYMfj4+GDLli04dOgQWrZsCTs7OwiCgIcPH+LUqVNISUnBsmXLALx9An/UqFGYO3cuateujU6dOiE7OxuBgYFITEyEp6en+FS9gr6+Pho1aoTg4GD06dMH1apVg5qaGjp27AhHR0c0b94cc+fOxaRJk1C1alW0a9cOlSpVQlpaGp4+fYqzZ8+iadOmOHbsGIC3pb6WL1+Ofv36wcXFBd27d4elpSUuXLiAW7duwd3dHWfPnlVKXLu4uGDChAmYP38+atWqBR8fH+jp6cHf3x+hoaFo2rQpfvrpp391HF1dXeHk5IRbt25BQ0NDTNAXVefOnWFoaIjFixcjJycHP/zwQ75yYdHR0ahTpw5q164NR0dHWFtbIyUlBYcPH0ZcXBxGjRr1wYT2v1GxYkW0b98eBw8eBPDx0vNt27aFq6ureF7OnTuHc+fOwdbWVuy0Udi6dSu8vLwwaNAgLF26FI0aNYKxsTGioqJw+/ZthIaG4uLFizAzM/ukn4mIiIiIqChGjBiBf/75B9HR0fjmm29gZWX13m0dHR0REhKCevXqoVWrVkhKSsLOnTuRlJSE+fPnK00XVdS2UGHcvHkT06ZNA/B29OmLFy8QEhKCe/fuQSqV4scff/zglGMKJ06cwE8//YQmTZqgWrVqMDMzQ1RUFA4cOACpVKrUfvrc7fWitDF++OEHrFu3DsOHD8epU6dgbW2Nmzdv4uLFi+jQoUO+h9yBt+dh+/bt+Oabb1C3bl1oaGjAzc0Nbm5u741p5cqVcHV1xU8//YTjx4+jfv36eP78OXbt2gWpVIp169Z98rZZXiYmJnB0dBQfJM+bGG/SpAl0dXURHx8PU1NT1K5du1Cvqdhv8eLFePXqlThX9A8//PBZS83/F/b29li7di0GDhyImjVrok2bNqhWrRpycnLw7NkzBAcHw9TUFOHh4QD+XX/P4MGDERwcjE2bNqFq1aro1KkTTE1NERMTg9OnT2PgwIHid+5TW758OdTU1LBy5Uo4ODjAw8MDTk5O0NLSQnR0NE6fPo2oqCj4+PiI+4wZMwYBAQFo2rQpunfvDiMjI1y9ehXnzp2Dj48Pdu/ene99mjdvjitXrqBNmzZwc3ODlpYWnJyc8M033xS5z08Rt6urK0aMGIGjR4/C0dERjx8/xp49e9CpUyfxOqKgr6+PtWvXolu3bnB3d0e3bt1QsWJFXLt2DcePH4eFhUW+BHxh6erqon///li6dCmAok+nR0REpYhARJQHAOFjlwYbGxsBgPDkyZN86548eSJ8//33QpUqVQQtLS3BwMBAqF69utC3b19h3759Stu+efNGmDx5smBnZydoaWkJVlZWwogRI4SEhATB3d29wDguX74seHl5CYaGhoJEIhEACIGBgYIgCMK6desEAMK6devy7RcYGCgAEPz8/AqMGYDQv39/peWvXr0Shg8fLtjY2AhaWlpC5cqVhUmTJglv3rwRbGxsBBsbG6Xt877/oUOHhMaNGwu6urqCkZGR0KVLF+H+/fsfOKr55ebmCsuXLxfq1asn6OjoCDo6OkLdunWFZcuWCbm5ufm279+//3vPS2Hea+fOnULnzp2FChUqCFpaWoKOjo5QvXp1YdCgQcL58+eVts/JyREWLVokODg4CNra2oK5ubnQt29fITIy8r1xPHjwQOjQoYNQtmxZ8dy9e66Cg4OFbt26CZaWloKGhoZgYmIiODk5CWPHjhWuXLmSL+6jR48KTZo0EXR0dARjY2OhY8eOQlhYmNC+fXsBgPD69et8+2zbtk1wdXUV9PX1BS0tLaFGjRrCrFmzhIyMjHzbFnSe32fx4sUCAMHHx6dQ27/PoEGDxO/h1atX861//fq1MH36dMHT01MoX768oKmpKVhYWAju7u7C1q1bBblcXuT3VPzuvvsdyGv//v0CAKF+/frv3cbPz0/8Tq5bt05wcnIStLW1BRMTE2HAgAFCTExMgfulpKQIs2fPFurWrSvo6ekJ2tragq2trdCu3f+xd9/RUVX7+8efmTRSSEIaAQKEEELoVUCQJoqAQXoTriCComC5XgugXARFbBcL6hVBQUQkVBtNugoioKD00HtIgCSQxJAy8/vDn/N1bgCBJHMyM+/XWrNWzj77nHkOW9TMZ/beXazTpk2zZmZm3vAzAQAAADfiWr/n/qlhw4ZWSdZvvvnmqn0kWdu2bWs9deqUdeDAgdbw8HCrj4+PtVGjRtbPPvvsqtfd6O9CV/Ln/9f/9eXn52etVKmStUOHDtZ///vf1gMHDlzx2iv9Xrxnzx7rP//5T2uTJk2sYWFhVm9vb2vVqlWtvXr1KvQ7otV687+v/++f3V/d7O8Y33//vbV169ZWX19fa9myZa1dunSx/vrrr3b3+6uzZ89aBwwYYI2IiLCazWa7zw+u9pmB1Wq1njx50jpixAhrlSpVrF5eXtbQ0FBrt27drFu2bCnU9+/+DK70/H/nySeftEqy1q5du9C5jh07WiVZ+/bte8Vrr/b77vLly60tWrSw+vv72/45+vPvxdX+/KzWq/85XenznWt9RnOtbNfy22+/WQcPHmytUqWK1dvb21quXDlrnTp1rA8++KB1zZo1dn1v9POeP82ZM8fapk0ba2BgoNXHx8caHR1tvffee60///yzrU9JjLPVarVu3rzZOnToUGuNGjWs/v7+Vm9vb2tUVJS1e/fu1sTExEKfE3399dfW5s2bWwMCAqxBQUHWO++807phw4ar5svMzLSOGDHCWqlSJauHh8cVx/JGPvOzWq3WvXv3Wnv06GENCgqy+vn5WVu0aGH95ptvrK+//rpV0hWv2bJli7V79+7WsLAwq5eXl7Vy5crWESNGWE+dOlWo7418DrZjxw6rJGuFChWseXl5f9sfAOCeTFar1VrMdXgAcEuzZs3S/fffr5kzZ9qW2YbjFRQUKCYmRrm5uSW2RNqVDBkyRJ988olWr1593fvFOZMXXnhBEyZM0IwZM666jP2ffdatW3fFvdMAAAAAZ3Xp0iVVrFhRISEhOnLkyFW3YzKZTGrbtu0V9+UFAEgDBw7U3LlztW/fPtWsWdMh7/nnZ3bPP/+8XnzxRYe8JwDA+bCnOQDAKaWnp9vt9y5JVqtVL730ko4fP16ie8f9rxMnTmjevHmqVavWde8V50wuXbqkDz74QCEhIRowYIDRcQAAAACH++9//6vMzEw98sgjVy2YAwD+YLFYlJycXKh9zZo1SkxMVO3atR1WMM/Pz9eUKVPk6enJ0uwAgGtiT3MAgFPavHmz+vXrp44dOyo6OlqZmZnavHmzduzYocqVK5fYfmJ/NXfuXCUlJWnevHm6fPmyXnzxRZlMphJ/X0dZunSpfvnlF3399dc6e/as3njjDfn5+RkdCwAAAHCIjIwM/fe//9WpU6c0ffp0VahQQY888ojRsQCg1MvNzVXlypXVvn17xcfHy9PTU7t379aqVavk7e2t9957r8Qz/PDDD9qwYYPWr1+vnTt3atSoUYqKiirx9wUAOC+K5gAAp1SzZk0lJCRo48aNWrZsmfLz8xUVFaXHHntMY8eOVURERIln+PDDD/Xdd9+pcuXKevPNN9WrV68Sf09HWrBggT755BOVL19eY8aM0T//+U+jIwFAke3Zs0dfffWVjhw5orS0ND311FNq1qyZ7bzVatX8+fO1Zs0aZWVlKT4+XsOGDVOFChVsfTIzM/Xxxx/r559/lslkUvPmzXX//ferTJkyRjwSAKCEpKWlacyYMfLx8VGTJk00depUlS1b1uhYAFDqeXl5acSIEVq7dq1++uknZWdnKywsTH369NHo0aPVqFGjEs+wevVqTZgwQSEhIRo+fLhee+21En9PAIBzY09zAAAAAG5j+/bt2r9/v2JiYvTGG28UKpp/8cUX+uKLLzRy5EhFREQoMTFRx48f15QpU+Tt7S1Jevnll5WWlqYHH3xQBQUFev/991W9enU9/vjjRj0WAAAAAAAAioBNmAAAAAC4jUaNGql///52hfI/Wa1WLVu2TD179tQtt9yiqlWratSoUUpLS9PWrVslSSdPntSOHTs0YsQI1ahRQ/Hx8Ro6dKg2bdqkCxcuOPpxAAAAAAAAUAwomgMAAABwWnl5ecrOzrZ75eXl3dS9UlJSlJ6ervr169va/Pz8FBsbq6SkJElSUlKS/P39Vb16dVufevXqyWQy6eDBg0V7GAAAAAAAABiCPc2vIqTGKKMjAG4tef/9RkcA3J63mf0aAePFGR3guvhWGWDYe3/yRg8tXLjQrq13797q27fvDd8rPT1dkhQUFGTXHhQUZDuXnp6uwMBAu/MeHh4KCAiw9QEAAAAAAIBzoWgOAAAAwGn16NFDCQkJdm1eXl4GpQGuLS0tTfn5+UbHKDbh4eFKTU01OgaugTFyDoyTc2CcnAPjVPoxRs6BcXIOrjZOnp6eKleunNEx4MYomgMAAAAoEpPJuF2fvLy8iq1IHhwcLEnKyMiw+0U9IyND0dHRtj4XL160u66goECZmZm264Gryc/Pv+ntA0obk8kk6Y9nslqtBqfBlTBGzoFxcg6Mk3NgnEo/xsg5ME7OgXECih97mgMAAACApIiICAUHB2vnzp22tuzsbB08eFBxcX8slR8XF6esrCwdPnzY1mfXrl2yWq2KjY11eGYAAAAAAAAUHTPNAQAAALiNnJwcJScn245TUlJ09OhRBQQEKCwsTF26dNHixYtVoUIFRUREaN68eSpXrpxuueUWSVJUVJQaNmyoadOmafjw4crPz9fHH3+sli1bKiQkxKjHAgAAAAAAQBFQNAcAAABQJCYnWsDq0KFDmjBhgu149uzZkqS2bdtq5MiR6tatmy5fvqxp06YpOztb8fHxGjt2rLy9vW3XPPbYY/roo480ceJEmUwmNW/eXEOHDnX4swAAAAAAAKB4UDQHAAAA4Dbq1Kmj+fPnX/W8yWRSv3791K9fv6v2CQgI0OOPP14S8QAAAAAAAGAAiuYAAAAAisRkcp6Z5gAAAAAAACXp999/19mzZ2W1WmW1Wo2O45ZMJpNMJpPKly8vX1/f67qGojkAAAAAAAAAAAAAFNHvv/+uU6dOqWzZsjKbmWRgJIvFolOnTqlSpUrXVThntAAAAAAAAAAAAACgiM6ePUvBvJQwm80qW7aszp49e139mWkOAAAAoEhYnh0AAAAAAECyWq0UzEsRs9l83UvkM2oAAAAAAAAAAAAAUETsYV76XO+YMNMcAAAAQJGYTCajIwAAAAAAAAA3jZnmAAAAAAAAAAAAAAC3xUxzAAAAAAAAAAAAAHAhERER1zz/1FNP6ZlnnnFQmtKPojkAAACAImIBKwAAAAAAgNJk586dtp+//PJLvfrqq9q0aZOtzd/f34hYpRafbgEAAAAAAAAAAACACylfvrztFRgYKJPJpPLlyysgIEC33nqr1q1bZ9d/2bJlio6OVmZmpo4fP66IiAgtWbJEXbp0UeXKldWmTRu7orsk7d27V/3791d0dLRq166tRx55ROfPn3fkYxYbiuYAAAAAisRkMhv2AgAAAAAAwPXz9/dXjx499Pnnn9u1z5s3TwkJCQoICLC1TZgwQQ8//LDWrFmjpk2batCgQbpw4YIkKSMjQ7169VK9evW0atUqJSYmKjU1VcOHD3fo8xQXPmUCAAAAAAAAAAAAADcxcOBArVu3TmfPnpUkpaamavXq1br33nvt+g0dOlRdu3ZVXFycXnvtNQUGBuqzzz6TJH300UeqW7eunnvuOdWoUUP16tXT22+/rR9++EGHDh1y+DMVFUVzAAAAAAAAAAAAAHATjRs3Vs2aNZWYmChJWrhwoaKionTrrbfa9bvllltsP3t6eqpBgwY6cOCAJGn37t3auHGjoqOjba+WLVtKko4ePeqYBylGnkYHAAAAAODcWCYdAAAAAADAuQwaNEgff/yxHnvsMc2bN08DBgyQyWS67uuzsrLUsWNHjRs3rtC58uXLF2dUh+DTLQAAAAAAAAAAAABwI71799bJkyc1ffp07d+/X/369SvUZ9u2bbaf8/Pz9dtvv6lGjRqSpPr162v//v2qUqWKYmJi7F7+/v4Oe47iQtEcAAAAQJGYZDbsBQAAAAAAgBsXHBysLl26aMKECWrXrp0qVqxYqM/MmTO1dOlSHThwQM8++6zS09Nt+54PHTpU6enpeuihh7R9+3YdOXJEa9eu1WOPPaaCggJHP06RudSnTNnZ2dqyZYtOnjxpdBQAAAAAAAAAAAAAKLUGDhyo3NxcWyH8fz3//POaOnWq2rdvry1btujTTz9VaGioJCkyMlLffPONCgoK1LdvX7Vr107jxo1TUFCQzGbnK0E79Z7mU6ZMUe3atdWpUyfl5uZqzJgxSklJkSQ9/vjjatGihcEJAQAAANfHnuYAAAAAAAClV//+/dW/f/9C7WfOnFFISIg6dep0xetq1KihFStWXPW+MTExmjVrVnHFNJRTf7q1d+9excfHS5K2bNkiq9WqWbNm6f7779fixYsNTgcAAAAAAAAAAAAApUt2draOHDmiqVOn6r777pO3t7fRkQzn1DPNs7OzFRAQIEnasWOHmjdvLh8fHzVu3FiffvqpwekAAAAAAKXJnj179NVXX+nIkSNKS0vTU089pWbNml3zmt27d2v27Nk6ceKEQkND1atXL7Vr184xgQEAAAAAKAHvvvuu3nrrLd1666167LHHjI5TKjj1TPOwsDAlJSUpJydHO3bsUIMGDSRJmZmZfCMCAAAAcBCTyWzYC7gRly9fVnR0tB544IHr6p+SkqJXXnlFderU0Wuvvaa7775bH3zwgXbs2FGyQQEAAAAAKEHPPPOMTp8+rUWLFtkmKP9VlSpVlJKSonr16hmQzhhOPdO8S5cumjp1qsqUKaOwsDDVrl1b0h/LtlepUsXgdAAAAACA0qRRo0Zq1KjRdff/9ttvFRERofvuu0+SFBUVpX379mnp0qVq2LBhCaUEAAAAAACO5tRF87vuukuxsbE6f/686tevL7P5j5km5cuXV79+/QxOBwAAALgHZnzDVR04cKDQt+obNGigWbNmXfO6vLw85eXl2Y5NJpN8fX1tP7uCP5/DVZ7HFTFGzoFxcg6Mk3NgnEo/xsg5ME7OgXECip9TF80lqXr16qpevbpdW+PGjQ1KAwAAAABwFenp6QoKCrJrCwoK0u+//67c3Nyrbgu2ZMkSLVy40HZcrVo1vfrqqwoPDy/RvEaIjIw0OgL+BmPkHBgn58A4OQfGqfRjjG7eibubFvkelZduu65+jJNzYJyA4uPURXOLxaL169dr586dunjxoiwWi9358ePHG5QMAAAAAOCuevTooYSEBNvxn7M/UlNTlZ+fb1SsYmUymRQZGank5GRZrVaj4+AKGCPnwDg5B8bJOTBOpR9jVDqcOXPmmucZJ+fgiuPk6enpkl80hvNw6qL5zJkztX79ejVu3FiVK1c2Og4AAADglkxiOTi4puDgYGVkZNi1ZWRkyNfX96qzzCXJy8tLXl5eVzznKh9o/clqtbrcM7kaxsg5ME7OgXFyDoxT6ccYGet6/+wZJ+fAOAHFx6mL5ps2bdI///lPlmMHAAAAABS7GjVqaPv27XZtv/32m+Li4gxKBAAAAAAASoLZ6ABF4enpyX4NbizA30cvP9dLv66fqFM7p2hF4pNqVK+KXZ+46uX12QcP6egvr+vEr//R6kVPq1KFcgYlBtzLjOlfqV6te/Xqy7ONjgK4nc8+W6rbb39A9er1VJ8+/9JvvyUZHQkuzmQyG/YCbkROTo6OHj2qo0ePSpJSUlJ09OhRnTt3TpI0d+5cvfvuu7b+HTt2VEpKiubMmaNTp05p5cqV+vHHH3X33XcbER8AAAAAALfWpEkTTZs2rUTu7dQzzRMSErRs2TI98MADtj3i4D7ennSvasVV1IinP1Hy2Qz17dZMSz55VLd2fklnzmYoukqYln3+pOYs3KRX3lmqS5k5io+toMuX84yODri8XTsPaWHiGsXVrPL3nQEUq2XLvtfkyTM0YcJINWgQp08++UoPPPBvrVjxgUJDg42OBwCGOnTokCZMmGA7nj37jy/3tW3bViNHjlRaWpqtgC5JERERGj16tD755BMtW7ZMoaGhGjFihBo2bOjo6AAAAAAAJ5YzpLND36/MrOU3fM3Zs2f11ltvadWqVUpOTlZYWJjq1q2rBx98UG3atCmBlKWLUxfN9+3bp927d2vHjh2KioqSp6f94zz11FMGJUNJK+Pjpa53NdTAhz/Uj1sPSZJenbpMd91eV/ff21ovv/mNnv9nV63asFsvvPal7bqjx89d7ZYAikl2Vo5GP/2exk8cpg8/+MLoOIDbmTnzC/Xte5d69bpDkjRhwiNav36rFi1apQcf7GNwOgAwVp06dTR//vyrnh85cuQVr3nttddKMhYAAAAAAIY6fvy4EhISFBQUpPHjx6t27drKy8vTunXrNHr0aG3atMnoiCXOqdcz9Pf3V7NmzVS7dm0FBgbKz8/P7gXX5elplqenR6FZ4zk5eWrRpLpMJpPubFdHh46maOHHI7V/82StWviUutxR36DEgPuY9OJMtW7bSLe2rGd0FMDt5Obmaffug2rZsoGtzWw2q2XLhtq+fb+ByeDqWJ4dAAAAAADAeT377LMymUxasWKFunbtqurVqys+Pl4PP/ywli//Y9b6f//7X7Vt21bR0dFq2LChnnnmGWVmZtruceLECQ0aNEg1atRQdHS0WrdurdWrV0uS5s2bp9jYWLv3XLZsmSIiImzHR44c0X333afatWsrOjpaHTt21IYNGxzw9H9w6pnmjzzySLHcJy8vT3l5LNntTDKzLmvLL4f11MjOSjp0VinnLqpXQlPd0qiaDh9LVXhogMoGlNHjD96pl9/8Ri+8/oU6tK6t2e8N0z3/eEebthw0+hEAl7R86Sbt2XNU8xa8aHQUwC2lpV1UQYFFoaHl7NpDQ4N1+PBJg1IBAAAAAAAAKK3S0tK0du1ajR07Vv7+/oXOBwUFSfpjcs6kSZNUpUoVHTt2TM8++6wmTpxoW51t9OjRys3N1Zdffik/Pz8lJSVd8X5Xk5WVpQ4dOmjMmDHy8fHR/Pnz9Y9//EObNm1SVFRU8TzsNTh10by4LFmyRAsXLvyf1ogr9kXpMeLp2Zo6eaD2bJyk/PwC/br7hBZ9s00N61aR2fzHrKPla3bqv7PWSZJ27T2lZo1jdP+A2yiaAyUg+cx5vTJ5tj78aKx8fLyNjgMAcCBmfAMAAAAAADinI0eOyGq1FpoJ/r8eeugh289VqlTRmDFj9PTTT9uK5idPnlRCQoJq164tSYqOjr6hHHXr1lXdunVtx6NHj9ayZcu0cuVKPfDAAzd0r5vh9EXzzZs3a9OmTTp//rzy8/Ptzr366qvXdY8ePXooISHBri2qwTPFlhEl4+jxc+o68G35+XqrbEAZnU29qI/eul9HT5zT+bRM5eUVaP/BM3bXJB1KVosmMQYlBlzb7t2HdeH8RfXrNdbWVlBg0c/b9unzud/q519ny8ODogpQksqVC5SHh1nnz6fZtZ8/n66wsHJXuQoAAAAAAACAu7JardfVb8OGDXrnnXd04MABXbp0SQUFBcrJyVF2drb8/Pw0fPhwPfPMM1q/fr3atGmjhIQE1alT57pzZGZm6vXXX9fq1at19uxZ5efnKycnRydPOmYFTaeuXixbtkzvv/++goODdeTIEVWvXl0BAQE6e/asGjZseN338fLyYj90J5b9e67Opl5UUKCvbm9dS8tX71ReXoG27zym2Grl7fpWj47QidNpV7kTgKJocWtdLf7yVS1YPNn2qlM3RncntNKCxZMpmAMO4O3tpTp1YvXjj7/Z2iwWi3788Vc1alTTwGQAAAAAAAAASqOYmBiZTCYdPHj1VZqPHz+uQYMGqXbt2vr444+1evVqvfLKK5Jk2wJ70KBB2rp1q/r06aO9e/eqY8eOmjFjhiTJZDIVKs7/72ToF154QcuWLdPYsWP11Vdfae3atapVq5bDtth26pnm3377rR588EHddtttWr9+vbp166by5csrMTHRbuN5uKbbb6slk0k6cCRFMVXDNeHZ7jpw+Kw+W/SjJGnqjNX66K2h+nHrQX2/OUkd2tRWp9vrquugtw1ODrgmf39f1YirbNfm6+uj4OCAQu0ASs7993fXs8++qbp1Y1W/fpw++eRL/f57jnr2vMPoaHBpfDEKAAAAAADAGZUrV07t27fXxx9/rGHDhhXahzwjI0O//vqrLBaLJkyYYNsi+csvvyx0r0qVKmnIkCEaMmSIXnrpJX366acaNmyYwsLClJmZqaysLNv9d+3aZXft1q1b1b9/f919992S/ph5fuLEiZJ45Cty6qL5uXPnVLPmH7OmvL299fvvv0uS2rRpo+eee84h69vDOIFly2jcU/eoYmSw0tKz9fXKHXppytfKz7dIkpau+k3/Gj9PTzzUUZPH9dbBIykaPGqGfvr5sMHJAQAoOV26tNaFCxl6553PlJqaplq1YjRjxgSWZwcAAAAAAABwRa+88ooSEhLUqVMnPfPMM6pTp47y8/O1YcMGzZo1S9OmTVNeXp5mzJihjh07asuWLfrkk0/s7vH888/r9ttvV/Xq1ZWRkaGNGzcqLi5OktS4cWP5+vrq5Zdf1rBhw/TLL79o3rx5dtdXq1ZNS5cuVceOHWUymfTqq6/KYrE47M/AqYvmwcHByszMVHh4uMLCwnTgwAFFR0crJSXlutffh/P6Yvl2fbF8+zX7fLZwsz5buNlBiQD8r5mzxxkdAXBLgwYlaNCgBKNjwI2YTMw0BwAAAAAAuJoys5YbHeGaoqOjtWbNGr355pt64YUXdPbsWYWGhqpBgwZ67bXXVLduXU2cOFFTp07VpEmT1KJFCz333HMaNWqU7R4FBQUaPXq0zpw5o7Jly6p9+/Z68cUXJf0xm/3999/XhAkTNGfOHLVu3VpPP/20/vWvf9munzhxop544gklJCQoJCREo0aN0qVLlxz2Z2CyOnF1+YMPPlBoaKj69OmjFStWaM6cOapZs6YOHz6sZs2a6eGHH77pe4fUGPX3nQCUmOT99xsdAXB73uayRkcAoDijA1yXCnWeM+y9z+yeZNh7AzcqNTXVYXuxlTSTyaQKFSrozJkzfGm9lGKMnAPj5BwYJ+fAOJV+jFHRFQy/p8j38Jj+1TXPM07OwRXHycvLS+Hh4UbHKLLDhw+rbFk+Vy1NLl26pJiYmL/t59QzzR988EHbvww6deqksmXLav/+/WratKnuvPNOg9MBAAAAAAAAAAAAAEo7py6a/7nR/J9atWqlVq1aGZQGAAAAcE8szw4AAAAAAABn5tRFc0nau3evVq1apbNnz+pf//qXQkJC9N133ykiIkLx8fFGxwMAAAAAAAAAAAAAlGJOPSVk8+bNmjRpkry9vXX06FHb3nDZ2dlasmSJwekAAAAA92CS2bAXAAAAAAAAUFRO/SnT4sWLNXz4cI0YMUIeHh629po1a+rw4cMGJgMAAAAAAAAAAAAAOAOnXp799OnTqlWrVqF2Pz8/ZWdnG5AIAAAAcD/saQ4AAAAAAABn5tSfbgUHBys5OblQ+759+xQREWFAIgAAAAAAAAAAAACAM3HqonmHDh00a9YsHThwQCaTSWlpafr+++/16aefqmPHjkbHAwAAAAAAAAAAAACUck69PHv37t1ltVo1ceJE5ebmavz48fL09FTXrl3VuXNno+MBAAAAbsFkMhkdAcD/VzD8nmK5j8f0r4rlPgAAAAAAOAOnLpqbTCb17NlT99xzj5KTk5WTk6OoqCiVKVPG6GgAAAAAAAAAAAAAgGJy/PhxNW3aVGvWrFG9evWK9d5OWTR/4403/raP2WxWcHCw6tevr6ZNmzogFQAAAOCeTCan3vUJAAAAAACgRHWZtdOh77dsyI0VlB999FElJiYWat+8ebNiYmKKK1ap5pRFcz8/v7/tY7FYlJycrLVr16pr167q16+fA5IBAAAAAAAAAAAAgHO5/fbb9fbbb9u1hYWF3fB9cnNz5e3tXVyxHMYpi+aPPPLIdff9+eefNWPGDIrmAAAAAAAAAAAAAHAF3t7eKl++fKH2TZs2acKECdq9e7eCg4PVr18/jRkzRp6ef5SZu3fvrvj4eHl6emrhwoWqVauWnnrqKfXo0UPz5s3TSy+9pIMHD6pp06aaNm2afvvtN/373//WmTNn1LFjR02ZMsU2YXrt2rWaMmWK9u3bJw8PDzVt2lQvvfSSqlWrVuLP7/LrKMbHx6t69epGxwAAAABclklmw14AAAAAAAAoGWfOnNG9996rhg0bat26dXrttdc0d+5cTZkyxa5fYmKivLy89M033+j111+3tb/++uuaPHmyli5dqlOnTmn48OGaNm2aPvjgA82dO1fr16/XjBkzbP2zsrI0YsQIffvtt1q4cKHMZrOGDBkii8VS4s/qlDPNb4S/v7+eeuopo2MAAAAAAAAAAAAAQKm0atUqRUdH2447dOig6tWrq2LFinrllVdkMplUo0YNJScn68UXX9RTTz0ls/mPCQ0xMTEaP3687dqzZ89KksaMGaPmzZtLkgYOHKiXXnpJW7Zssb1PQkKCNm7cqMcee0yS1LVrV7tMb731lmrVqqX9+/erVq1aJfXoktygaA4AAACgZJlMzPgGAAAAAABwZq1atdJrr71mO/b399ezzz6rpk2bymQy2dqbNWumrKwsnT59WlFRUZKkBg0aXPGetWvXtv0cHh4uPz8/u8J8eHi4tm/fbjs+fPiwXn31Vf3888+6cOGCbYb5qVOnKJoDAAAAAAAAAAAAAEqOn5+fYmJibvraK/Hy8rL9bDKZbPug/7Xtr0uvDxo0SFFRUZoyZYoiIyNlsVjUpk0b5ebm3lSuG8GUEAAAAAAAAAAAAACAnbi4OG3btk1Wq9XWtmXLFgUEBKhixYrF+l4XLlzQwYMH9eSTT6pNmzaKi4tTenp6sb7HtVA0BwAAAFAkJpPZsBcAAAAAAABKxv3336/Tp09rzJgxOnDggJYvX67XX39dI0aMsO1nXlyCg4MVEhKi2bNn6/Dhw/r+++/t9kkvaSzPDgAAAAAAAAAAAAAlZNmQekZHuCkVKlTQ3LlzNWHCBLVv317BwcG699579eSTTxb7e5nNZk2bNk3PPfec2rZtq+rVq+vll19W9+7di/29roSiOQAAAIAiMbGAFQAAAK6iYPg9xXIfj+lfFct9AABAYVOnTr3quZYtW2rlypVXPf/FF18UamvVqpVSUlLs2vr376/+/fvbtT3zzDN65plnbMdt27bVDz/8YNfnr/epUqVKofsWFz7dAgAAAAAAAAAAAAC4LYrmAAAAAAAAAAAAAAC3xfLsAAAAAIrGxHdxAQAAAAAA4Lz4dAsAAAAAAAAAAAAA4LaYaQ4AAACgSEzMNAcAAAAAAIAT49MtAAAAAAAAAAAAAIDbYqY5AAAAgCIxmUxGRwAAAAAAAABuGjPNAQAAAAAAAAAAAABui6I5AAAAAAAAAAAAAMBtsTw7AAAAgCIx8V1cAAAAAAAAODGK5gAAAAAAAAAAAABQQhbPSXXo+/UcFH5D/R999FFlZGRo9uzZJZSo9KNofhWhkfWMjgC4tfTcU0ZHANxeeJkaRkcA3J7J6ADXyWRipjkAAAAAAACcF59uAQAAAAAAAAAAAAAK2bRpk+666y5FRUWpbt26evHFF5Wfn28736RJE02bNs3umvbt2+u1116zHUdERGjOnDkaPHiwqlatqubNm2vFihV216xYsULNmzdX5cqV1aNHD82bN08RERHKyMiw9dm8ebO6du2qKlWqqGHDhho7dqyysrKK5TkpmgMAAAAAAAAAAAAA7Jw5c0b33nuvGjZsqHXr1um1117T3LlzNWXKlBu+1xtvvKFu3bpp3bp1uuOOO/Twww8rLS1NknTs2DE98MAD6ty5s9atW6f77rtPkydPtrv+yJEj6t+/vxISErR+/Xp9+OGH+umnnzRmzJhieVaK5gAAAACKxmQy7gUAAAAAAIASMXPmTFWsWFGvvPKKatSooS5duujpp5/Wf//7X1kslhu6V//+/dWzZ0/FxMTYZohv375dkjR79mzFxsbqhRdeUGxsrHr06KH+/fvbXf/OO++oV69eeuihhxQTE6NmzZpp0qRJmj9/vnJycor8rOxpDgAAAAAAAAAAAACwk5SUpKZNm8r0l4kLzZo1U1ZWlk6fPq2oqKjrvlft2rVtP/v7+6ts2bJKTU2VJB08eFANGza069+oUSO74927d2vPnj1atGiRXbvFYtHx48cVFxd3gCPkVgAAzQ5JREFU3VmuhKI5AAAAgKJh/SoAAAAAAAC3ZDKZZLVa7dr+uuf5nzw97cvSV7ruWrKysnTfffdp2LBhhc7dSPH+aiiaAwAAAAAAAAAAAADsxMXF6ZtvvpHVarXNNt+yZYsCAgJUsWJFSVJYWJjOnj1ru+bSpUs6fvz4Db1PbGysVq9ebde2Y8cOu+N69epp//79iomJuYkn+XvMCQEAAAAAAAAAAAAAN3bp0iXt3LnT7vWPf/xDp0+f1pgxY3TgwAEtX75cr7/+ukaMGCGz+Y8y82233aYFCxZo8+bN2rNnj0aNGmU7d73uu+8+HTx4UBMnTtShQ4f05Zdfat68eZJkK9Y/+uij2rZtm0aPHq2dO3fq8OHDWr58uUaPHl0sz89McwAAAABF85d9rQAAAAAAAGCv56BwoyP8rY0bN6pDhw52bQMHDtTcuXM1YcIEtW/fXsHBwbr33nv15JNP2vo8/vjjOn78uAYOHKjAwEA9++yzNzzTvGrVqvroo480fvx4TZ8+XU2bNtUTTzyhZ555Rt7e3pKkOnXq6IsvvtDLL7+se+65R1arVdHR0erevXuRn12iaA4AAAAAAAAAAAAAbmvq1KmaOnXqVc+vXLnyqufKli2rDz/80K6tf//+dscpKSmFrjt48KDdcadOndSpUyfb8ZtvvqmKFSuqTJkytrZGjRppwYIFV81SFBTNAQAAABQNM80BAAAAAABQBB9//LEaNWqkcuXKacuWLXrvvff0wAMPOOz9KZoDAAAAAAAAAAAAAAxz5MgRvfnmm0pPT1elSpX08MMP6/HHH3fY+1M0BwAAAAAAAAAAAIpBwfB7inwPj+lfFUMSwLm8+OKLevHFFw17f4rmAAAAAIrGbHQAAAAAAAAA4Obx8RYAAAAAAAAAAAAAFJHJZDI6Av7H9Y4JM80BAAAAFImVXwgBAAAAAABkMplksVhkNjNvuTSwWCzXXTRnxAAAAAAAAAAAAACgiMqXL69Lly7JYrEYHcXtWSwWXbp0SeXLl7+u/sw0BwAAAAAAAAAAAIAi8vX1VaVKlXT27FlZrVZZrVajI7klk8kkk8mkSpUqydfX97quoWgOAAAAoGhYnR0AAAAAAEDSH4Xz6Ohoo2PgBrE8OwAAAAAAAAAAAADAbTHTHAAAAEDRmJlqDgAAAAAAAOfFTHMAAAAAAAAAAAAAgNty+qJ5QUGBNmzYoPT0dKOjAAAAAO7JZDLuBQAAAAAAABSR0xfNPTw8NH36dOXl5RkdBQAAAAAAAAAAAADgZJy+aC5JsbGxOnr0qNExAAAAAAAAAAAAAABOxtPoAMWhY8eOmj17ts6fP6+YmBj5+PjYna9atapByQAAAAA3wCrpAAAAAAAAcGIuUTR/++23JUkzZ8684vnExERHxgEAAAAAAAAAAAAAOAmXKJq/++67RkcAAAAA3JeZqeYAAAAAAABwXi5RNA8PDzc6AgAAAAAAAAAAAADACZmNDlBcvvvuO40bN04PPfSQUlNTJUlLly7V1q1bDU4GAAAAAAAAAAAAACitXKJo/u233+qTTz5Ro0aNlJWVJYvFIkny9/fXsmXLDE4HAAAAuDiTybgXAAAAAAAAUEQuUTRfvny5HnroIfXs2VNm8/89UkxMjI4fP25gMgAAAAAAAAAAAABAaeYSe5qnpKSoWrVqhdq9vLyUk5NjQCIAAADAjTDhGwAAAAAAAE7MJWaaR0RE6OjRo4Xad+zYoaioKMcHAgAAAAAAAAAAAAA4BZeYaZ6QkKCPPvpIeXl5slqtOnjwoDZu3KglS5ZoxIgRRscDAAAAAAAAAAAAAJRSLlE079Chg7y9vTVv3jzl5ubqnXfeUbly5XT//ferVatWRsdDCTGbTXrs/ia6p2MNhYf6KeVclhYvT9J7n/xi6/Pq2Hbq2bmm3XXf/XRCDzy1zNFxAZe04+fD+nzWeu3fe0rnUy9q0puD1eb2ulfs+8aLi/Tlws169Ol71HdQawcnBdzH1q279dFHS7R71yGlpqbp3fdG6447WhgdC67OzPrsAAAAgDMrGH5PsdzHY/pXxXIfAAAczSWK5pLUunVrtW7dWpcvX1ZOTo6CgoKMjoQS9uDAhhrQvbaefXm9Dhy5oHrx4Zo8pp0uZeZq9qJdtn4bNh/X6Mnrbce5uQUGpAVcU87vuYqtWVF3d79Fzz05+6r9vluzU7t3HlNYeKAD0wHu6ffsHMXXrKZeve7Qo6NeMToOAAAAAAAAAJR6LlM0/5OPj498fHyMjgEHaFy3vNb8cEzrfzwuSTqVnKmEDrGqXztCWvR//XLzCnTuwu8GpQRcW4vb4tXitvhr9kk9m6G3XvlS//nvMD3z6McOSga4rzZtm6hN2yZGx4C7YaI5AAAAAAAAnJhLFM3T09P16aefateuXcrIyJDVarU7n5iYaFAylKRfdp1Vv661FF05SEdPZCi+eoia1I/U5Hd/tOvXvGFFbf7qPmVcuqzNv5zSm9O3Kv3iZYNSA+7FYrHopec+14AhbVUtNtLoOAAAAAAAAAAAAIW4RNH8/fff17lz59SrVy8FBwfLZLqxqS55eXnKy8sroXQoKdPmbFeAn5dWzumnAotFHmazpkzfoq9WHbT1+e6nE1q54YhOnrmkKpUC9a8Hm2nG613U9+EvZLFYr3F3AMXhs5nr5eFhVu97bzM6CgAAAAAAAAAAwBW5RNF83759mjhxoqKjo2/q+iVLlmjhwoX/09qhyLlQsrrcXl333FlDT05cowNH0lSrRqiee7SlUs5la8mKJEnS0jWHbP2TDl/Q/oPntXb+vWreqKJ+/PmUUdEBt7B/z0kt/Ox7fTTviRv+MhMAwLlY+fc8AAAAAAAAnJhLFM1DQ0MLLcl+I3r06KGEhAS7tgZ3fVrUWChhzz7cQtM+22ErjCcdvqBK5QP00KCGtqL5/zpx5pIupP+uqpUCKZoDJezXX44o7UKWend62dZWUGDRe//5Wgs++14Llo81MB0AAABgnILh9xT5Hh7TvyqGJAAAAAAAyUWK5kOGDNHcuXM1fPhwRURE3PD1Xl5e8vLyKoFkKEllyngW+rJEgcUqs/nqM50iw/0VHFhGKeezSzoe4PbuSmisps1r2LX96+Hpuiuhibp0b2pQKgBAibjG/38BAAAAAAAApZ3TFs3vv/9+u+PLly/r0UcflY+Pjzw8POzOzZw505HR4CDrNh3Tw/9opNNnM3XgyAXVrhGmof3qa+HS/ZIkP19PPXp/U61cf1ipF7JVpVKQnnm4uY6dytAPW04YnB5wDdnZl3Xq+Dnb8ZlTF3Rg3ykFBvmpfIVyCgr2t+vv6eWhkLCyqhJ9419wAnB9srJ+1/HjZ2zHJ0+maO/ewwoKKquKFcMNTAYAAAAAAAAApZPTFs0HDx5sdAQYbOKbG/XEsFv0wpO3KbScr1LOZWnel3v17qyfJUkFBVbVrB6iHp3iVDbAWynnsvXD1pN6a8ZW5eZZDE4PuIb9u0/qsWEf2I7ffeNrSVKne5rouRf7GxULcGu7dh3U4PvG2Y5fmfyxJKl7j/Z65ZXHjYoFV+ckE80tFovmz5+v77//Xunp6QoJCVHbtm3Vq1cvmf7/vuxWq1Xz58/XmjVrlJWVpfj4eA0bNkwVKlQwOD0AAAAAAABKitMWzdu1a2d0BBgs6/c8TZq6SZOmbrri+cu5BRr6r2UOTgW4l0a3VNf3v75+3f3Zxxwoec2b19O+/V8YHQMolb744gutWrVKI0eOVFRUlA4fPqz3339ffn5+6tKliyTpyy+/1PLlyzVy5EhFREQoMTFRkyZN0pQpU+Tt7W3wEwAAAAAAAKAkmI0OUBz69eunjIyMQu2XLl1Sv379DEgEAAAAwBHy8vKUnZ1t98rLy7ti36SkJDVt2lSNGzdWRESEWrRoofr16+vgwYOS/phlvmzZMvXs2VO33HKLqlatqlGjRiktLU1bt2515GMBAAAAAADAgZx2pvn1yMvLk6enSz8iAAAAYDyTceuzL1myRAsXLrRr6927t/r27Vuob1xcnNasWaPTp0+rYsWKOnr0qPbv36/77rtPkpSSkqL09HTVr1/fdo2fn59iY2OVlJSkVq1alezDAAAAAAAAwBBOXVFetuz/lt5es2aNypQpYzu2WCzau3evKlWqZEQ0AAAAAA7Qo0cPJSQk2LV5eXldsW/37t31+++/65///KfMZrMsFov69++v1q1bS5LS09MlSUFBQXbXBQUF2c4BAAAAAADA9Th10Xzp0qW2n1etWiWz+f9Wm/f09FRERISGDx9uRDQAAADAfZiNm2nu5eV11SL5//rxxx/1ww8/6LHHHlPlypV19OhRzZo1S+XKlVO7du1KNigAAAAAAABKLacumr/33nuSpAkTJuhf//qXLBaLJCkwMNDIWAAAAABKoTlz5qhbt262ZdarVKmi1NRUffHFF2rXrp2Cg4MlSRkZGSpXrpztuoyMDEVHRxuQGAAAAAAAAI7g1EVzScrKylKlSpX0+OOPKzMzU5IUEBCgli1bqn///vL39zc4IQAAAIDS4PLly3arU0mS2WyW1WqVJEVERCg4OFg7d+60Fcmzs7N18OBBdezY0dFxAQAAAAAA4CBOXTTPzMzUc889pwsXLqh169a2/ctPnjyp9evXa9euXXrxxRcVEBBgcFIAAADAhRm3OvsNadKkiRYvXqywsDBFRUXp6NGj+uabb9S+fXtJkslkUpcuXbR48WJVqFBBERERmjdvnsqVK6dbbrnF4PQAAAAAAAAoKU5dNF+4cKE8PT01depU21KKf+rXr59eeuklLVy4UEOGDDEkHwAAAIDSY+jQoUpMTNSMGTOUkZGhkJAQ3Xnnnerdu7etT7du3XT58mVNmzZN2dnZio+P19ixY+Xt7W1gcgAAAAAAAJQkpy6ab926VcOHDy9UMJek4OBgDRo0SNOnT6doDgAAAJQkk3NMNff19dWQIUOu+fuByWRSv3791K9fP8cFAwAAAAAAgKHMf9+l9EpLS1PlypWver5y5cpKT093XCAAAAAAAAAAAAAAgFNx6qJ52bJllZqaetXzKSkp7GcOAAAAAAAAAAAAALgqpy6aN2jQQJ9//rny8/MLncvLy1NiYqIaNGhgQDIAAADAjZhMxr0AAAAAAACAInLqPc379eun0aNH67HHHtNdd92lSpUqyWq16tSpU1q5cqXy8/M1atQoo2MCAAAAAAAAAAAAAEoppy6ah4aGatKkSZoxY4bmzp1rd65+/fp64IEHFBYWZlA6AAAAwE049fpVAAAAAAAAcHdOXTSXpIiICI0dO1aZmZlKTk6WJEVGRrKXOQAAAAAAAAAAAADgbzl90fxPAQEBio2NNToGAAAAAAAAAAAAAMCJuEzRHAAAAIBBTCajEwAAAAAAAAA3jd0HAQAAAAAAAAAAAABui5nmAAAAAIqGieYAAAAAAABwYsw0BwAAAAAAAAAAAAC4LYrmAAAAAAAAAAAAAAC3xfLsAAAAAIrEamZ9dgAAAAAAADgviuYAAAAAALeyYsUKff3110pPT1fVqlU1dOhQxcbGXrX/0qVL9e233+rcuXMKDAxU8+bNde+998rb29uBqQEAAAAAQEmhaA4AAACgaEzMNIfz2LRpk2bPnq3hw4erRo0aWrp0qSZNmqS33npLQUFBhfr/8MMPmjt3rh5++GHFxcXpzJkzev/992UymTR48GADngAAAAAAABQ3iuYAAAAAALfxzTffqEOHDmrfvr0kafjw4frll1+0bt06de/evVD//fv3q2bNmrrtttskSREREWrVqpUOHDhw1ffIy8tTXl6e7dhkMsnX19f2szP4u5x/nneW53FFjJFrYJycA+NUOvDvPedwrT9/xqh04O+Sc2CcAMejaA4AAACgaPgdHU4iPz9fhw8ftiuOm81m1atXT0lJSVe8pmbNmvr+++918OBBxcbG6uzZs9q+fbtat2591fdZsmSJFi5caDuuVq2aXn31VYWHhxfbs1zNiWK6T4UKFa6rX2RkZDG9o3spjnFijFwL4+QcGKebw3+bnIMjx4kxunn8P4RzYJwA50TRHAAAAADgFi5evCiLxaLg4GC79uDgYJ0+ffqK19x22226ePGixo0bJ0kqKCjQnXfeqZ49e171fXr06KGEhATb8Z+zP1JTU5Wfn1/Ep3CMM2fOXPO8yWRSZGSkkpOTZbVaHZQKf8UYuQbGyTkwTqUD/95zDtcaJ8aodODvknNwx3Hy9PR0yBeNgauhaA4AAAAAwFXs3r1bS5Ys0bBhw1SjRg0lJydr5syZWrhwoXr37n3Fa7y8vOTl5XXFc87ygdb15rRarU7zTK6GMXItjJNzYJyMxb/3nMP1/NkzRsbi75JzYJwAx6NoDgAAAKBozKzPDucQGBgos9ms9PR0u/b09PRCs8//lJiYqDZt2qhDhw6SpCpVqignJ0cffvihevbsKbPZXMKpAQAAAABASeO3ewAAAACAW/D09FRMTIx27dpla7NYLNq1a5fi4uKueM3ly5dty6v/iUI5AAAAAACuhZnmAAAAAIrGxExzOI+EhAS99957iomJUWxsrJYtW6bLly+rXbt2kqR3331XISEhuvfeeyVJTZo00dKlS1WtWjXb8uyJiYlq0qQJxXMAAAAAAFwERXMAAAAAgNto2bKlLl68qPnz5ys9PV3R0dEaO3asbXn2c+fO2c0s79Wrl0wmk+bNm6cLFy4oMDBQTZo00YABAwx6AgAAAAAAUNwomgMAAAAA3EqnTp3UqVOnK5574YUX7I49PDzUp08f9enTxwHJAAAAAACAESiaX4W1YoDREQC3FuJd1egIgNvbl37I6AiA26sVXMvoCNeH1dkBAAAAAADgxNiADQAAAAAAAAAAAADgtphpDgAAAKBozEw1BwAAAAAAgPNipjkAAAAAAAAAAAAAwG1RNAcAAAAAAAAAAAAAuC2WZwcAAABQNCzPDgAAAAAAACfGTHMAAAAAAAAAAAAAgNtipjkAAACAIrEy0RwAAAAAAABOjJnmAAAAAAAAAAAAAAC3RdEcAAAAAAAAAAAAAOC2WJ4dAAAAQNGYWZ8dAOB6CobfU+R7eEz/qhiSAAAAAChpzDQHAAAAAAAAAAAAALgtZpoDAAAAKBoTM80BAAAAAADgvJhpDgAAAAAAAAAAAABwW8w0BwAAAFA07GkOAAAAAAAAJ8ZMcwAAAAAAAAAAAACA26JoDgAAAAAAAAAAAABwWyzPDgAAAKBo+CouAAAAAAAAnBgfbwEAAAAAAAAAAAAA3BYzzQEAAAAUjclkdAIAAAAAAADgpjHTHAAAAAAAAAAAAADgtiiaAwAAAAAAAAAAAADcFsuzAwAAACgaM8uzAwAAAAAAwHkx0xwAAAAAAAAAAAAA4LZcdqZ5VlaW/P39jY4BAAAAuDyriZnmAAAAAAAAcF4uMdP8iy++0KZNm2zHU6ZM0dChQ/XQQw/p6NGjxgUDAAAAAAAAAAAAAJRqLlE0X7VqlUJDQyVJv/32m3bu3KmxY8eqUaNGmjNnjsHpAAAAAAAAAAAAAACllUsUzdPT021F859//lm33nqrGjRooHvuuUeHDh0yOB0AAADg4swGvgAAAAAAAIAicomPmQICAnT+/HlJ0o4dO1SvXj3bOYvFYlQsAAAAAAAAAAAAAEAp52l0gOLQrFkzvfPOO4qMjFRmZqYaNWokSTpy5IgiIyMNTgcAAAC4OLPJ6AQAAAAAAADATXOJovngwYMVHh6u8+fPa9CgQSpTpowkKS0tTR07djQ4HQAAAAAAAAAAAACgtHKJonlSUpLuvvtueXh42LV37txZ+/fvNygVAAAAAAAAAAAAAKC0c4k9zSdMmKDMzMxC7dnZ2ZowYYIBiQAAAAA3YjIZ9wIAAAAAAACKyCWK5pJkusIHZpcuXbIt1Q4AAAAAAAAAAAAAwP9y6uXZ33jjDdvP7733nry8vGzHFotFx44dU1xcnBHR4ADrp3ZTVERAofY5K5M0/es92vBu9yte9+ib32v55uMlnA5wT/M+/1aJ877VqVOpkqTY2Cg9/EhvtW7TyOBkgGtaOGuNNq/fqZPHUuTj46Wa9apq8KgEVaoaYeuTezlPM9/+Sj+s2qG8vHw1bF5TI57ppeDQsgYmh8sxM+MbAAAAAAAAzsupi+Z+fn62n319feXt7W079vT0VI0aNdShQwcjosEBeo5dIfNfPqCNqxKs2c930PLNx3TmXLZaPLjIrn//O2I1rGttbdh+2tFRAbdRPjJE/3zyXlWtWkFWq1VffrlBo0a9pkWLXlNsjcpGxwNczu7th9S5d0vVqF1FBfkWzfnvMr3w2IeaOu9plfH1kSR9/NaX2rZxr56efJ/8/Mto+htL9MroWXpl+qMGpwcAAAAAAACA0sGpi+aPPPKIJCk8PFxdu3ZlKXY3c+HSZbvjhxpX0rHkS/ppT4ok6VxGjt35jrdU1vIfjyn7cr7DMgLupn37pnbHjz8xQPPmfatffz1A0RwoAePfftDu+LF/99fgTuN1aN9J1WlUXVmZv2v1V1v05MSBqt+0hiTp0XH9NKrfa9q/85hq1qtqRGwAAAAAAAAAKFVcYk/zPn36UDB3c14eZnW7LVoL1x264vk61UJUu1qI5l/lPIDiV1Bg0bKlG/V79mU1aMhWGYAjZGf+8YWxgMA/VuM5tO+k8vMLVL/Z//0djIour/DIctq/66gREeGqTAa+AAAAAAAAgCJy6pnmf0pPT9enn36qXbt2KSMjQ1ar1e58YmLiNa/Py8tTXl5eSUZECbvzligF+ntr0YbDVzzf9/bqOngyQ9uTzjk4GeB+kpKO694Bzyn3cp78/MronalPKTY2yuhYgMuzWCz66M0vVKt+tKpWryBJSjt/SZ5eHgoo62vXNzgkQGnnLxkREwAAAAAAAABKHZcomr///vs6d+6cevXqpeDgYJlMNzblZMmSJVq4cKF9o6lbMSZESetze3V9t+O0UtJ+L3TOx8tDXVtF673FOw1IBrif6OiKWrT4dWVmZuvblZs1dsx7mjV7AoVzoIR9+PpiHTucrMnTRhkdBW7IambKNwAAAAAAAJyXSxTN9+3bp4kTJyo6Ovqmru/Ro4cSEhLs2urfv6QYksERKob5q2W9SI38z/dXPN+5RRWV8fHQkg1HHJwMcE/e3p6qWjVSklSnTox27TykOZ8u0wsTHvybKwHcrA9fX6ytP+zRy9NGKqx8sK29XGhZ5ecVKPPS73azzdMvZKpcaFkDkgIAAADFp2D4PcVyH4/pXxXLfQAAAOC8XKJoHhoaWmhJ9hvh5eUlLy+vYkwER+rdLkbnMy5r3S+nrni+T/vqWrvtlC5cuuzgZAAkyWK1KDeXLTCAkmC1WjX9jSXavGGnXnr/EZWvGGp3vnp8lDw9PfTb1gNqeXt9SdKpYylKTU5TzbrRBiSGy2KmOQAAAAAAAJyY2egAxWHIkCGaO3euUlJSjI4CBzOZpF7tqmvJhsMqsBT+4kTV8gG6pVaE5q89aEA6wP28OWWutm3do1OnUpSUdFxvTpmrrVv2KCGhtdHRAJc07fXFWr/iZz05cZB8/X2Udv6i0s5f1OWcP76o4h/gqzvuaaaZb3+lndsO6uDeE3rnxXmqWa+qataranB6AAAAAAAAACgdXGKm+VtvvaXLly/r0UcflY+Pjzw8POzOz5w506BkKGmt6kWqUri/Fqw/dMXzvdtXV/KFbH3/2xkHJwPc04XzGRoz+j2lpqapbFk/xcVV1YfTn1PLVvWNjga4pBWLNkmSnn/4fbv2R8f1U4eEZpKkoU90k8lk0qtjZikvt0CNWtTUQ8/0dHhWAAAAAAAAACitXKJoPnjwYKMjwCA//Jas2H6fXfX8f+b9qv/M+9WBiQD39uKkh42OALiVL376z9/28fbx0kPP9NJDz/RyQCK4LRPLswMAAAAAAMB5uUTRvF27dkZHAAAAAAAAAAAAAAA4IZcomv9Vbm6u8vPz7dr8/PwMSgMAAAC4AbPRAQAAAAAAAICb5xJF85ycHH322Wf68ccfdenSpULnExMTDUgFAAAAAAAAAAAAACjtXGJOyJw5c7Rr1y4NGzZMXl5eGjFihPr27auQkBCNGjXK6HgAAAAAAAAAAAAAgFLKJYrmP//8s4YNG6YWLVrIw8NDtWrVUq9evTRgwAD98MMPRscDAAAAXJvJZNwLAAAAAAAAKCKXKJpnZmaqfPnykiRfX19lZmZKkuLj47Vnzx4jowEAAAAAAAAAAAAASjGXKJqXL19eKSkpkqRKlSpp06ZNkqRt27bJ39/fyGgAAACA6zObjHsBAAAAAAAAReRpdIDi0K5dOx09elS1a9dWt27d9Oqrr2rlypXKz8/X4MGDjY4HAAAAAAAAAAAAACilnLpobrFY9NVXX+nnn39Wfn6+0tLS1KdPH7311ls6fPiwIiMjVbVqVaNjAgAAAAAAAAAAAABKKacumi9evFgLFixQ/fr15eXlpWXLlikjI0OPPPKIwsPDjY4HAAAAuAeWSQcAAAAAAIATc+qi+Xfffadhw4bpzjvvlCT99ttveuWVVzRixAiZzS6xXTsAAAAAAAAAAAAAoAQ5ddH83LlzatSoke24fv36MplMSktLU2hoqIHJAAAAAPdhNTHTHAAAAAAAAM7LqadjFxQUyNvb267Nw8NDBQUFBiUCAAAAAAAAAAAAADgTp55pLknvvfeevLy8bMd5eXmaPn26fHx8bG1PPfWUEdEAAAAAAAAAAAAAAKWcUxfN27ZtW6itdevWBiQBAAAA3JhTr18FAAAAAAAAd+fURfNHHnnE6AgAAAAAAAAAAAAAACfm1EVzAAAAAKWAyWR0AgAAAAAAAOCmsZAiAAAAAAAAAAAAAMBtMdMcAAAAQNGYmWkOAAAAAAAA58VMcwAAAAAAAAAAAACA26JoDgAAAAAAAAAAAABwWyzPDgAAAKBoWJ4dAAAAAAAAToyZ5gAAAAAAAAAAAAAAt8VMcwAAAABFw0RzAAAAAAAAODFmmgMAAAAAAAAAAAAA3BZFcwAAAAAAAAAAAACA22J5dgAAAABFYjWzPjsAAAAAAACcFzPNAQAAAAAAAAAAAABui5nmAAAAAIrGxExzAAAAAAAAOC9mmgMAAAAAAAAAAAAA3BZFcwAAAAAAAAAAAACA22J5dgAAAABFY2Z5dgAAAAAAADgvZpoDAAAAAAAAAAAAANwWM82vwhLma3QEwK0duHjC6AiA26sSUNboCACcBRPNAQAAAAAA4MSYaQ4AAAAAAAAAAAAAcFsUzQEAAAAAAAAAAAAAbovl2QEAAAAUiZmv4gIAAAAAAMCJ8fEWAAAAAAAAAAAAAMBtMdMcAAAAQJGYTEYnAAAAAAAAAG4eM80BAAAAAAAAAAAAAG6LojkAAAAAAAAAAAAAwG2xPDsAAACAImF5dgAAAAAAADgzZpoDAAAAAAAAAAAAANwWM80BAAAAFImJqeYAAAAAAABwYsw0BwAAAAAAAAAAAAC4LWaaAwAAACgSZ5pofuHCBc2ZM0c7duzQ5cuXFRkZqUceeUTVq1eXJFmtVs2fP19r1qxRVlaW4uPjNWzYMFWoUMHg5AAAAAAAACgpFM0BAAAAuIXMzEyNGzdOderU0dixYxUYGKgzZ87I39/f1ufLL7/U8uXLNXLkSEVERCgxMVGTJk3SlClT5O3tbWB6AAAAAAAAlBSWZwcAAADgFr788kuFhobqkUceUWxsrCIiItSgQQNFRkZK+mOW+bJly9SzZ0/dcsstqlq1qkaNGqW0tDRt3brV4PQAAAAAAAAoKcw0BwAAAFAkRi7PnpeXp7y8PLs2Ly8veXl5Feq7bds2NWjQQFOmTNGePXsUEhKijh076o477pAkpaSkKD09XfXr17dd4+fnp9jYWCUlJalVq1Yl+zAAAAAAAAAwBEVzAAAAAE5ryZIlWrhwoV1b79691bdv30J9U1JStGrVKt19993q0aOHDh06pJkzZ8rT01Pt2rVTenq6JCkoKMjuuqCgINs5AAAAAAAAuB6K5gAAAACKxGTgpk89evRQQkKCXduVZplLksViUfXq1XXvvfdKkqpVq6bjx49r1apVateuXUlHBQAAAAAAQCnFnuYAAAAAnJaXl5f8/PzsXlcrmpcrV05RUVF2bVFRUTp37pwkKTg4WJKUkZFh1ycjI8N2DgAAAAAAAK6HojkAAAAAt1CzZk2dPn3aru306dMKDw+XJEVERCg4OFg7d+60nc/OztbBgwcVFxfn0KwAAAAAAABwHIrmAAAAAIrEZDLudSPuvvtuHThwQIsXL1ZycrJ++OEHrVmzRnfdddf/fw6TunTposWLF2vbtm06fvy43n33XZUrV0633HJLCfzJAQAAAAAAoDRgT3MAAAAAbiE2NlZPPfWU5s6dq0WLFikiIkKDBw9W69atbX26deumy5cva9q0acrOzlZ8fLzGjh0rb29vA5MDAAAAAACgJLlE0Xz9+vUKDAxU48aNJUlz5szR6tWrFRUVpccff9y23CIAAACA4me+wRnfRmrSpImaNGly1fMmk0n9+vVTv379HJgKAAAAAAAARnLo8uz//Oc/tXjxYqWmphbrfZcsWWKb+ZGUlKSVK1dq0KBBKlu2rD755JNifS8AAAAAAAAAAAAAgOtw6Ezz0NBQLViwQPPnz1fNmjXVpk0b3XrrrfLz8yvSfc+fP6/IyEhJ0pYtW9S8eXPdcccdqlmzpl544YViSA4AAAAAAAAAAAAAcEUOLZo///zzSk9P1w8//KCNGzfqww8/1Mcff6zGjRurTZs2atSokTw9bzxSmTJldOnSJYWFhem3335TQkKCJMnLy0u5ubnF/RgAAAAA/sLkRMuzAwAAAAAAAP/L4XuaBwcHKyEhQQkJCTp9+rS+++47bdy4UVu2bJG/v79atmyp1q1bq2bNmtd9z/r16+uDDz5QtWrVdObMGTVq1EiSdPLkSUVERJTUowAAAAAAAAAAAAAAnJzDi+Z/VbFiRfXv31+dOnXSzJkztXnzZq1atUqrVq1S+fLl1aVLF3Xs2FFm87W3Xn/ggQc0b948nT9/Xv/6179UtmxZSdLhw4fVqlUrRzwKAAAA4LaYaQ4AAAAAAABnZljRPCcnR1u2bNH333+vXbt2SZIaN26stm3bytPTU6tXr9bMmTN1/PhxPfjgg9e8l7+/vx544IFC7X379i2R7AAAAAAAAAAAAAAA1+DQornFYtGOHTv0/fffa9u2bcrNzVVMTIzuu+8+tWrVSoGBgba+TZs21dy5c7Vy5cq/LZpL0t69e7Vq1SqlpKToySefVEhIiL777jtFREQoPj6+JB8LAAAAAAAAAAAAAOCkHFo0Hz58uDIzMxUSEqLOnTurTZs2ioqKumr/qlWrKicn52/vu3nzZr377ru67bbbdOTIEeXl5UmSsrOztWTJEo0ZM6bYngEAAACAPRPrs8PJrFixQl9//bXS09NVtWpVDR06VLGxsVftn5WVpc8//1xbtmxRZmamwsPDNXjwYDVu3NiBqQEAAAAAQElxaNG8cePGatOmjerWrXtdH6y1atXquvYkX7x4sYYPH662bdtq06ZNtvaaNWtq0aJFRcoMAAAAAHAdmzZt0uzZszV8+HDVqFFDS5cu1aRJk/TWW28pKCioUP/8/Hy99NJLCgwMtK1qdu7cOfn5+RmQHgAAAAAAlASHFc1zc3MVEBCgy5cvF/tMlNOnT6tWrVqF2v38/JSdnV2s7wUAAADAnslsdALg+n3zzTfq0KGD2rdvL+mPFdF++eUXrVu3Tt27dy/Uf+3atcrMzNSLL74oT88/foWOiIhwZGQAAAAAAFDCHFY09/b21urVq6+5HPvNCg4OVnJycqEPLvbt28eHGQAAAAAASX/MGj98+LBdcdxsNqtevXpKSkq64jU///yzatSooY8++kjbtm1TYGCgWrVqpe7du8tsvvI3RvLy8mzbhkl/bGHg6+tr+9kZ/F3OP887y/O4IsbIOTBOzoFxcg6Mk3O41p8/Y1Q68HfJOTBOgOM5dHn2mJgYnThxotjv26FDB82aNUsPP/ywTCaT0tLSlJSUpE8//VS9evUq9vdD6fDdxLsUFepfqP3TDYc05Zs9euLu2mpdK0IVy/npQuZlffvbab359R5dysk3IC3gehbOWqPN63fq5LEU+fh4qWa9qho8KkGVqv7fl5VyL+dp5ttf6YdVO5SXl6+GzWtqxDO9FBxa1sDkgOsqKLBo2ntfa9k3m3X+3EWFRwSpa7eWGjbibn6JQoniHy84i4sXL8pisSg4ONiuPTg4WKdPn77iNWfPnlVqaqpuu+02jRkzRsnJyZoxY4YKCgrUp0+fK16zZMkSLVy40HZcrVo1vfrqqwoPDy+2Z7ma4vqNu0KFCtfVLzIyspje0b0UxzgxRiWPcSr9+Heec2CcnIMjx4kxunn8t8k5ME6Ac3Jo0Xzw4MGaPHmyKleurHbt2snDw6NY7tu9e3dZrVZNnDhRubm5Gj9+vDw9PdW1a1d17ty5WN4DpU/319bJbP6/T2hrVgjUp4+11rLtp1Q+yFflg8ro5cU7dTD5kiqF+Oml/g1VPshXI2f8ZGBqwHXs3n5InXu3VI3aVVSQb9Gc/y7TC499qKnznlYZXx9J0sdvfaltG/fq6cn3yc+/jKa/sUSvjJ6lV6Y/anB6wDXN+miFFiau14SX71f12Iras+uYXnh+lgLK+mrAoA5GxwMAp2S1WhUYGKiHHnpIZrNZMTExunDhgr766qurFs179OihhIQE2/GfX1xKTU1Vfr5zfIn3zJkz1zxvMpkUGRmp5ORkWa1WB6XCXzFGzoFxcg6Mk3NgnJzDtcaJMSod+LvkHNxxnDw9PR3yRWPgahxaNH///fdlNpv14YcfaubMmQoJCZG3t7ddH5PJpNdff/2G7msymdSzZ0/dc889Sk5OVk5OjqKiolSmTJnijI9S5kJmrt3xw3dW0NHUTP104Jwk6ZG/FMePn8vSG1/v0ZTBTeVhNqnA4hr/EQGMNP7tB+2OH/t3fw3uNF6H9p1UnUbVlZX5u1Z/tUVPThyo+k1rSJIeHddPo/q9pv07j6lmvapGxAZc2q87Dqnt7Q3Vum19SVLFSmFasWyLdu08amwwACglAgMDZTablZ6ebteenp5eaPb5n4KDg+Xp6Wm3FHulSpWUnp6u/Px82z7nf+Xl5SUvL68r3s9ZPtC63pxWq9VpnsnVMEbOgXFyDoyTc2CcnMP1/NkzRsbi75JzYJwAx7vyBmwlJCAgQBUrVlTt2rVVo0YNhYaGqmzZsnavgICAm76/p6enfH19Va5cOQrmbsbLw6RuzSpr4Y/HrtqnrK+XMnPyKZgDJSQ7M0eSFBDoJ0k6tO+k8vMLVL9ZnK1PVHR5hUeW0/5dR42ICLi8Bg2ra8vmfTp29KwkKWnfCe3YflCtWtc1OBlcnclk3Au4EZ6enoqJidGuXbtsbRaLRbt27VJcXNwVr6lZs6aSk5NlsVhsbWfOnFG5cuWuWDAHAAAAAADOx6G/4b/wwgslcl+LxaLFixfr66+/Vk7OH0UbX19fJSQkqGfPnnYzAq4kLy9PeXl5JZINjnFng4oK9PXSws1XLpqX8/fWo53jNW/jEQcnA9yDxWLRR29+oVr1o1W1+h/77aSdvyRPLw8FlPW16xscEqC085eMiAm4vPuHdVJWZo56JvxbHh4mFRRYNfLx7uqS0NzoaABQaiQkJOi9995TTEyMYmNjtWzZMl2+fFnt2rWTJL377rsKCQnRvffeK0nq2LGjVq5cqVmzZqlTp05KTk7WkiVL2AoMAAAAAAAX4hJfi583b57Wrl2rgQMHqmbNmpKkffv2acGCBcrLy9OAAQOuef2SJUu0cOFC+8bw/iUVFyWg763R2rDnrFIycgqdCyjjqY8eaakDZy7q7aV7DUgHuL4PX1+sY4eTNXnaKKOjAG5t1YptWr70J7382gOKia2o/ftO6D+vzFd4eJC6dm9pdDy4MGZ8w5m0bNlSFy9e1Pz585Wenq7o6GiNHTvWtjz7uXPnbHuQS1JYWJiee+45ffLJJ3r66acVEhKizp07q3v37sY8AAAAAAAAKHYOL5pbLBZ99913+uWXX3Tu3B97T4eFhalJkyZq3br1384Kv5INGzZoxIgRatq0qa2tatWqCgkJ0YwZM/62aN6jRw8lJCTYtdV9esUN54AxKob4qlV8hB6evrnQOX8fT80c2UpZOfka8eFm5bM0O1DsPnx9sbb+sEcvTxupsPLBtvZyoWWVn1egzEu/2802T7+QqXKhZQ1ICri+t/6zSEMe6KS7ujSTJNWIi1Ly6QuaOWM5RXMATu3kyZM6e/assrKyrrhfX9u2bW/ofp06dVKnTp2ueO5KK6TFxcVp0qRJN/QeAAAAAADAeTi0aJ6dna1Jkybp4MGD8vX1Vfny5SVJO3fu1E8//aRvv/1Wzz33nPz8/G7ovpmZmapYsWKh9kqVKikzM/Nvr/fy8pKXl9cNvSdKjz4tonX+0mWt25Vs1x5QxlOzRrZSbr5Fwz/4Ubn5lqvcAcDNsFqtmv7GEm3esFMvvf+IylcMtTtfPT5Knp4e+m3rAbW8vb4k6dSxFKUmp6lm3WgDEgOuL+f3XJnN9lN+zR5mWfjSGAAnlZycrKlTp+rgwYPX7HejRXMAAAAAAIC/cmjR/PPPP9fhw4c1dOhQdejQQZ6ef7x9fn6+1q5dq5kzZ2revHkaOnToDd23atWqWrFiRaHrVqxYoejo6OKKj1LIZJJ631pVi386poK/FAQCynjqk1G3ydfbQ09+slkBvp4K8P3jn7cLly6L2gFQdNNeX6zvVv6isa8Pla+/j9LOX5Qk+fn7yqeMl/wDfHXHPc008+2vVDbQT77+Ppr+nyWqWa+qataranB6wDW1aVdfH324TJEVQlQ9tqL27T2hOZ+sUrcerYyOBhdnZnl2lJDp06fr+PHjGjJkiGrVqiV/f3+jIwEAAAAAABfk0KL5li1b1LFjR9111132ITw91bFjR508eVI//fTTDRfNBw0apMmTJ2vnzp2Ki4uTJCUlJen8+fMaM2ZMseVH6dOqZoQqhfhpwY/H7NrrVA5Wo2ohkqT1E+z/eWs9boVOXch2WEbAVa1YtEmS9PzD79u1Pzqunzok/LE09NAnuslkMunVMbOUl1ugRi1q6qFnejo8K+AunnlugN5/50tNfnGu0i5cUnhEkHr1aaMHH074+4sBoBTat2+fevTooc6dOxsdBQAAAAAAuDCHFs2vtoz6n653OfX/Vbt2bb399ttauXKlTp06JUlq3ry5OnbsqJCQkJvOi9Lvh30pihm5uFD7TwfOXbEdQPH54qf//G0fbx8vPfRMLz30TC8HJALg719GT4/pp6fH9DM6CtyMiZnmKCGBgYE3vH0XAAAAAADAjXJo0TwyMlLbtm0rNNP8T9u2bbPtc36jQkJCNGDAgKLEAwAAAACUInfeeae+//57derUSWaz2eg4AAAAAADARTm0aN6xY0d9/PHHmjx5srp06aIKFSpIkk6fPq3ly5frt99+0wMPPHBT987KytLBgweVkZEhq9V+w+q2bdsWOTsAAAAAwLEqVKggi8Wip59+Wu3bt1doaOgVi+fNmzc3IB0AAAAAAHAVDi2a33XXXcrIyNCXX36pHTt22Afx9FTv3r3VsWPHG77vtm3bNHXqVOXk5MjX11em/1kfkqI5AAAAUHJYnh0l5a233rL9/Omnn161X2JiogPSAAAAAAAAV+XQorkk9e3bV506ddLOnTuVmpoqSQoPD1e9evUUGBh4U/f89NNP1b59ew0YMEA+Pj7FGRcAAAAAYJDx48cbHQEAAAAAALgBhxfNJSkwMFCtWrUqtvtduHBBnTt3pmAOAAAAGMBkZqo5Skbt2rWNjgAAAAAAANyAQ4vm586d+9s+3t7eKlu2bKEl1q+lQYMGOnTokMqXL1+UeAAAAACAUurkyZN2q5VFRUUZnAgAAAAAALgKhxbNR44ceV39vL29FR8fr169eik+Pv6KfbZt22b7uXHjxpozZ45OnjypKlWqyNPT/rGaNm1686EBAAAAAIbZunWrZs+erZSUFLv2iIgIDR48mN/3AAAAAABAkTm0aD5ixAgtX75c58+f12233abIyEhJ0pkzZ7Rx40aFhYWpffv2Sk5O1vfff6+JEydq7Nixqlu3bqF7vf7664XaFi1adMX3TUxMLN4HAQAAAGBzA4tEATfkl19+0X/+8x+Fh4drwIABttnlJ0+e1Jo1a/TGG29o9OjRatiwobFBAQAAAACAU3No0TwtLU35+fl655135O/vb3eub9++GjdunHJzczVkyBD16tVLo0eP1sKFC69YNKcQDgAAAACubdGiRapataomTJigMmXK2NqbNm2qTp066d///rcWLFhA0RwAAAAAABSJ2ZFvtmrVKt1+++2FCuaSFBAQoA4dOmjFihWSpLJly6p9+/Y6fPjwVe+XlJSkn3/+2a5tw4YNGjlypIYNG6Zp06YpLy+veB8CAAAAgB2TybgXXNvx48fVtm1bu4L5n8qUKaN27drp+PHjBiQDAAAAAACuxKFF80uXLik3N/eq53NycnTx4kXbcXBwsKxW61X7L1iwQCdOnLAdHz9+XB988IHq1aun7t276+eff9aSJUuKJzwAAAAAwKG8vLyUmZl51fOZmZny8vJyYCIAAAAAAOCKHFo0r169upYtW3bFmQDHjh3TihUrFBsba2s7efKkQkNDr3q/Y8eOqV69erbjjRs3KjY2ViNGjFBCQoLuv/9+/fjjj8X7EAAAAAAAh6hbt66WLVumpKSkQucOHDig5cuX2/1OCAAAAAAAcDMcuqf50KFDNWHCBD3zzDOKi4tTZGSkJCk5OVlJSUny9fXV/fffL0nKzc3Vnj171KJFi6veLysrS0FBQbbjPXv2qFGjRrbj6tWr6/z58yX0NAAAAAAklklHyRk0aJCee+45jRs3TrGxsapYsaIk6fTp0zp48KCCgoI0cOBAg1MCAAAAAABn59CiedWqVfXGG2/oiy++0K+//qpDhw5JksLCwtSxY0d169bNNrPc29tbr7322jXvFxQUpJSUFIWFhSk/P19HjhxR3759bedzcnLk4eFRcg8EAAAAACgxEREReuONN7RkyRLt2LFDmzZtkiSFh4erS5cu6t69u90XqQEAAAAAAG6GQ4vmkhQSEqKhQ4cWy70aNWqkuXPnauDAgdq6dat8fHxUq1Yt2/ljx47ZZrMDAAAAKBlmZpqjBAUFBWnIkCFGxwAAAAAAAC7MoXua/1VaWpqOHj2qnJycm75Hv3795OHhoRdeeEFr1qzRQw89JE/P//sewLp161S/fv3iiAsAAAAAAAAAAAAAcEEOn2m+detWffbZZzpz5owkady4capbt64uXryol156Sb1791azZs2u616BgYGaMGGCsrOzVaZMGZnN9t8BePLJJ1WmTJlifwYAAAAA/4c9zVFc3n//fZlMJj300EMym816//33//Yak8mkhx9+2AHpAAAAAACAq3Jo0Xzbtm164403FBcXp9tuu00LFiywnQsMDFRISIjWr19/3UXzP/n5+V2xPSAgoEh5AQAAAACOs3v3bplMJlksFpnNZu3evftvrzHxrQ0AAAAAAFBEDi2aL1q0SLVr19b48eN16dIlu6K5JMXFxWnVqlWOjAQAAAAAKCXee++9ax4DAAAAAACUBIfuaX78+HHdeuutVz0fFBSkixcvOjARAAAAgKIymY17wbWdO3dOubm5Vz2fm5urc+fOOTARAAAAAABwRQ79mMnHx0c5OTlXPX/27FmWVAcAAAAASJJGjhypLVu2XPX8tm3bNHLkSAcmAgAAAAAArsihRfM6depow4YNKigoKHQuPT1da9asUYMGDRwZCQAAAEARmUzGveDe8vPzZTaz5AAAAAAAACgah+5pPmDAAD333HMaM2aMWrRoIUnasWOHdu3aZdvLvHfv3o6MBAAAAAAoRbKzs5WdnW07vnTp0hWXYM/KytKmTZsUHBzswHQAAAAAAMAVObRoXrFiRU2cOFGzZs1SYmKiJOnrr7+WJNWuXVsPPPCAIiIiHBkJAAAAAFCKLF26VAsXLrQdz5o1S7Nmzbpq/379+jkgFQAAAAAAcGUOLZpLUuXKlTVu3DhlZmYqOTlZVqtV5cuXV2BgoKOjAAAAACgGJtZJRzFq0KCBypQpI6vVqs8++0ytWrVStWrV7PqYTCb5+PgoJiZG1atXNygpAAAAAABwFQ4tmi9cuFDNmjVTlSpVFBAQoNjYWLvzJ06c0E8//cQS7QAAAADgpuLi4hQXFydJunz5spo3b64qVaoYnAoAAAAAALgysyPfbMGCBTp+/PhVz584cUILFixwYCIAAAAARWUyGfeC67p8+bKWL1+uHTt2GB0FAAAAAAC4OIcWzf9OZmamPD0dvmI8AAAAAKCU8fHxkYeHh3x8fIyOAgAAAAAAXFyJV6j37NmjPXv22I5/+uknJScnF+qXlZWlTZs2seweAAAAAECS1Lx5c23evFkdO3aUiaUFAAAAAABACSnxovnu3bu1cOFC2/GWLVu0ZcuWK/aNiorS0KFDSzoSAAAAgGJELRMlpWXLlvroo480YcIEdejQQeHh4fL29i7ULyYmxoB0AAAAAADAVZR40bxbt27q1KmTrFarhg8fruHDh6t58+Z2fUwmk7y9va/44QcAAAAAwD1NmDDB9vPevXuv2i8xMdERcQAAAAAAgIsq8aL5X4vh7777rgIDA9mTDgAAAHAhzDRHSXn44YeNjgAAAAAAANxAiRfN/yo8PNyRbwcAAAAAcGLt2rUzOgIAAAAAAHADDi2aS9KxY8e0fPlyHTlyRNnZ2bJarXbnTSaTpk6d6uhYAAAAAIBSLCcnR+fOnZMkhYWFqUyZMgYnAgAAAAAArsKhRfPdu3fr5Zdflr+/v2JiYnT06FHVrVtXubm5SkpKUuXKlRUTE+PISFeVtfZHoyMAbq1W8HCjIwBuL6fgvNERADgJM8uzowQdPHhQn332mfbt2yeLxSJJMpvNio+P16BBg1S9enWDEwIAAAAAAGfn0KL5/PnzFRERoUmTJik/P1/Dhw9Xjx49VLduXR04cEAvv/yyBg4c6MhIAAAAAIBS6sCBA3rhhRfk6emp22+/XZUqVZIknTp1Shs3btT48eP1wgsvKDY21uCkAAAAAADAmTm0aH748GH17dtXfn5+yszMlCTbTIEaNWrozjvvVGJioho1auTIWAAAAACKgJnmKCnz5s1TSEiIXnzxRQUHB9ud69Onj8aNG6fPP/9c48aNMyYgAAAAAABwCWZHvpmHh4d8fX0lSf7+/vLw8FBGRobtfEREhE6ePOnISAAAAACAUurAgQO68847CxXMJSk4OFh33HGHDhw44PhgAAAAAADApTi0aB4ZGakzZ85IkkwmkypVqqQtW7bYzv/yyy9X/DAEAAAAQOllNlkNe8G1mUwmFRQUXPW8xWKRycRSBwAAAAAAoGgcWjRv1KiRNm7caPvQ4+6779aWLVv02GOP6bHHHtPPP/+sO+64w5GRAAAAAAClVM2aNbVy5UqlpqYWOnfu3Dl9++23io+PNyAZAAAAAABwJQ7d07xXr17q0qWLzOY/avXt2rWT2WzWTz/9JLPZrJ49e6pdu3aOjAQAAAAAKKUGDBig8ePH64knnlCzZs1UoUIFSdLp06e1bds2eXh4aMCAAQanBAAAAAAAzs6hRXNPT0+VLVvWrq1NmzZq06aNI2MAAAAAKEZmVsdGCalWrZpefvllff7559q2bZtyc3MlSd7e3mrYsKH69++vqKgog1MCAAAAAABn55Ci+caNG+Xr66vGjRtftc8vv/yinJwctWzZ0hGRAAAAAABOICoqSk8//bQsFosuXrwoSQoMDLStYAYAAAAAAFBUJf4pw5YtW/TOO+/I0/Pa9XlPT0+9/fbb+uWXX0o6EgAAAIBiZDbwBfdhMpnsXgAAAAAAAMWlxGear1u3TnXq1FH9+vWv2a9+/fqqW7euVq9efc0Z6QAAAAAA93Hy5EklJibq119/1eXLlyVJPj4+atCggfr06aMqVaoYnBAAAAAAADi7Ei+aHzx4UPfcc8919W3YsKG++uqrEk4EAAAAAHAGe/fu1csvvyyr1aqmTZuqYsWKkqTTp09r27Zt2rFjh8aOHatatWoZnBQAAAAAADizEi+aZ2VlqWzZstfVt2zZssrKyirhRAAAAACKk9lkNToCXNQnn3yioKAgvfDCCwoLC7M7d+7cOY0fP16zZ8/W5MmTDUoIAAAAAABcQYlvAxgQEKDU1NTr6puamqqAgIASTgQAAAAAcAYnTpxQx44dCxXMJSksLEwdO3bUiRMnDEgGAAAAAABcSYkXzePi4rRx40ZZLJZr9rNYLNq4caPi4uJKOhIAAACAYmQ2GfeCawsPD1d+fv5Vz+fn5ys0NNSBiQAAAAAAgCsq8aJ5586ddebMGb3zzjvKycm5Yp/Lly/rnXfe0ZkzZ9S5c+eSjgQAAAAAcAK9e/fW8uXLdfTo0ULnjhw5ohUrVqhPnz6ODwYAAAAAAFxKie9pXqdOHfXq1UuLFi3Szp071axZM1WuXFm+vr76/fffdfz4cW3btk2XLl1Sjx49VKdOnZKOBAAAAABwAklJSQoKCtKzzz6rmjVrKjIyUpJ05swZJSUlqUqVKkpKSlJSUpLtGpPJpPvvv9+oyAAAAAAAwAmVeNFckvr27asqVaooMTFRa9euLXS+YsWKGjp0qFq2bOmIOAAAAACKUYkvXwW3tXLlStvP+/fv1/79++3OHz9+XMePHy90HUVzAAAAAABwIxxSNJekFi1aqEWLFkpOTtbJkyf1+++/y9fXV5UqVVKFChUcFQMAAAAA4CQSExONjgAAAAAAANyAw4rmf4qMjLQtqfd3Ll68qLFjx+qxxx5TXFxcCScDAAAAcDPMJqMTAAAAAAAAADfP4UXzG2GxWJSamqrc3Nxr9jt8+LA8PT1VpUoVSdLWrVu1bt06RUVFqW/fvvL0LNWPCQAAAAC4hpSUFG3fvl2pqamSpPDwcDVq1EgREREGJwMAAAAAAK7AJarJ06dPV7du3VSlShWdPXtWb731lpo1a6bNmzcrNzdXQ4YMMToiAAAAAOAmzJ49W8uWLZPVarVrN5lM6tKli+677z6DkgEAAAAAAFfhEkXz06dPKzo6WpL0448/qnbt2nr88ce1b98+vf322xTNAQAAgBJkMln/vhNwE77++mstXbpUzZs3V9euXVWpUiVJ0qlTp7R06VItXbpUISEhSkhIMDgpAAAAAABwZi5RNJdkm3Wwc+dONWnSRJIUFhamixcvGhkLAAAAAHCT1qxZoyZNmujJJ5+0a69Ro4aeeOIJ5ebmavXq1RTNAQAAAABAkZiNDlAcYmJitGjRIn333Xfas2ePGjduLOmPfe+Cg4ONDQcAAAC4OLPJuBdcW2pqqho2bHjV8w0bNrTtcw4AAAAAAHCzXKJoPnjwYB05ckQfffSRevbsqcjISEnS5s2bFRcXZ3A6AAAAAMDNCAwM1NGjR696/ujRowoMDHRcIAAAAAAA4JJcYnn26Oho/ec//ynUPmjQIHl4eBiQCAAAAABQVLfeequWLVumiIgIderUSWXKlJEk5eTkaMWKFVq7dq26dOlicEoAAAAAAODsSnXR3NPTU7Vr15a/v/81+40aNUqTJ09W2bJl7drz8vL05JNP6t133y3JmAAAAIBbc4nlq1Aq9evXT0ePHtXnn3+uxMREhYSESJIuXLggi8WiOnXqqF+/fganBAAAAAAAzs6hRfO5c+eqdu3aiouLk5+f39/2DwgI0Pjx4/+2X2pqqiwWS6H2vLw8nT9//qayAgAAAACM5ePjo3//+9/aunWrtm/frnPnzkmSGjRooMaNG6tJkyYymdjcHgAAAAAAFI1Di+YrVqzQl19+KbPZrMqVKys+Pl61atVSrVq1FBwcfMP327Ztm+3nX3/91a4Qb7FYtHPnTkVERBRHdAAAAABXYTZZjY4AF3T58mVNnTpVzZs3V+vWrXXLLbcYHQkAAAAAALgohxbNZ82apaNHj2rPnj3at2+ffvzxR61cuVKSFBkZaSuit2vX7rru9/rrr9t+fu+99+zOeXh4KDw8XPfdd1+x5QcAAAAAOIaPj4927typhg0bGh0FAAAAAAC4OIcWzc1ms2JiYhQTE6OEhARJ0unTp7Vz504tX75c69ev1/r166+7aJ6YmChJGjlypF555ZVCe5oDAAAAKHlmVsdGCYmPj1dSUpLuuOMOo6MAAAAAAAAX5tCi+Z8uX76spKQk7d27V/v27dOBAweUm5urihUrKj4+/obulZ+fr/LlyyszM5OiOQAAAAC4kKFDh2rSpEmaN2+e7rzzToWGhhodCQAAAAAAuCCHFs1nz56tffv26ciRI7Jarapatapq1aqlu+66S7Vq1VJgYOAN39PT01PHjh0rgbQAAAAAACM9/fTTKigo0JIlS7RkyRJ5eHjIy8urUL9PPvnEgHQAAAAAAMBVOLRovnTpUpnNZjVv3lzdu3dXdHR0sdy3devWWrt2rQYOHFgs94Pz8Pfz0ejH71LnO+oqLCRAu/ae0vMvf6kdu04W6vva+J4a3P9WjZv8pT6c/YMBaQH38dlnS/XRR4uVmpqm+PhqGjfuIdWvH2d0LMAtnD2bprf+M18bv/9NOTm5qlylvCZOekB16lYzOhpcmNnoAHBZLVq0MDoCAAAAAABwAw4tmg8aNEj79u3Tzp079eOPP6pcuXKKj49XrVq1VKtWLVWpUuWm7muxWPTtt99q586diomJkY+Pj935wYMHF0d8lEJvvtRbNWtEatSznys55aJ6d22sBR8/qNYJbyg55aKtX+c76qpJg6o6czbDwLSAe1i27HtNnjxDEyaMVIMGcfrkk6/0wAP/1ooVHyg0NNjoeIBLu5iRpSEDX1LTZrX03rR/qVxIWR0/dlaBgf5GRwOAG5Kbm6tt27apYsWKCggIUJMmTVSuXDmjYwEAAAAAABfl0KJ5165d1bVrV0nSyZMnbXuaf/XVV/r444/l5+enmjVravTo0Td03xMnTigmJkaSdObMmWLPjdKpjI+n7r6zngaPmqXN245Ikt54b5U6tq+tIQNu1Stvr5QkRUYE6uXnuqn/8Bma88FQIyMDbmHmzC/Ut+9d6tXrDknShAmPaP36rVq0aJUefLCPwekA1/bxR0tVPjJUL748zNYWFRVuYCK4C7PJ6ARwJRkZGXr++eeVkpJia5s9e7aeeuop1a9f38BkAAAAAADAVTm0aP5XUVFRKl++vCpWrKgKFSpo48aNOn36tLZv337D9xo/fnwJJERp5+HhIU9PD12+nG/XnpOTp2aN/1iC1mQy6b1XB+j9jzdo/8GzRsQE3Epubp527z6ohx7qbWszm81q2bKhtm/fb2AywD1sWLtDLW+rq6eeeFfbtu1XREQ59Rtwu3r1aWd0NAC4bosWLVJqaqruvvtu1a1bV8nJyVq0aJGmT5+uqVOnGh0PAAAAAAC4IIcWzbOzs7Vv3z7t27dPe/fu1eHDh5Wfny9PT09Vr15d3bp1U61atYr0HufPn5ckhYaGXvc1eXl5ysvLK9L7wvGysi9r6/aj+ufDdyjpUIpSz19Sj7sbqWnDqjpy/Jwk6dFh7ZRfYNH0T9nDHHCEtLSLKiiwKDTUfvnU0NBgHT580qBUgPs4eTJF8+et1T8Gd9IDD3bV7l1H9OrLn8nLy1P3dL/N6HgAcF1+/fVXtWnTRvfdd5+tLTg4WG+//bZOnz6tihUrGpgOAAAAAAC4IocWzYcOHSqr1SpfX1/VrFlTvXv3Vnx8vGJjY+Xl5XXT97VYLFq8eLG+/vpr5eTkSJJ8fX2VkJCgnj17ymw2X/P6JUuWaOHChf/TWvWm88BxRj47T29N6qPfvhun/PwC7dxzSkuW7lD9OpVUv3YlDf9Ha93R6y2jYwIA4BAWi1V16lbTY//8Y7WHWrWr6uCBk1qQuI6iOUqU2WQ1OgJcyLlz59StWze7tvj4eElSeno6RXMAAAAAAFDsHFo0Hzx4sGrVqqWqVavKZCq+jQ/nzZuntWvXauDAgapZs6Ykad++fVqwYIHy8vI0YMCAa17fo0cPJSQk2LVVa8KS787g2Inz6nHfB/Lz9VJAQBmlpF7Sh1MG6tjJC2rRtJrCQv31y9qxtv6enh564ZmuGn5fa91yx2QDkwOuqVy5QHl4mHX+fJpd+/nz6QoLK3eVqwAUl/DwYMVUty8mxVSvqNWrthmUCABuXH5+vry9ve3a/vyStcViMSISAAAAAABwcQ4tmnfu3LlE7rthwwaNGDFCTZs2tbVVrVpVISEhmjFjxt8Wzb28vIo00x3Gy/49T9m/5yko0FftWtXUi28s1Terduq7Hw/Y9Zs3fbgWfvWzPl9M8QAoCd7eXqpTJ1Y//vib7rjjVkl/fLj944+/atCguw1OB7i+ho1r6OiRZLu2Y0eTVbFimEGJ4C7Mxfd9WECSlJKSosOHD9uOs7OzJUlnzpyRn59fof4xMTEOywYAAAAAAFyPQ4vm0h8fdnz77bfavXu3MjIy9OCDDyo2NlaZmZlav369mjZtqsjIyBu6Z2Zm5hWX6KtUqZIyMzOLKzpKoXat4mQymXToSIqiq4Zp/FMJOngkRZ8v2ar8fIvS0rPt+uflFyjl3CUdOppqUGLA9d1/f3c9++ybqls3VvX/H3v3HR5F1f5//LObSghJgEBCgCQECEV6R3qVpgLSRenqIwoKfkHBAiIgIhYE9FEBqRI6Ik2kSxEQpDfpoSWUJIT07P7+8Jd9iIAiKZPNvl9cuS72zNnJPTmZze7cc59TKVSzZq1QfHyCOnZsbnRoQK7X8/mW6vXsWH3735Vq2aqWDh86o8WLNuvdUb2NDg0A/pWwsDCFhYXd0/7tt98+sD8AAAAAAMCjytak+Y0bNzRq1Chdv35dRYoU0aVLl2xrkHt6emr9+vWKjIxUnz59/tV+g4KCtHbtWvXt2zdd+9q1axUcHJxZ4SMH8srnrpGvt1ERf29FRcfpx58Oafxna5WSwrSNgFHatGmgmzejNXnyPEVG3lK5ciH69tvRTM8OZIMKFUP0yeRXNfnTxfrvlytUtFghDXuzh9o++bjRoQHAQ/vPf/5jdAgAAAAAAMDBZGvSfM6cOYqPj9fEiRPl5eWlAQMGpNtes2ZN7du371/vt2fPnho/frwOHTqk0NBQSdLJkyd148YNvfXWW5kSO3KmH9Ye1A9rDz50f9YxB7JHz57t1LNnO6PDABxSo8ZV1KhxFaPDgIMxGx0AcpXGjRsbHQIAAAAAAHAw2Zo0P3jwoNq2batixYrp9u3b92z38/PTjRs3/vV+y5cvr88//1zr1q3TpUuXJEm1a9dWy5YtVaBAgQzHDQAAAAAAAAAAAADInbI1aZ6UlCQvL68Hbo+Pj3/kfRcoUEDdu3d/5OcDAAAAeDRmk9XoEAAAAAAAAIBHlq1J82LFiunYsWNq0aLFfbfv2bPnkdcgv3Pnjv744w9FR0fLak1/0a5Ro0aPtE8AAAAAAAAAAAAAQO6WrUnzNm3aaOrUqQoMDFTdunUlSRaLRVevXtWiRYt08uRJDR069F/vd+/evfriiy+UkJCgPHnyyGQypdtO0hwAAAAAAAAAAAAAcD/ZmjRv2LChrl+/rrCwMC1YsECSNG7cOFmtVpnNZnXv3l21atX61/udM2eOmjRpou7du8vNzS2zwwYAAADwN8ymf+4DAAAAAAAA5FTZmjSXpI4dO6pBgwb69ddfdfXqVVmtVvn5+al27dry8/N7pH3evHlTrVu3JmEOAAAAAAAAAAAAAPhXsj1pLkmFChVSu3btMm1/lStX1unTpx856Q4AAADg0VFpDgAAAAAAAHuW5UnzN95441/1N5lMmjhx4j/227t3r+3/1apV09y5cxUeHq7AwEA5O6c/rBo1avyrGAAAAAAAAAAAAAAAjiHLk+aenp4ymf659CQqKkqXL19+6P3eL7G+ZMmS+/YNCwt76P0CAAAA+HfMRgcAAAAAAAAAZECWJ81HjRr1t9ujoqK0fPlynTp1SmazWQ0aNHio/ZIIBwAAAAAAAAAAAABklCFrmkv/S5Zv2LBBKSkpatCggTp27Ch/f/+H3sfJkyd1+/ZtVa9e3da2ZcsWLVy4UImJiapZs6b69u0rFxeXrDgEAAAAAAAAAAAAAICdy/ak+f2S5c8884z8/Pz+9b4WLVqkxx57zJY0v3Dhgr766is1atRIxYoV0w8//KD8+fOrS5cumX0YAAAAAP4/s8lqdAgAAAAAAADAI8u2pPlfk+UNGzbUM888o8KFCz/yPs+fP69u3brZHm/fvl2lSpXSSy+9JEkqWLCgFi5cSNIcAAAAAAAAAAAAAHBfWZ40v3Xrli1ZnpqaqkaNGqljx44ZSpanuXPnjry9vW2Pjx49qqpVq9oelyxZUjdu3Mjw9wEAAADwYGaT0REAAAAAAAAAjy7Lk+avvvqqkpOTFRwcrA4dOqhw4cKKjY1VbGzsA58TEhLyUPv29vZWRESEfH19lZKSorNnz6arKk9ISJCTk1OGjwEAAABA7rN8+XLNnz9fbdq0Ue/evSVJSUlJmj17tnbs2KHk5GRVrlxZ/fv3l4+Pj6GxAgAAAAAAIOtkedI8OTlZknTu3Dl9+umnD/WcsLCwh+pXtWpVzZ8/X88++6z27NkjNzc3lStXzrb9/Pnz8vf3//dBAwAAAMjV/vjjD61fv15BQUHp2mfNmqV9+/ZpyJAh8vDw0PTp0zVp0iSNGTPGoEgBAAAAAACQ1bI8af6f//wny/bdtWtXTZo0SaNGjZK7u7sGDhwoZ+f/HdKmTZtUqVKlLPv+AAAAACSzgd87OTnZdqNuGhcXF7m4uDzwOQkJCfriiy/04osvaunSpbb2uLg4bdy4UYMHD1aFChUkSS+//LJef/11nTx5UqGhoVlzEAAAAAAAADBUlifNGzdunGX79vLy0ujRoxUXFyd3d3eZzekv1w0ZMkTu7u5Z9v0BAAAAGGvZsmVavHhxurZOnTqlW7bpr7799ltVrVpVlSpVSpc0P3PmjFJTU1WxYkVbW9GiReXr60vSHAAAAAAAIBfL8qR5dvDw8Lhvu6enZzZHAgAAADges8m4792hQwe1a9cuXdvfVZlv375dZ8+e1fjx4+/ZFhUVJWdnZ+XNmzddu7e3t6KiojIlXgAAAAAAAOQ8uSJpDgAAAMAx/dNU7He7fv26vvvuO7399ttydXXN4sgAAAAAAABgL0iaAwAAAHAIZ86cUXR0tIYPH25rs1gsOnbsmNauXauRI0cqJSVFd+7cSVdtHh0dLR8fHwMiBgAAAAAAQHYgaQ4AAAAgQ0wmq9EhPJSKFSvq448/Ttf25ZdfKiAgQE8//bR8fX3l5OSkQ4cOqU6dOpKky5cv6/r166xnDgAAAAAAkIuRNAcAAADgEPLkyaPAwMB0bW5ubsqXL5+tvWnTppo9e7Y8PT3l4eGhGTNmKDQ0lKQ5AAAAAABALkbSHAAAAECGmE1GR5B5evXqJZPJpEmTJiklJUWVK1dW//79jQ4LAAAAAAAAWYikOQAAAACHNWrUqHSPXV1d1b9/fxLlAAAAAAAADsRsdAAAAAAAAAAAAAAAABiFSnMAAAAAGcKduLA3a9eu1cqVKxUVFaWgoCD17dtXpUqV+sfnbd++XZ9//rlq1KihYcOGZUOkAAAAAAAgO3B9CwAAAADgMHbs2KHZs2erU6dOmjBhgoKCgjR27FhFR0f/7fMiIiI0Z84clStXLpsiBQAAAAAA2YVKcwAAAAAZYjZZjQ4BeGg//vijmjVrpiZNmkiSBgwYoH379mnTpk1q3779fZ9jsVj0xRdfqEuXLjp27Jju3Lnzt98jOTlZycnJtscmk0l58uSx/d8e/FOcadvt5XhyI8bIPjBO9oFxsg+Mk334u58/Y5QzcC7ZB8YJyH4kzQEAAAAADiElJUVnzpxJlxw3m82qWLGiTp48+cDnLV68WF5eXmratKmOHTv2j99n2bJlWrx4se1xiRIlNGHCBBUqVChD8T+Mi5m0nyJFijxUP39//0z6jo4lM8aJMcp6jFPOx2uefWCc7EN2jhNj9Oj422QfGCfAPpE0BwAAAAA4hJiYGFksFvn4+KRr9/Hx0eXLl+/7nOPHj2vjxo366KOPHvr7dOjQQe3atbM9Tqv+iIyMVEpKyr8P3ABXrlz52+0mk0n+/v66evWqrFZmmzACY2QfGCf7wDjZB8bJPvzdODFGOQPnkn1wxHFydnbOlhuNgQchaQ4AAAAgQ8zMBodcKj4+Xl988YVefPFFeXl5PfTzXFxc5OLict9t9nJB62HjtFqtdnNMuQ1jZB8YJ/vAONkHxsk+PMzPnjEyFueSfWCcgOxH0hwAAAAA4BC8vLxkNpsVFRWVrj0qKuqe6nNJunbtmiIjIzVhwgRbW9oFqW7duumzzz5jOkQAAAAAAHIBkuYP4O0TYnQIgEOLSDhudAiAwyvsXtboEADYCSrNYS+cnZ0VEhKiw4cPq1atWpIki8Wiw4cPq1WrVvf0DwgI0Mcff5yubcGCBUpISFDv3r3l6+ubLXEDAAAAAICsRdIcAAAAAOAw2rVrp6lTpyokJESlSpXS6tWrlZiYqMaNG0uSpkyZogIFCqhHjx5ydXVVYGBguufnzZtXku5pBwAAAAAA9oukOQAAAIAMcTI6AOBfePzxxxUTE6OFCxcqKipKwcHBGjFihG169uvXr8tkYvoEAAAAAAAcCUlzAAAAAIBDadWq1X2nY5ekUaNG/e1zBw4cmAURAQAAAAAAI5mNDgAAAAAAAAAAAAAAAKNQaQ4AAAAgQ8wmq9EhAAAAAAAAAI+MSnMAAAAAAAAAAAAAgMOi0hwAAABAhphNRkcAAAAAAAAAPDoqzQEAAAAAAAAAAAAADoukOQAAAAAAAAAAAADAYTE9OwAAAIAMYXp2AAAAAAAA2DMqzQEAAAAAAAAAAAAADotKcwAAAAAZ4kSlOQAAAAAAAOwYleYAAAAAAAAAAAAAAIdF0hwAAAAAAAAAAAAA4LCYnh0AAABAhpiZnh0AAAAAAAB2jEpzAAAAAAAAAAAAAIDDotIcAAAAQIaYTVajQwAAAAAAAAAeGZXmAAAAAAAAAAAAAACHRdIcAAAAAAAAAAAAAOCwmJ4dAAAAQIaYTUZHAAAAAAAAADw6Ks0BAAAAAAAAAAAAAA6LSnMAAAAAGeJkdAAAAAAAAABABuSKSvOkpCQlJibaHkdGRmrVqlU6cOCAgVEBAAAAAAAAAAAAAHK6XFFp/tFHH6lWrVpq2bKl7ty5oxEjRsjZ2VkxMTHq1auXWrZsaXSIAAAAQK7FmuYAAAAAAACwZ7mi0vzs2bMqV66cJGnXrl3y8fHR1KlT9corr2jNmjUGRwcAAAAAAAAAAAAAyKlyRdI8MTFRefLkkSQdOHBAtWrVktlsVunSpRUZGWlwdAAAAAAAAAAAAACAnCpXJM39/f21e/duXb9+XQcOHFDlypUlSTExMbZkOgAAAICsYTZZDfsCAAAAAAAAMipXJM07deqkOXPmaODAgSpdurRCQ0Ml/Vl1XqJECYOjAwAAAAAAAAAAAADkVM5GB5AZ6tSpo7Jly+rWrVsKCgqytVesWFG1a9c2MDIAAAAg93MyGR0BAAAAAAAA8OhyRaX5tGnT5ObmphIlSshs/t8hFStWTMuXLzcuMAAAAAAAAAAAAABAjpYrkuZbtmxRUlLSPe1JSUnaunWrAREBAAAAAAAAAAAAAOyBXU/PHhcXZ/t/fHy8XFxcbI8tFov2798vb29vI0IDAAAAHIaZ6dkBAAAAAABgx+w6ad6nTx/b/wcPHnzPdpPJpC5dumRnSAAAAAAAAAAAAAAAO2LXSfP33ntPVqtV77//voYOHSpPT0/bNmdnZ/n6+qpAgQIGRoisZDab9Gr/GnrqiVAVKuihiMg7Wrr6hKbN/C1dv5JBPnpjYF3VqlpETk5mnT57S6+MWKcr12INihzIPX7/7Yy+/26zThy7pBuRMRr7aS81bFrhvn0/HrNEKxbv0qv/95S69GyQzZECjmXevFWaPn2pIiNvqWzZEnrnnRdVqVKo0WEhF6PSHAAAAAAAAPbMrpPm5cuXV2pqqho1aqSQkBD5+voaHRKy0QvPVVWPDo9p+JiNOnXmliqUK6TxI5vodmyS5iw6JEkqXtRL8//bQYtXHtPkb/co9k6SSpcooMSkVIOjB3KHhPgklSoToLbta2rkkNkP7Ld1wyEdOXRevoW8sjE6wDGtXr1N48d/q9GjB6py5VDNmvWD+vV7V2vXfqWCBX2MDg8AAAAAAAAAchyz0QFklJOTk3bt2iWLxWJ0KMhmVSv66edt57R5xwVdunpb6zad0fbd4apUvrCtz5AXa2nrjvOaOHWXjp28rouXYrTxl3O6eSvewMiB3KNO/bIa8EorNWxW8YF9Iq9F67MPV+jdcT3k7OKUjdEBjmnmzOXq0uUJPfNMc5UqFajRo1+Wu7ublixZb3RoAAAAAAAAAJAj2X3SXJIqVKigo0ePGh0Gstn+Q9dUt0ZRBRf3liSVLVVQ1Sv7a+vOC5Ikk0lq9HiQzl6M1vRP22rnqt5a9G1HNW8YbGDUgGOxWCz6YOT36t67kUqU8jc6HCDXS0pK1pEjf+jxxyvb2sxmsx5/vIr27z9hYGTI7cwm474AAAAAAACAjLLr6dnTVKlSRfPnz9eFCxcUEhIid3f3dNtr1Kjxt89PTk5WcnJyVoaILPDf2fvk6eGitQu6K9VikZPZrE//+6tW/nRKklQwfx555nXVC89V1Wdf79bH03apQZ1ATRnfSs+9skJ79l8x+AiA3G/ezM1ycjKrU4/6RocCOIRbt2KUmmpRwYL507UXLOijM2fCDYoKAAAAAAAAAHK2XJE0nz59uiRp1apV990eFhb2t89ftmyZFi9e/JfWJpkRGrJQm2al9OQToRr63s86dfamypX21YjX6iniepyWrT4h8/8vPdqw7Zy+W3BQknTs1A1Vreiv7u0fI2kOZLETR8O1eN42TV/wmkwmSgEBIDdzMlmNDgEAAAAAAAB4ZLkiaf5PSfF/0qFDB7Vr1y5dW5VmszK0T2S9Ya/U1ddz9mnVz39Ikk6evqkAf0+9+HxVLVt9QreiEpSckqo/zt5M97zT526pemWmiQay2oF9Z3Xr5h11ajXO1paaatHUSSu1aN42LVozwsDogNwpf34vOTmZdePGrXTtN25Eydc3/wOeBQAAAAAAAACOLVckzTPKxcVFLi4uRoeBf8nd3VkWS/o2i8Vqq2hNTrHo0LFIhQT6pOtTItBbl6/GZlOUgON6ol011ahdOl3b0P98oyfaVVeb9n+/bAaAR+Pq6qLHHiulnTsPqnnzupIki8WinTsPqGfPtgZHBwAAAAAAAAA5k90mzVevXq3mzZvL1dVVq1ev/tu+bdq0yaaokJ02/XJO/+ldTVeu3dapM7dUvoyv+nSrrMU/Hrf1mT7vd306poX2/H5Fu/ZdUsM6gWpSL1jPDVxhYORA7hEXl6hLF67bHl+5dFOnjl+Sl7eH/Irkl7dP3nT9nV2cVMA3nwKDC2d3qIDD6NOnvYYP/1QVKpRSpUqhmjVrheLjE9SxY3OjQ0MuZjY6AAAAAAAAACAD7DZpvmrVKjVo0ECurq4PXMtckkwmE0nzXGrMJ79o8Au19N4bDVWwQB5FRN7RguVHNXXGXluf9VvO6r2PturF56vq7SH1dfZ8lF4dsU6/HbxqYORA7nHiSLgG9f/K9njKxyslSa2eqq6RY7oZFRbg0Nq0aaCbN6M1efI8RUbeUrlyIfr229FMzw4AAAAAAAAAD2C3SfOpU6fe9/9wHHfikjXus+0a99n2v+235MfjWnJX9TmAzFO1ZkltOzDxofuzjjmQPXr2bKeePdsZHQYciNlkdAQAAAAAAADAo8sVMyleuHDhgdt2796djZEAAAAAAAAAAAAAAOxJrkiajx07VhEREfe079q1S1988YUBEQEAAAAAAAAAAAAA7EGuSJo3a9ZMY8aMUVRUlK1tx44dmjp1ql5++WXjAgMAAAAcgNlk3BcAAAAAAACQUbkiad6lSxdVrVpVY8aMUWxsrH755RdNmzZNAwcOVN26dY0ODwAAAAAAAAAAAACQQzkbHUBm6du3ryZPnqyRI0fq5s2bGjx4sGrWrGl0WAAAAECu52SyGh0CAAAAAAAA8MjsNmm+d+/ee9pq1aqlY8eOqV69ejKZTLY+NWrUyO7wAAAAAAAAAAAAAAB2wG6T5hMnTnzgtk2bNmnTpk22x2FhYdkREgAAAOCQWFscAAAAAAAA9sxuk+YkwgEAAAAAAAAAAAAAGWW3SXNJOnnypG7fvq3q1avb2rZs2aKFCxcqMTFRNWvWVN++feXi4mJglAAAAAAAAAAAAACAnMpsdAAZsWjRIl28eNH2+MKFC/rqq69UsWJFtW/fXr/99puWLVtmYIQAAABA7mc2GfcFAAAAAAAAZJRdJ83Pnz+vihUr2h5v375dpUqV0ksvvaR27dqpT58+2rlzp4ERAgAAAAAAAAAAAAByMruenv3OnTvy9va2PT569KiqVq1qe1yyZEnduHHDiNAAAAAAh0HFNwAAAAAAAOyZXVeae3t7KyIiQpKUkpKis2fPqnTp0rbtCQkJcnJyMio8AAAAAAAAAAAAAEAOZ9dJ86pVq2r+/Pk6duyY5s+fLzc3N5UrV862/fz58/L39zcwQgAAAAAAAAAAAABATmbXSfOuXbvKyclJo0aN0oYNG/Tiiy/K2fl/M85v2rRJlSpVMjBCAAAAIPdzMhn3BQAAAAAAAGSUXa9p7uXlpdGjRysuLk7u7u4ym9PfAzBkyBC5u7sbFB0AAAAAAAAAAAAAIKez66R5Gg8Pj/u2e3p6ZnMkAAAAgOMxm6xGhwAAAAAAAAA8Mruenh0AAAAAAAAAAAAAgIwgaQ4AAAAAAAAAAAAAcFi5Ynp2AAAAAMbhTlwAAAAAAADYM65vAQAAAAAAAAAAAAAcFpXmAAAAADLEbDI6AgAAAAAAAODRUWkOAAAAAAAAAAAAAHBYJM0BAAAAAAAAAAAAAA6L6dkBAAAAZIgT07MDAAAAAADAjlFpDgAAAAAAAAAAAABwWFSaAwAAAMgQs8lqdAgAAAAAAADAI6PSHAAAAAAAAAAAAADgsKg0BwAAAJAhZtY0BwAAAAAAgB2j0hwAAAAAAAAAAAAA4LBImgMAAAAAAAAAAAAAHBbTswMAAADIEKZnBwAAAAAAgD2j0hwAAAAAAAAAAAAA4LCoNH+Ai5e2Gh0C4NAKu482OgQAAPCQuBMXAAAAAAAA9ozrWwAAAAAAAAAAAAAAh0XSHAAAAAAAAAAAAADgsJieHQAAAECGmExGRwAAAAAAAAA8OirNAQAAAAAAAAAAAAAOi0pzAAAAABlCoTkAAAAAAADsGZXmAAAAAAAAAAAAAACHRdIcAAAAAAAAAAAAAOCwmJ4dAAAAQIaYmJ8dAAAAAAAAdoxKcwAAAAAAAAAAAACAw6LSHAAAAECGcCcuAAAAAAAA7BnXtwAAAAAAAAAAAAAADoukOQAAAAAAAAAAAADAYTE9OwAAAIAMMZmsRocAAAAAAAAAPDIqzQEAAAAAAAAAAAAADotKcwAAAAAZYjI6AAAAAAAAACADqDQHAAAAAAAAAAAAADgskuYAAAAAAAAAAAAAAIfF9OwAAAAAMsTE/OwAAAAAAACwY3Zfab5lyxYlJyff056SkqItW7YYEBEAAAAAAAAAAAAAwF7YfdJ82rRpiouLu6c9Pj5e06ZNMyAiAAAAwLGYDPwCAAAAAAAAMsruk+aSZLrPfJA3btyQh4eHAdEAAAAAAAAAAAAAAOyF3a5pPmzYMFuy/P3335eTk5Ntm8ViUUREhCpXrmxUeAAAAIDDMFPyDQAAAAAAADtmt0nzmjVrSpLOnTunypUry93d3bbN2dlZhQoVUp06dYwKDwAAAAAAAAAAAABgB+w2ad65c2dZLBYVKlRIlStXVv78+Y0OCQAAAAAAAAAAAABgZ+x6TXOz2axvvvlGycnJRocCAAAAOCyTgV8AAAAAAABARtl10lySihcvrmvXrhkdBgAAAAAAAAAAAADADtl90rxbt26aM2eOfvvtN926dUtxcXHpvgAAAABkLZPJuC8AAAAAAAAgo+x2TfM048ePlyR99NFH990eFhaWneEAAAAAyKGWLVum3bt369KlS3J1dVVoaKh69uypgIAAW5+kpCTNnj1bO3bsUHJysipXrqz+/fvLx8fHuMABAAAAAACQpew+af7ee+8ZHQIAAAAAO3D06FE98cQTKlmypFJTU/X999/rgw8+0CeffCJ3d3dJ0qxZs7Rv3z4NGTJEHh4emj59uiZNmqQxY8YYHD0AAAAAAACyit0nzcuXL290CAAAAIBDs5dZ0keOHJnu8cCBA9W/f3+dOXNG5cuXV1xcnDZu3KjBgwerQoUKkqSXX35Zr7/+uk6ePKnQ0FAjwgYAAAAAAEAWs8uk+fnz51W8eHGZzWadP3/+b/sGBQVlU1QAAAAAsltycrKSk5PTtbm4uMjFxeUfnxsXFydJ8vT0lCSdOXNGqampqlixoq1P0aJF5evrS9IcAAAAAAAgF7PLpPmwYcP09ddfy9vbW8OGDfvbvqxpDgAAAGQtIyvNly1bpsWLF6dr69Spk7p06fK3z7NYLPruu+9UpkwZBQYGSpKioqLk7OysvHnzpuvr7e2tqKioTI0bAAAAAAAAOYddJs2nTJkiLy8v2/8BAAAAOKYOHTqoXbt26doepsp8+vTpunjxot5///2sCg0AAAAAAAB2wi6T5oUKFbrv/wEAAAA4loediv1u06dP1759+zR69GgVLFjQ1u7j46OUlBTduXMnXbV5dHS0fHx8Mitk5ABr167VypUrFRUVpaCgIPXt21elSpW6b9+ff/5ZW7du1cWLFyVJISEh6t69+wP7AwAAAAAA+2OXSfO/unLlio4cOaLo6GhZrdZ02zp16mRQVMhs9WqV1esvtVO1iiEq4pdfXfpP0sqf9qbr886QTurTo6l8vPJq594TGjRihk6fu2rbnt87rz55v7faNK8mi8Wq5Wt2641Rs3QnLjG7DwfI1ebNW6Xp05cqMvKWypYtoXfeeVGVKrEOLJBdOAeR3cxGzs/+L1itVs2YMUO7d+/WqFGjVLhw4XTbQ0JC5OTkpEOHDqlOnTqSpMuXL+v69eusZ56L7NixQ7Nnz9aAAQNUunRprVq1SmPHjtVnn30mb2/ve/ofPXpU9erVU5kyZeTi4qIVK1bogw8+0CeffKICBQoYcAQAAAAAACCzmY0OIKN+/vlnvf766woLC9OuXbu0e/du29eePXuMDg+ZKK+Hmw4dvaDX3p5x3+1D//OkXu7TSoPemq6GT72jO3GJWjn3Tbm5/a/yaObkV1QutJjaPTtOz/SdqPq1y2rqhwOy6xAAh7B69TaNH/+tBg7srmXLPlPZsiXUr9+7unEjyujQAIfAOQg82PTp07Vt2zYNHjxYefLkUVRUlKKiopSUlCRJ8vDwUNOmTTV79mwdPnxYZ86c0bRp0xQaGkrSPBf58ccf1axZMzVp0kTFihXTgAED5Orqqk2bNt23/6BBg/TEE08oODhYRYsW1UsvvSSr1apDhw5lc+QAAAAAACCr2H2l+dKlS9WtWze1b9/e6FCQxX7afEA/bT7wwO0D+7XWhC+W6cf1v0mS+r8+Ted/+0pPtayhRSt3qkypAD3RpIrqtRupfQfPSJKGvDtLy2cN01tj5+nKtVvZchxAbjdz5nJ16fKEnnmmuSRp9OiXtXnzHi1Zsl4vvNDZ4OiA3I9zEEawk0Jz/fTTT5KkUaNGpWt/+eWX1bhxY0lSr169ZDKZNGnSJKWkpKhy5crq379/NkeKrJKSkqIzZ86k+/xoNptVsWJFnTx58qH2kZiYqJSUFHl6ej6wT3JyspKTk22PTSaT8uTJY/u/PfinONO228vx5EaMkX1gnOwD42QfGCf78Hc/f8YoZ+Bcsg+ME5D97D5pfufOHdWtW9foMGCw4MDCKlI4vzb+ctjWFnM7Xnt+P63a1Utr0cqdql0tVLeiY20Jc0na+MshWSxW1axSUj+s23u/XQP4F5KSknXkyB968cX/LY1hNpv1+ONVtH//CQMjAxwD5yDw9xYuXPiPfVxdXdW/f38S5blUTEyMLBbLPWvU+/j46PLlyw+1j3nz5qlAgQKqWLHiA/ssW7ZMixcvtj0uUaKEJkyYoEKFCj1S3P/GxUzaT5EiRR6qn7+/fyZ9R8eSGePEGGW9nDRO//30aCZEI734evlM2U9OkVmveU/NPfYQvf55DPb8X9OMB5ML8bfJPmTnODFGjy4n/W3CgzFOgH2y+6R5nTp1dODAAbVs2fKR9/HXKgDYH/9Cf649GHE9Ol17xPVo+RXykST5FfJW5PWYdNtTUy26GRVr6wMgY27dilFqqkUFC+ZP116woI/OnAk3KCrAcXAOAkDWWr58ubZv365Ro0bJ1dX1gf06dOigdu3a2R6nVX9ERkYqJSUly+PMDFeuXPnb7SaTSf7+/rp69aqsVms2RYW7MUb2IaeN0z/Fg4zh55u1ctr5hPv7u3FijHIGziX74Ijj5OzsnC03GgMPYpdJ89WrV9v+7+/vr7CwMJ06dUqBgYFycnJK17dNmzb/uL+/VgH8yem+fQEAAACkZzLljg/oyP28vLxkNpsVFRWVrj0qKuqe6vO/+uGHH7R8+XK98847CgoK+tu+Li4ucnFxue82e7mg9bBxWq1Wuzmm3IYxsg85bZz4Xcha/HyzVk47n3B/D/OzZ4yMxblkHxgnIPvZZdJ81apV6R67u7vr6NGjOno0/TRJJpPpoZLmf60CkKSCZftlPFBkm6uRf1aYF/b11tWIKFt7YV9vHTx6TpJ0LTJahXy90j3PycmsAj6euhYZJQAZlz+/l5yczLpx41a69hs3ouTrm/8BzwKQWTgHAeDvOTs7KyQkRIcPH1atWrUkSRaLRYcPH1arVq0e+LwVK1Zo6dKlGjlypEqWLJld4QIAAAAAgGxil0nzqVOnZur+/q4KAPbh3IUIXYm4pSb1Kujg0fOSpHyeeVSzSkl9M2e9JOnXfSeV39tTVSuW0P5DZyVJjR9/TGazSXt+P21Y7EBu4urqosceK6WdOw+qefO6kv68EL1z5wH17NnW4OiA3I9zEEYxGR0A8C+0a9dOU6dOVUhIiEqVKqXVq1crMTFRjRs3liRNmTJFBQoUUI8ePST9OSX7woULNWjQIBUuXNhWpe7u7i53d3eDjgIAAAAAAGQmu0ya/53U1FQlJydz8SIXyuvhppLB/rbHwcULqVL5IN2KitXFyzc0dfoaDR/UXn+cu6pzFyL03huddSXiln74aa8k6cQfl7Vu0++a+uEADRoxXS4uTvp0TB8t+mGnrly79aBvC+Bf6tOnvYYP/1QVKpRSpUqhmjVrheLjE9SxY3OjQwMcAucgAPy9xx9/XDExMVq4cKGioqIUHBysESNG2KZnv379um0Ncklav369UlJS9Mknn6TbT6dOndSlS5fsDB0AAAAAAGQRu02a7927V7GxsbZqAElaunSplixZotTUVFWoUEGvvfaaPD09jQsSmapapRD9tPBd2+OP3ntekjRn0Ra9MPQrTfpypTzyuGnK+P7y8fLQjr0n9NRzHyoxMdn2nD6DpujTMX20+vuRslisWr5mt4a+9112HwqQq7Vp00A3b0Zr8uR5ioy8pXLlQvTtt6OZGhrIJpyDMIKJUnPYmVatWj1wOvZRo0ale5zZM50BAAAAAICcx26T5qtWrVLt2rVtj0+cOKGwsDB17dpVRYsW1YIFC7RkyRL16tXLwCiRmbbtOqY8gd3/ts+YTxZrzCeLH7j9VvQd9R40JbNDA/AXPXu2U8+e7YwOA3BYnIMAAAAAAAAA8PDMRgfwqC5evKgyZcrYHu/atUuVKlVSx44dVbt2bT333HP67bffDIwQAAAAAAAAAAAAAJDT2W2leXx8vPLly2d7fPz4cdWtW9f2uHjx4rp1i3WqAQAAgKxmt3fiAgAAAAAAALLj61sFChRQeHi4JCkhIUHnz59XaGiobfvt27fl6upqVHgAAAAAAAAAAAAAADtgt5XmdevW1axZsxQTE6N9+/bJx8cnXdL8zJkzCggIMDBCAAAAwDGYTEZHAAAAAAAAADw6u02ad+rUSTdv3tTMmTPl4+OjV199VWbz/wrnt2/frurVqxsYIQAAAAAAAAAAAAAgp7PbpLmrq6teeeWVB25/7733sjEaAAAAAAAAAAAAAIA9sts1ze9n+fLlunPnjtFhAAAAAA7FZOAXAAAAAAAAkFG5Kmm+bNkyxcbGGh0GAAAAAAAAAAAAAMBO2O307PdjtVqNDgEAAABwOCZKvgEAAAAAAGDH7LbSfPHixUpMTDQ6DAAAAAAAAAAAAACAHbPbpPmiRYuUkJCQru2TTz5RoUKFDIoIAAAAAAAAAAAAAGBvctX07L6+vkaHAAAAADgcZmcHAAAAAACAPbPbSnNJMrF4IgAAAAAAAAAAAAAgA+y60nzw4MH/2GfmzJnZEAkAAADguMzcywoAAAAAAAA7ZtdJ886dO8vDw8PoMAAAAAAAAAAAAAAAdsquk+b16tWTt7e30WEAAAAAAAAAAAAAAOyUXSfNAQAAABiP2dkBAAAAAABgz8xGBwAAAAAAAAAAAAAAgFHsttI8LCzM6BAAAAAASDKZrEaHAAAAAAAAADwyKs0BAAAAAAAAAAAAAA6LpDkAAAAAAAAAAAAAwGHZ7fTsAAAAAHIGk9EBAAAAAAAAABlApTkAAAAAAAAAAAAAwGFRaQ4AAAAgQ0yUmgMAAAAAAMCOUWkOAAAAAAAAAAAAAHBYVJoDAAAAyBAKzQEAAAAAAGDPqDQHAAAAAAAAAAAAADgskuYAAAAAAAAAAAAAAIfF9OwAAAAAMoQ7cQEg+z097/hD9Dr2jz1WPFs248EAAPD//fPfJ/42AQByJq5vAQAAAAAAAAAAAAAcFpXmAAAAADLEZDI6AgAAAAAAAODRUWkOAAAAAAAAAAAAAHBYJM0BAAAAAAAAAAAAAA6L6dkfwK9AZaNDABza7eSLRocAODxPlwCjQwAcnv3Mem4/kQIAAAAAAAB/RaU5AAAAAAAAAAAAAMBhUWkOAAAAIENMVJoDAAAAAADAjlFpDgAAAAAAAAAAAABwWCTNAQAAAAAAAAAAAAAOi+nZAQAAAGSIycS9uAAAAAAAALBfXN0CAAAAAAAAAAAAADgsKs0BAAAAZJDJ6AAAAAAAAACAR0alOQAAAAAAAAAAAADAYZE0BwAAAAAAAAAAAAA4LKZnBwAAAJAhJqZnBwAAAAAAgB2j0hwAAAAAAAAAAAAA4LCoNAcAAACQQVSaAwAAAAAAwH5RaQ4AAAAAAAAAAAAAcFhUmgMAAADIEJOJe3EBAAAAAABgv7i6BQAAAAAAAAAAAABwWCTNAQAAAAAAAAAAAAAOi+nZAQAAAGSQyegAAAAAAAAAgEdGpTkAAAAAAAAAAAAAwGFRaQ4AAAAgQ0xUmgMAAAAAAMCOUWkOAAAAAAAAAAAAAHBYJM0BAAAAAAAAAAAAAA6L6dkBAAAAZAjTswMAAAAAAMCeUWkOAAAAAAAAAAAAAHBYVJoDAAAAyCDuxQUAAAAAILM8Pe/4Q/Q69o89VjxbNuPBAA6Cq1sAAAAAAAAAAAAAAIdl90nzzZs3a9++fbbHc+fOVe/evfX2228rMjLSwMgAAAAAAAAAAAAAADmd3SfNly1bJldXV0nSyZMntW7dOvXs2VP58uXTrFmzDI4OAAAAyP1MJpNhXwAAAAAAAEBG2X3S/MaNG/L395ck7d69W7Vr11bz5s3Vo0cPHTv2z+s5AAAAAAAAAAAAAAAcl90nzd3d3XX79m1J0sGDB1WpUiVJkouLi5KSkowMDQAAAHAQJgO/AAAAAAAAgIxxNjqAjKpUqZK++uorlShRQleuXFHVqlUlSeHh4SpcuLDB0QEAAAAAAABwBCvDojK8jye7+mR4HwAAAPj37L7SvF+/fgoNDVVMTIyGDh2qfPnySZLOnDmjevXqGRwdAAAAAAAAAAAAACAns/tK87x586pfv373tHfp0sWAaAAAAADHY2KadAAAAAAAANgxu0+aS1JsbKw2btyoS5cuSZKKFi2qpk2bytPT0+DIAAAAAAAAAAAAAAA5md0nzY8ePaoJEybIw8NDJUuWlCStXbtWS5Ys0fDhw1W+fHmDI0RWyuvhqqEDG6hlk1D5FvDQkRPXNPqjn3XwyFVbn9f/00DdO1aWVz437f39kt4et07nLtwyMGogd7tzJ0FffbFSmzYc0K2bt1WmbDENfbOzHqsYbHRogEPYs+eIpk9fpiOHTysy8pamTH1TzZvXMTos5Hp2v+oTAAAAAAAAHJjdX92aPn26Hn/8cU2dOlVvvPGG3njjDU2ZMkX16tXT9OnTjQ4PWWzCe61Vv06whrz9o57oPF3bdp7T3K+6ya/wn7MMvNS7tvr0qK6RY9ep/XOzFR+frNnTusrN1cngyIHc64N35+rXncf1/vheWrBspGo/Xk4vD5isiGtRRocGOIT4uASVLVNC7773otGhAAAAAAAAAIBdsPuk+dWrV/Xkk0/KbP7foZjNZrVr105Xr179m2fC3rm5OatVszIa/9lm7d53UecvRumzr37R+YtR6tm5qiSp77M19cU3O7R+8ykdPxWpIe/8KL9CnmrZJNTg6IHcKSEhSRt//l2DhrRXtRqlVTywsF4c2E7FAwtpcdhWo8MDHELDRtX12uvPqkULqssBAAAAAAAA4GHYfdI8JCRE4eHh97SHh4crODg4+wNCtnF2MsvZ2azExJR07QmJyapZtbiKF/VW4UKe2v7rOdu227GJ+v3QZVWrXDSbowUcQ2qqRampFrm6uaRrd3Nz1e/7ThsUFQAgq5kM/AcAAAAAAABklN2vad66dWt99913unr1qkJD/6wePnnypNatW6dnn31W58+ft/UNCgq67z6Sk5OVnJycLfEi89yJS9JvB8I16IV6+uPsDV2/cUdPtSqvapWK6tzFWyrk++cU7ZE37qR7XuTNOypUMK8RIQO5Xt687qpUuYS+/WqNSoT4q0BBL61bvUeHDpxRscBCRocHAAAAAAAAAABwD7tPmn/++eeSpHnz5j1wW5qwsLD77mPZsmVavHjxX1qrZUp8yFqvj/xRE0e10e71ryglxaLDx6/qh7VHVbGcv9GhAQ7r/fG99f67c9S66Qg5OZlVplxxPdG6ho4dvWB0aACALGIyUfENAAAAAAAA+2X3SfMpU6ZkeB8dOnRQu3bt0rWVf3xyhveLrHchPEpd+89XHncXeXq6KvL6HU2Z8LQuXIpS5PVYSVKhgnkVef1/1eaFCuTV0ZMRRoUM5HrFAgvp6++GKD4uUXfuJMi3kLfeGvqtihbzNTo0AAAAAAAAAACAe9h90rxQoYxP9+vi4iIXF5d/7ogcKz4hWfEJyfLK56aGj5fQ+M826eKlaEVExurxWsE6euLPJLlnXldVqRiguYv2GxwxkPvl8XBTHg83xUTHaeeOYxo0pIPRIQEAsgyV5gAAAAAAALBfdp80l6SrV69q9erVunTpkiSpaNGiatOmjfz9maI7t2tYt4RMJun0uZsKDsyvEa830emzN7RoxSFJ0ox5e/TqgMd17sJNXbwUraEDG+haZKx+2nTS4MiB3Gvn9qOyWq0KCvbTxQuRmjxpmYJL+Omp9nWNDg1wCHfuxOvChSu2x+HhETp27Iy8vfMpICDjNxsCAAAAgD1bGRaV4X082dUnw/sAAAA5i90nzX///Xd99NFHCg4OVpkyZSRJJ06c0NChQzV8+HBVqlTJ4AiRlfLlc9OwVxvJ3y+foqMTtGbDCX08ZatSUiySpK+++1V58rhq/Dut5JXPXXv2h6vXy2FKTEo1OHIg94q9Ha8pn61QxLUoeXl7qGmLqho46Ck5uzgZHRrgEA4f/kO9nn/H9vjD8TMkSe07NNGHHw42KiwAAAAAAAAAyLHsPmk+f/58tW3bVs8++2y69nnz5mnevHkkzXO5VT8d16qfjv9tn0+/3KZPv9yWTREBaNGqulq0qm50GIDDql27oo6fWG50GHAwJpmNDgEAAAAAAAB4ZHZ/devSpUtq2rTpPe1NmjRReHi4AREBAAAAAAAAAAAAAOyF3SfNvby8dO7cuXvaz507Jy8vr+wPCAAAAHA4JgO/AAAAAAAAgIyx2+nZFy9erCeffFLNmjXT119/rWvXrqVb03zFihVq27atwVECAAAAAAAAAAAAAHIyu02aL1q0SC1atNAzzzwjd3d3/fjjj/r+++8lSfnz51fnzp3VunVrg6MEAAAAAAAAAAAAAORkdps0T2MymdSuXTu1a9dO8fHxkqQ8efIYHBUAAADgOEwmpkkHAAAAAACA/bLrpPlfL86RLAcAAAAAAAAAAAAA/Bt2nTQfPHjwP/aZOXNmNkQCAAAAODIqzQEAAAAAAGC/7Dpp3rlzZ3l4eBgdBgAAAAAAAAAAAADATtl10rxevXry9vY2OgwAAAAAAAAAAAAAgJ2y66Q5AAAAAOOZZDY6BACZ7Ol5xx+i17G/3bri2bKZEwwAAAAAAFmMq1sAAAAAAAAAAAAAAIdlt5XmYWFhRocAAAAAQJJkMjoAAAAAAAAA4JFRaQ4AAAAAAAAAAAAAcFgkzQEAAAAAAAAAAAAADstup2cHAAAAkDOYmJ4dAAAAAAAAdoykOQAAAAAAAJAFnp53/CF6HfvHHv2d/TMeDAAAAIAHImkOAAAAIENMJirNAQAAAAAAYL9Y0xwAAAAAAAAAAAAA4LCoNAcAAACQQdyLCwAAAAAAAPvF1S0AAAAAAAAAAAAAgMMiaQ4AAAAAAAAAAAAAcFhMzw4AAAAgQ0wyGR0CAAAAAAAA8MioNAcAAAAAAAAAAAAAOCwqzQEAAABkEJXmAAAAAAAAsF9UmgMAAAAAAAAAAAAAHBZJcwAAAAAAAAAAAACAw2J6dgAAAAAZYjIxPTsAAAAAAADsF0lzAAAAAAAAB7UyLCpT9vNkV59M2Q8AAAAyD+/1gIdH0hwAAABABrHqEwAAAAAAAOwXV7cAAAAAAAAAAAAAAA6LSnMAAAAADmXt2rVauXKloqKiFBQUpL59+6pUqVJGh4Vs9G9/B3bu3KmwsDBFRkbK399fzz77rKpVq5aNEQMAAAAAgKxEpTkAAACADDEZ+O/f2rFjh2bPnq1OnTppwoQJCgoK0tixYxUdHZ0FPxnkRP/2d+DEiRP6/PPP1bRpU02YMEE1a9bUxIkTdeHChWyOHAAAAAAAZBUqzQEAAADYreTkZCUnJ6drc3FxkYuLy337//jjj2rWrJmaNGkiSRowYID27dunTZs2qX379lkdLnKAf/s7sHr1alWpUkVPPfWUJKlbt246dOiQ1q5dqxdeeOG+3+Ovv5cmk0l58uSRs3PWfwQ3lyyTKfspU9gzw/t40HmIzBmnzBgjSfJ1ds+U/eTG8Waccr6c9JonZc445bYxkjJvnJz+4WdjMv15Q6WLi4usVusD+/kWZpzuJyedT7nx55tZMmOcMutcwoPxHuLRZMfnJeDvmKy86iGXSU5O1rJly9ShQwfeYAEG4TwEjMd5CEexcOFCLV68OF1bp06d1KVLl3v6pqSkqGfPnhoyZIhq1apla58yZYri4uI0bNiwLI8XxnqU34H//Oc/ateundq2bWtrW7hwofbs2aOJEyfe9/v89feyXr16Gjx4cCYeCQAAAAAAyExMz45cJzk5WYsXL76n4ghA9uE8BIzHeQhH0aFDB3333Xfpvjp06HDfvjExMbJYLPLx8UnX7uPjo6ioqKwPFoZ7lN+BqKgoeXt7p2vz9vb+29+Zv/5eDhgwINe9HsfHx2v48OGKj483OhQ8AGNkHxgn+8A42QfGKedjjOwD42QfGCcg8zHXAQAAAAC79XdTsQNGcYTfS6vVqrNnzzJlZw7GGNkHxsk+ME72gXHK+Rgj+8A42QfGCch8VJoDAAAAcAheXl4ym833VAhHRUXdU3mM3OlRfgd8fHwUHR2dri06OprfGQAAAAAAchGS5gAAAAAcgrOzs0JCQnT48GFbm8Vi0eHDhxUaGmpgZMguj/I7EBoaqkOHDqVrO3jwoEqXLp2lsQIAAAAAgOxD0hy5jouLizp16pTrp0MEcjLOQ8B4nIfA/bVr104bNmzQ5s2bFR4erm+//VaJiYlq3Lix0aEhm/zT78CUKVM0f/58W/82bdrowIEDWrlypS5duqSFCxfq9OnTatWqlUFHkDPwdybnY4zsA+NkHxgn+8A45XyMkX1gnOwD4wRkPpOVBQ8AAAAAOJC1a9fqhx9+UFRUlIKDg9WnTx+qhh3M3/0OjBo1SoUKFdLAgQNt/Xfu3KkFCxYoMjJSRYoU0bPPPqtq1aoZFT4AAAAAAMhkJM0BAAAAAAAAAAAAAA6L6dkBAAAAAAAAAAAAAA6LpDkAAAAAAAAAAAAAwGGRNAcAAAAAAAAAAAAAOCyS5sBDGjhwoFatWmV0GIDDioiIUJcuXXTu3DmjQwEAAAAAAAAAALmIs9EBAJIUFRWlpUuXat++fbp586a8vb0VFBSktm3bqmLFikaHB+RqU6dO1ZYtW+5pnzx5svz9/Q2ICHAcU6dO1Z07dzRs2DCjQwEAAAAAALmQxWKR2fxn/WRKSoqcnZ3TtSHnsFqtMplMD3wMIGuRNIfhIiIi9M477yhv3rzq2bOnAgMDlZqaqgMHDmj69On67LPPjA4RyPWqVKmil19+OV2bl5fXv95P2htvAAAA2BcunAIAgMxCoi9nMZvNunnzpjw8POTu7q59+/YpISFBderU4f1fDnL3+/GIiAgVLFhQTk5OBkcFOBYyGzDc9OnTZTKZNG7cOLm7u9vaixcvriZNmkiSfvzxR23atEkRERHy9PRU9erV1bNnT1v/yMhITZ8+XSdOnFBKSooKFSqknj17qlq1atq8ebO+++47fffdd7Z97969Wx9//LEWLlwoSbp69apmz56tU6dOKSEhQcWKFVP37t1VqVKl7PtBAAZydnaWj4/PPe1Hjx7VnDlzdP78eXl6eqpRo0bq1q2b7Q3bqFGjVLx4cTk5OWnbtm0KDAxUp06dNHr0aI0YMULz58/XpUuXFBoaqtdee01nzpzR7NmzdfPmTVWrVk0vvfSS3NzcJEm///67lixZoosXL8psNis0NFS9e/em2h0O65/Ov4EDB6pNmzZq27at7Tn/93//p5o1a6pLly6SpC5duujFF1/Uvn37dODAARUoUEDPP/+8atSoYXvO3r17NXv2bN24cUOhoaFq1KiRpk2bppkzZypv3rySpOPHj2v+/Pk6ffq0vLy8VLNmTfXo0SPd320AgP26+wLd5s2b5ePjoypVqhgbFB4oLRFx+vRpubm5qVixYkaHhL+RNl4kkHKetDGJjo5Wnjx55OrqanRIuI+0cbpz547c3Ny4UT+HShun8PBw+fr68lkxh4mLi9PUqVPl5uamOnXqaOrUqRo6dCgJ8xzk7vfjixcvVnh4uJo2baqKFSvy/gHIRrwqwlCxsbH6/fff9cQTT9z3zVTaxXqTyaQ+ffpo0qRJGjhwoA4fPqy5c+fa+k2fPl0pKSkaPXq0Pv74Yz377LP/6s1ZQkKCqlatqnfeeUcfffSRKleurAkTJuj69esZP0jATt28eVPjx49XyZIlNXHiRPXv318bN27UkiVL0vXbsmWLnJ2dNWbMGA0YMMDWvmjRIvXt21cffPCBbty4oU8//VSrV6/WoEGD9Oabb+rgwYNas2aNrX9CQoLatWunDz/8UO+++65MJpM+/vhjWSyWbDtmIKd42PPvYSxevFh169bVxx9/rKpVq2ry5MmKjY2V9Oedy5MmTVLNmjU1ceJENW/eXAsWLEj3/KtXr2rs2LGqXbu2Pv74Y7322ms6ceKEZsyYkSnHCgAwltVqtV2gmzt3rhYtWqQ//vhDsbGxslqtBkeH+zGZTNq/f7/effdd3bx5U6mpqUaHhL9IO3dOnDihTZs2KTExkQveOUxagm/v3r366quv9NtvvyklJcXosPAXaeP022+/adq0aTp16hTjlAOljdOePXs0btw4rVu3TsnJyUaHhbu4urqqSZMmunjxor766isNGDBAtWrV4j1EDpL2fnzevHlas2aNHn/8cQUFBaV7/8A1UiDrkTSHoa5evSqr1aqiRYv+bb+2bduqQoUKKly4sCpUqKBu3bpp586dtu3Xr19XmTJlFBgYKD8/P1WvXl3ly5d/6DiCg4PVokULBQYGqkiRIurWrZv8/f21d+/eRz42wJ7s27dPzz33nO3rk08+0bp161SwYEH169dPRYsWVa1atdSlSxf9+OOP6d6kFSlSRD179lRAQIACAgJs7d26dVPZsmVVokQJNW3aVEePHlX//v1VokQJlStXTrVr19aRI0ds/evUqaPatWvL399fwcHB+s9//qMLFy4oPDw8W38WQE7wsOffw2jUqJHq168vf39/de/eXQkJCfrjjz8kSevXr1dAQICee+45BQQEqF69emrcuHG65y9fvlwNGjRQ27ZtVaRIEZUpU0Z9+vTRli1blJSUlFmHDAAwSNqFuB9++EGbNm3S0KFD1alTJ3l6epLky6FiY2N17tw5de3aVZUqVWLazhwmLXm0a9cu2834165ds23jZpScwWQyaffu3frss89UpkwZlSxZMl0FM4mJnCFtnCZPnqygoCDlz5+fSvMcKO0GlM8//1zt27dX3bp15eLiYnRY+P9SU1Pl7OyskJAQWa1WeXt76/Dhw0pISJCTkxOvdznIgQMHtGPHDr3zzjuqVauW8ubNq6ioKB06dEgJCQkym82MF5DFeJcBQz3sh8WDBw9q+fLlunTpkuLj45Wamqrk5GQlJibKzc1NrVu31rfffquDBw+qYsWKql27toKCgh46joSEBC1cuFD79+/XrVu3lJqaqqSkJCrN4TAee+yxdFXibm5umj59ukJDQ9NdLC1TpowSEhJ08+ZN+fr6SpJKlChx333efQ56e3vLzc1Nfn5+tjYfHx+dPn3a9vjKlSsKCwvTH3/8odu3b9veBF6/fl2BgYGZc6CAnUhb1uCfzr+Hcfe56O7urjx58ig6OlqSdPnyZZUsWTJd/1KlSqV7fP78eZ0/f17btm1L1261WhUREcGUsACQCyQkJOjkyZPq2rWrQkJCdO3aNZ0/f17r169XkSJF9MQTT/zjjc7IHuHh4Ro2bJgKFCigzp07Gx0O7sNkMuno0aP68ssv9dxzz6l58+a2bWkzOzBVu/GuXbumefPmqXfv3mrevLksFouSkpJ07tw5FS5cWD4+PummyoUxrly5olmzZunZZ59Vy5YtbTeeXLp0SXnz5lX+/PmNDhGS4uPjtW7dOrVv314tW7ZUUlKSoqKitHv3bgUFBalIkSLy8vIyOkyHlbak4vbt2zV48GBdvXpVq1ev1pQpU/TKK6/I3d3d9nqXmprKzXgGc3d3V758+RQeHq5t27bpl19+kdVqlZubm8aNG6c8efIYHSKQq5E0h6GKFCkik8mkS5cuPbBPRESEJkyYoBYtWqhbt27y9PTU8ePH9dVXXyklJUVubm5q1qyZKleurH379ungwYNatmyZnn/+ebVu3dq2dtjd/jr1zOzZs3Xo0CE999xz8vf3l6urqyZNmsSUT3AYbm5uj7x2+IOWQrj7TbbJZLrvm+67746cMGGCChUqpBdffFH58+eX1WrV0KFDOQ+BB3iYv2+S7jn37ve8v5OQkKDmzZurTZs292z7N8l7AEDO8deEnbu7u+Lj47Vt2zb5+vpqzZo1Sk5OVuHChbV9+3bFxcXplVdeMTBipI1ZsWLF1LJlS61Zs0aRkZEk9XKItPdWaefV/v37VblyZTVv3lxxcXE6c+aMfvnlF0VFRalbt24KDg5m7HIAFxcXBQQEKDk5WatXr9bevXt17do1OTk56Z133kk3kxqy1oNuJElOTla+fPlUoUIF3blzR1u2bNHu3bt16dIlBQcHq3v37goJCTEgYsd09+tWWnI1Li5O7u7uun79uqpWraq4uDgtXbpUp06d0oULF+Tm5qbOnTurWbNm3DCUzdJ+3vHx8VqzZo3q1aun0qVLq0SJEkpJSdH69es1bdo0DRw4UG5ubvrpp5+UL18+1alTh3HKBvd7H+Dk5CSTyaTJkycrPDxcNWrUUMeOHVW0aFFNnjxZR48eVfXq1Q2KGHAMvDuHoTw9PVW5cmWtW7dOCQkJ92y/c+eOzpw5I4vFoueff16hoaEKCAjQrVu37unr6+urli1b6o033tCTTz6pDRs2SJK8vLyUkJCQbv/nzp1L99wTJ06oUaNGqlWrlgIDA+Xj46PIyMjMPVjAzhQtWlQnT55Ml1w7ceKE8uTJowIFCmTq97p9+7YuX76sjh07qmLFiipWrJju3LmTqd8DsCcPc/55eXkpKirKtj0uLk4RERH/6vsEBATozJkz6drSpm5PU6JECV26dEn+/v73fDE1IgDYH4vFYrsQevffmWeeeUapqan64osvVKpUKXXr1k0vv/yyOnXqpNjYWNYmNchfk7GS1Lt3b7Vs2VLLli1jSbEcICkpSSaTSSaTSVevXpXFYlG+fPl08eJF/fLLL/ryyy+1cuVK2/u0999/X3FxcSTMDZZWtbds2TK9/PLLOnHihKpWrao33nhDefPm1e7du40O0aGYTCZFR0crJiZGkrR7925t375dHh4eunTpkhYsWKA33nhDR44cUYUKFdSvXz9FRESwnFs2M5vNunz5so4ePSonJyft2rVL06ZNk8ViUd26dTV37lwNHDhQV65cUYMGDTRz5kyVKlVK+/fvlyQSsdng7msEJpNJBw4c0KxZsxQQEKD69etLkpydndWgQQO1bNlSN27c0LvvvqsZM2Zo+vTpKl68OOOUDe5OmN/9WlahQgX17t1bVatW1YsvvqjnnntOzZo1U5EiReTp6Sk3NzcjwwYcAlc6Ybh+/frpnXfe0YgRI9SlSxcFBQUpNTVVBw8e1Pr16zV48GClpqZq7dq1ql69uk6cOKH169en28d3332nKlWqKCAgQLGxsTpy5Iht+sDSpUvL1dVV33//vVq3bq0//vhDmzdvTvf8IkWKaPfu3apRo4YkKSwsjHXG4PCeeOIJrV69WjNmzFCrVq10+fJlLVy4UG3bts30Czx58+ZVvnz59PPPPyt//vy6fv265s2bl6nfA8ip4uPj77mZq3nz5v94/lWoUEGbN29W9erVlTdvXoWFhf3rc7NFixb68ccfNXfuXDVt2lTnzp3Tli1bJP3vgsbTTz+tkSNHavr06WrWrJnc3NwUHh6ugwcPql+/fhn/AQAAsk3a1NCStHbtWp04cUJ+fn6qUqWKypcvr3Hjxun69evpZhLZu3ev/Pz8WJvUAGkVYsePH9fx48cVFxen4sWLq0GDBurXr58sFosmT56s1157zfZZFtkr7XNLjx49dP78eX3++ef6+OOPVbp0aZ07d04zZ85U1apV1aJFC1WoUEEnTpzQ7NmzuQklm6WdS9evX1dsbKw8PDzk7++vfv362Zb5a9iwoXx8fCT9ubyYh4eHsUE7EIvFosTERA0ZMkRNmjRRQECA/vvf/2rgwIHy9fXVyJEjtWPHDrVo0UKNGjVSwYIFJck2Kwqyj8Vi0bp167R27Vo988wzWrJkiV5++WU5OzurU6dOKl++vOLi4lStWjXb+w0vLy85OTkx7Xc2WL16tTZt2qTx48fbbnC/ceOGNm3apHz58qlnz56S/rfGef369eXl5aXt27fr2rVrmjhxIsuvZZO082PevHnasWOHYmNjVbhwYTVq1EhNmzZVhQoVJEkpKSmKiYnRl19+KTc3N5UvX97IsAGHQNIchvPz89OECRO0dOlSzZkzR7du3ZKXl5dCQkLUv39/BQcH6/nnn9eKFSs0f/58lStXTj169NCUKVNs+7BYLJo+fbpu3rypPHnyqEqVKurVq5ekP6vZX331Vc2dO1cbNmxQhQoV1LlzZ3399de25z///PP68ssv9fbbbytfvnx6+umnFR8fn+0/CyAnKVCggN566y3NmTNH//d//ydPT081bdpUzzzzTKZ/L7PZrMGDB2vmzJkaOnSoAgIC1KdPH40aNSrTvxeQ0xw5ckTDhg1L19a0adN/PP/at2+viIgIffjhh/Lw8FDXrl3/daV54cKFNXToUM2ePVtr1qxRaGioOnTooG+//db2ITsoKEijRo3SggUL9O6778pqtcrf319169bN+MEDALLN3VOiLl68WKtWrVLVqlW1Z88eHTlyRE2aNFHTpk3l6+uruLg4nTx5UqtXr1Z0dLTeeuute/aBrGcymfTrr79q2rRpqlmzphISErRnzx7t3r1bQ4cO1YABA2QymfTFF1/opZde4m+zAc6dO6ebN2/q008/1fnz5/Wf//xHfn5+8vPzU4kSJRQbG5vuJpTffvtNZrOZm1CyUdrr1u7duzV//nxZrVa5urrKz89PPXr0UPv27W19k5KStHTpUoWHh2vAgAHGBe1gzGaz8uTJo1deeUUTJ05Uamqq+vTpo4YNG8pisahs2bIqXbp0uoTr999/r6tXr6pixYoGRu54zGaz+vTpo4sXL2rp0qV66qmn1KhRI9ssNmmJPunPm4p+/vln7dixQ2PGjCFhng0aN26sKlWqyNnZWQkJCXJ3d1eDBg3k6uqqL7/8UitWrFCvXr3k5OQki8UiZ2dnVatWTdWqVVNSUpJcXV2NPoRc7+4K861bt2rr1q3q06ePfH19tWHDBu3cuVM3btxQp06dlDdvXq1du1YHDhxQbGysxowZI7PZzPIuQBYzWSmnBQAAwP+3dOlSrV+/Xl9++aXRoQAAssCZM2e0efNm1a1bV+XKldOFCxe0evVqnT17Vq1atVKTJk108uRJbdy4UTExMRo6dCgVYga5evWqxo4dqyeffFItW7bU5cuXNXLkSDVo0EB9+/a19Zs8ebKOHDmizz//XO7u7gZG7JiWLFmihQsXKigoSK+99pptHey7bzI5ffq0tmzZom3btum9995TcHCwgRE7nqNHj+rDDz9Ujx491KpVK61du1YzZ85U37599cQTT0j6M3lx+PBhHThwQG+++aZKlChhcNSOIy0BdObMGY0dO1axsbFq37692rRpI29v73R9Nm7cqP379+vkyZOMUzZLG4OTJ09q6tSp8vLy0pkzZ/Tmm2+qYsWK6RJ5x48f16pVq3Tu3DkNHTqU17xsdvLkSU2ePFnDhw9X8eLFlZKSom3btunrr7/WU089pe7du0v635I93BCZ/Xbv3q2IiAiZzWa1adPG1r506VLt3LlTnTp1Uu3atbV7925dvXpVbdu25f04kE2oNAcAAHBg69atU8mSJZUvXz6dOHFCP/zwg1q1amV0WACALPDrr79q8eLFkmSrrgwMDFTbtm21atUqrVu3Ti4uLqpfv77y58+vggULymw2c4HOIFFRUXJzc1PLli0VGRmpMWPGqG7duraE+fHjx1W2bFkNGjRIUVFRJMyzWUpKipydneXt7a327dvr3Llzmj17tjp37qySJUvakuaXLl3Stm3bFB4erlGjRikoKMjo0B1G2hj8/vvvqlevnlq1aqWbN29q5cqVatGihS1hnpqaqiJFiujy5csaNWqUihQpYnDkjsVsNmv37t1atWqVXn/9dSUlJWnChAlKTk7W008/LW9vb1syNjQ0VKdPn9a7775rW5YR2cNsNmvv3r2aMWOGXnjhBZUrV04zZ87Uhx9+eE/i3M3NTa1bt5avr68KFy5sdOgOp2jRosqTJ48++eQTDR06VMWKFVPDhg1ltVr1zTffyGw2q2vXrlQrGyQmJkZffPGFkpKS1Lp163TbOnbsqEOHDmnz5s2qXbu2atWqZdtmsVh4Pw5kA14ZAQAAHNiVK1c0ceJEDRkyREuWLFG7du3UuXNno8MCAGQBDw8PFShQQNeuXdPJkydt7cWLF1e7du0UEhKiuXPnav/+/SpUqJBtCkgu0BnD1dVVPj4++uOPP/Tuu++qatWq6t+/v6Q/pwXfvn27Ll26JEm2tZiR9dImbLRYLJKk5s2bq3v37mrUqJGSk5O1aNEinTlzJl0yonHjxhoyZAgJ82yWVj2ZlJSkQoUK6datWxoxYoQqV66sfv36SZL27t2r7du3q3Tp0urUqRMJ82yUdi5FREToxx9/VKNGjVS+fHlVq1ZNr732mlatWqWVK1cqOjpakrR8+XJdvXpVAwYMIGGejdLGKTY2Vnv37lWbNm1UpUoVubm5qWfPnmrQoIEmTJiggwcPymw2a8WKFVqxYoVKlixJwjwbpP0tulvevHk1evRo5c2bVx999JHCw8Pl5OSkRo0a6cUXX9TSpUu1ZMkSA6J1TH+d6NnLy0vjx49XsWLFdPTo0XuW2StXrpxSUlKUkpKSrp2bHIDswfTsAAAAAADkMg9a7/DkyZNaunSp4uLi9PTTT6t69eq2befOndPvv/+up556igtz2SDtcozJZLrvevERERF67733dPPmTTVr1kwvvPCCbdt3332n8+fPa8iQIcqXL1+2xu3I0sZp3759WrNmjfLkyaPg4GB17NhRkrRjxw5t3LhRTk5Oatu2rY4fP661a9fq888/Z5wMkPY6+P333+vXX39VUlKSqlWrZrv5JCUlRf/973/l7e2tbt26ydmZCTmz2+nTp7Vt2zZFRETo5Zdflru7u5ycnGQymbRz505NnjxZNWvWtFWjjx07linZs8G+ffsUHBysAgUKSPpzZpMvv/xSnp6e6t69e7q1y2NjY/X999/r559/1mOPPabjx48zTtkgLi5OHh4etsdnz57VxYsX5evrq5CQELm7uysuLk7jxo1TTEyMhg0bpmLFiik1NVU7duxQiRIlVKxYMQOPwDHc/X48NTVVkmw3o168eFEffPCBihUrpt69e6tQoUIymUx6//335efnp0GDBhkWN+DISJoDAAAAAJCL3H2B7vz580pMTJSXl5f8/f0l/bm+76pVqxQXF6d27dqlS5zfbx/IGklJSXJ1dbVN8338+HGdOnVKbm5uqlGjhgoUKKCDBw9q/Pjxatq0qRo0aCBXV1f98ssv2rhxo95//30FBgYafRgO5+jRo/rggw/UpEkT3b59WydOnFC5cuX02muvSfpzGYRNmzbp3LlzcnFx0eDBg1WqVCljg3YQaTc1REdHy8nJSSkpKfLx8ZHVatV7772nixcv6tNPP5WXl5csFosWLlyorVu36t1337WtRY/sNXfuXG3YsEGurq6aMGGCfHx8lJqaKrPZLJPJpN9++02bN2+W1WpV586dma0hi1mtVh07dkz//e9/NXr06HSzmAwfPlznzp1Tv3791KJFi3tu9Nq+fbsiIyNVu3ZtZmzIYmvWrNHFixf11FNPyd/fX3v27NFnn30mf39/hYeHq0WLFmratKlCQkJsifM7d+7o9ddf531DNoqPj1eePHkkSStXrtTp06d15coV1atXT+XLl1epUqV04cIFjR8/XikpKQoICJC3t7euXbumsWPHytnZ+b43VQLIWiTNAQAAAADIJe6+uPb9999r7969un79ukqVKqUSJUqoZ8+ekqQjR45ozZo1io+PV4sWLVSnTh0jw3Y4W7du1dy5c/XRRx/Jx8dHO3fu1Jdffil/f38lJibKYrHozTffVNGiRbVr1y7NmjVLFotFHh4ecnd314svvqjg4GCjD8PhXLlyRZcvX9a1a9fUpk0bJSQk6ODBg5o2bZoqV66s119/XdKfswTEx8crX758tkpNZK20177du3dr+fLliomJkYeHh6pXr66uXbvq3Llz+uSTT5SamiofHx95enrqzJkzGjFiBBWxBlu6dKnWrVun2rVr65lnnpG3t7csFotMJpNMJpOSkpJkMpnk4uJidKgOIyYmRl5eXrpy5YpMJpPtpruRI0cqKipKgwYNUmho6D3JPBJ82WPt2rVasmSJGjRooMcff1yLFi1SzZo11ahRI+3bt08LFixQyZIl1bp1a5UsWVJxcXEaOXKkXF1dbclYZK2tW7cqIiJCnTp10rx587Rhwwa1bt1a165d0+XLl+Xs7KwuXbqoQoUKunjxoj777DPFxsZq6NChKl26tEwmk+2mSgDZi6Q5AAAAAAC5zNKlS7VmzRoNHjxYQUFBmjNnjn799VfVq1fPNs330aNHFRYWpqCgIPXt29fgiB3L0aNHNX/+fCUkJOitt97SmjVrVKxYMTVs2FDnzp3TwoULdeLECY0dO1YBAQG6efOmYmNj5ezsLC8vL3l6ehp9CA7n+vXrGj58uFJSUtS9e3e1atVK0p9TfO/bt0/Tpk1TtWrVmE7VQAcPHtSECRPUo0cP5c2bVzExMQoLC1OjRo30wgsvKDU1VStXrlRCQoIKFCigypUry8/Pz+iwHcZfZwJISkqy3VTy/fff6/fff1e1atXUunVr22wAzHiSvdJ+5haLRTdu3NCIESPUsGFDPfHEE7b1yYcPH67ExES9/PLLtuQeyfKs99ef8caNG7Vo0SLVrVtXkZGRGjBggLy8vCRJe/fu1fz58xUSEqI2bdooJCRE8fHxun37NuvMZ4P169fr22+/1VtvvSU/Pz9NmDBB/fv3ty1rcPjwYf3888+6ffu2BgwYYJshYMyYMQoKCtLgwYPl4eHBOQUYhHceAAAAAADkIhcuXNDevXv16quvqkKFCjp79qx27typKlWq6NChQ5o+fbokqXz58urdu7d69+5tbMAOqHz58nruueeUJ08ejR49WmfOnFFwcLDMZrNCQkLUu3dvhYaGasSIEbp8+bIKFCigwMBABQQEkDA3iLu7u5555hm5u7vrzJkztnZnZ2dVq1ZNr7zyirZv366vvvrKwCgdl9Vq1e7du1WvXj21bdtWjRs31lNPPaXhw4dry5YtWrJkiZycnNS+fXt169ZNLVu2JGGeje6eCWDChAl688039eGHHyosLEyS1L17d1WqVEn79u3T2rVrFR0dTcLcAGlJuqSkJBUqVEht27bVrl27tHHjRl27dk2SNGHCBLm5uem///2vjh8/TsI8G6TNvBAbG6uLFy9Kkpo2bapOnTpp06ZNOnz4sK5fv27rX6NGDT377LM6f/68lixZorNnzypPnjwkzLPB1q1bNWPGDA0fPlxVqlRRQkKC7UahNBUqVFDjxo119epV3bx5U5JUrFgxvf3227p06ZLGjx+vO3fuGHUIgMPj3QcAAAAAALlIYGCgmjRpouDgYB09elRTpkxR79699frrr6to0aLasGGDPvnkE0lSiRIlbFVlyDppP9+7J/srU6aM+vfvryJFiujYsWO2KTgtFov8/f3Vp08flS9fXq+//rotWQHjeHp6qn79+urQoYN27dqlOXPm2LY5OzurSpUqGj58uJ566ikDo3RcVqtVly9fVmJioq3NYrGoUqVKat++vQ4cOKDY2Nj7novIeiaTSQcPHtTnn3+uevXqqVOnTqpfv75WrlypadOmSZKeffZZValSRVu3btWGDRv4u2SAtHGaNGmSkpOT1b59e7Vp00abN2/Wpk2b0iXOExISNHv2bCUnJxscde6WVv0fHh6uTz75RBs2bNDp06clSc2aNdOAAQPk5OSkjRs36urVq7bnVa9eXZ06dVJUVJS8vb2NCt+hbN68WVOnTtVjjz2matWqSZKcnJzk5eWlyMhISf/721OlShU5Ozvr2LFjtucXL15cw4YN0507d5SQkJD9BwBAksSiCABgpzZv3qxp06bJxcVFX3zxxT1r5Y0aNUq3b9/WpEmTDIrwT0eOHNHo0aMfqu/ChQuzOBoAAIDc5UHT17Zo0UKStGPHDtWuXVuNGjWS9GclS2Ji4j1T31LRl7XMZrOuX7+uS5cuqXLlytq6dat+//13DRo0SB06dFBsbKwmTJigsWPHysvLS1arVf7+/urZs6dcXFyUmppq9CE4lLTKyYsXL+r69euyWq2qWLGivLy8VK9ePZlMJluF7HPPPSfpfxXnMIbZbFatWrW0bt06nTx5UqGhobbXtbx58+rOnTtycXGxtVEZm73+OhNAmuDgYE2YMEGFCxdWp06d1L17d7m6uqp+/fr8XcoGP/30k4oWLapy5crZft6nT59WgQIFbGvIp43XypUrJf1Z4Vy4cGFNnTpVERERcnV1NSZ4B5D2Pu3ChQsaPXq06tatqzp16qhkyZK2Po8//rgSEhK0cOFCubq66oknnrDNolG7dm1VrlxZ7u7uRh2Cw/j555/1zTffqEmTJtq/f79mzJihvn37KjAwUKVKldKcOXPk5+enMmXKSJJiY2Pl5uamggULpttPUFCQJk6cyFrmgIE4+wDAziUnJ2v58uU5dh3KokWL6pVXXknX9v3338vd3V0dOnQwKCoAAAD7d3fSe9++fbp+/bo8PDxUrFgxBQcHS5IiIiLk5OQkZ2dnWSwWRUREqH79+mratKlMJhNrxmYTi8Wib775RlFRUTp69KhWrFihfv36SZLKli2rXr16ae7cuRo1apTee+89eXt7y2q1KiAgQK+++ioXT7PR3dNIz549W05OTnJzc1NYWJjefvtt5cuXT48//rgkafHixUpMTFT//v0NjtqxpL1u3bx5UwkJCSpSpIhMJpNKly6tX3/9VT/99JMkKTQ0VNKf69H7+PhQXW6gtJkA8uXLZ2u7eyaAgwcPqmXLlvLy8tIzzzxjYKSOIe11bvXq1UpKStLgwYNVsmRJOTs7KyYmxnaupJ1raYnz1atXKzExUa1bt1bhwoWZ7juLmc1m3bp1S5999pmaNWumHj16pNueNj5NmzaVxWLRokWLZDab1axZMxUpUkSS5ObmZkToDmXVqlWaPXu23nzzTVWtWlXr16/XggULZLVa1a9fP7366qv68MMP9dFHH6lhw4by8vLSkSNHZLFY1KBBg3v2x3s+wFicgQBg54KDg7Vhwwa1b9/+nmrznMDHx0cNGzZM17ZixQrly5fvnnYAAAA8vLRk99y5c7V9+3ZbFXlsbKw6duyo+vXrq3LlytqyZYvGjh2rhIQExcXF6bXXXpPJZJLVaiVhnk3MZrPeeustDR06VMuXL1fbtm1tswFIfyb3nn32Wc2fP18ffPCBRo4cKR8fH0lcPM1uJpNJhw8f1tSpU/Xcc8+padOmOnz4sMaOHat3331Xb7/9tgoWLKh69eopKSlJP/30k6Kjo+Xl5UX1chb66aefFBAQoHLlysnJyUm7du3SrFmzJEkeHh7q27evHnvsMT355JNauXKlvvjiCxUpUkRms1nHjh3T6NGjqbY00MPMBEByL3vcfbPcZ599plGjRmnKlCkaOHCgypYtq9TUVNtrWdryLWmJ8+TkZG3ZsoUCiGx04cIFWwX53W1nzpzR77//Lk9PT/Xu3VvNmzeXyWTSjBkz5OzsrE6dOsnZ2Zm/S9mgRIkSGjRokKpWrSpJthlpvv/+e0lSv3799Oabb2r+/Pm6cOGC/vjjD/n5+enNN9+Uk5MTN7ACOQyfvADAznXo0EGTJ09+qGrzrVu3atWqVQoPD5erq6sqV66snj17ytfXV9Kfdw3PmjVLM2bMUN68eSX9OQXXnDlz1LZtW/Xq1UvSnx+yevfurZYtW6pnz54Zit9qteqVV15RUFCQhg0blm5bUlKSBgwYoHr16umFF16wTfX+2muv6dy5c9q0aZMSEhJUoUIF9evXz3YcaU6dOqWFCxfq5MmTSk1NVcmSJdW9e3eVLVs2QzEDAAAYLa1KbNu2bdq2bZuGDh2q0NBQrV69WvPmzZOTk5Ok/124O3XqlAoXLqy+ffumuwiOrJH2801KSpLJZFJkZKS8vLzk7u6uwMBAnTp1Sr/99puqVq1qG4cyZcro2Wef1VdffaWJEydqzJgxMplMXPDOBjdv3tTx48dlsVjk4+OjY8eOqX379mrevLlu3rypr776SvXq1dOVK1c0evRojRo1SgUKFFCTJk3UpEkTeXp6Gn0IudZfK2Jfe+01ubu7a+7cuWrdurVKliyp5cuXa8qUKerVq5fq1KkjX19fnT59WgcOHLAtc1CsWDGjD8VhMBNAzpU2NhEREdq3b5+qVKmiUaNGaeTIkfriiy/0xhtvKCkpyXZtJS4uTk5OTnJxcVFUVJTat2+vFi1a2K4XIevduXNH8fHxio+Pl/TnUo3btm1TVFSUvLy8dOzYMZ04cUITJkxQs2bN5OrqqlKlSnHDXTYqX768pP/9vfLw8LDNSHN34rxHjx5KTEyUyWSyLWuQmppqe88OIGfg1RMA7FzhwoXVsGHDf6w2X7p0qcLCwlS3bl01a9ZMMTExWrNmjd577z199NFHyps3r8qVKyer1arjx4+revXqkqRjx47JZDLp+PHjtn2dPXtWCQkJtjeGGWEymdSgQQOtWLFCsbGx6S44/fbbb4qPj79nuqKlS5fKZDLp6aefVkxMjFatWqUxY8Zo4sSJtjeehw8f1rhx4xQSEqLOnTvLZDJp8+bNev/99/X++++rVKlSGY4dAAAgu508eVKenp4KCAiQJF28eFFVqlRRaGiofv31V4WFhal3796qW7eu4uPjZbFY1KZNm3T74AJd1kpLSoSHh2vBggW6cuWKLl++rPLly6tEiRLq16+f3n//fS1btkyS0iXOQ0NDNWTIELm6unJTQzY5f/68Pv74Y7m4uOjKlSsqVqyYihcvrm7dutnWmq9SpYpeeOEF7dixQ59//rmGDx+uCRMm5MiZvnKT+1XEfvnll2rfvr3q1Kmjp556SpL02GOPadKkSbbK8xo1aigwMFCNGjXiPMomzASQ8929PvakSZNUvHhxFShQQP7+/ho7dqzeeustTZ48WWazWZs2bdL+/fsVGRkpV1dX5cmTR5I0ZswYEubZrESJEoqLi9O0adNkMpl04cIFtW3bVrVq1VJISIhOnDih8ePH67ffflPNmjXvO903ssfdNznenThfsGCBzGaz+vTpk25GDavVyvtxIAciaQ4AuUDHjh21detWrVixQn369Llne2RkpBYuXKiuXbuqY8eOtvZatWpp+PDhWrdunTp27KigoCDlyZNHx44dU/Xq1WW1WnXixAnVrl1bu3fvVkJCgtzd3W2J9DJlymRK/A0bNtTSpUu1Y8cOtWzZ0ta+bds2FSpU6J7K8NjYWH366ae2D24lSpTQp59+qp9//llt2rSR1WrVN998o8cee0wjRoywvXFt0aKFhgwZogULFujtt9/OlNgBAACyS0REhGbNmiVvb2/17NnTljj38/PTwYMHbdNJt2jRQhaLRXv27NHt27fVrFkzWzKCC3RZK23K+wsXLujdd99VgwYNVK1aNXl4eGjr1q1av369kpKS9Oqrr2rq1KlatmyZrFaratSooXnz5unWrVt65ZVXjD4Mh3H+/Hm9/fbbeuKJJ9SmTRudOXNG69at05UrV2Q2m3Xy5Em5urqqffv2kiQvLy/bTQ6JiYnGBp/LPagidsSIEZo2bZoqVaqklJQUWzXl0KFDNWnSJM2bN09JSUmqU6eO7YZqZB1mArAfZrNZly5d0nvvvacWLVqoVatW6W78GT9+vMaOHauDBw+qU6dOqlixohITE2W1WuXu7i4fHx/bNRhkvrTXvLtvbLRYLCpSpIhGjBihbdu2KSkpSX379lVgYKBcXFwkSU5OTsqfP78KFixoZPi4j7sT59988438/PzS3cjKTEJAzsTtlgCQC/j5+alBgwb6+eefdevWrXu2//rrr7JarXr88ccVExNj+/Lx8ZG/v7+OHDki6c8PUWXKlNGxY8ckSZcuXdLt27fVvn17Wa1WnTx5UpJ0/PhxBQYGZtodxgEBASpdurR++eUXW1tsbKz279+vBg0a3PNGsmHDhuk+rNWpU0f58+fX/v37JUnnzp3TlStXVL9+fd2+fdt2vGlTuR87dkwWiyVTYgcAAMguhQsXVpMmTZSYmKgFCxboxo0bKlWqlMLCwjR+/Hj17dvXtk52QkKCtmzZoujo6HTVe1ygy1omk0kxMTGaOnWqWrZsqX79+qlp06aqU6eOXnrpJfXp00e//PKLli1bphEjRsjd3V3z58/XO++8o59//jndDaTIWtevX9f777+vqlWrqmfPnipQoIBq1Kih2rVrKzw8XMnJyYqKitK5c+dsyYhDhw7Jy8tLr7/+uooUKWLwEeRed1fEjh07VocPH9aFCxckSePGjVPFihX1xx9/2KbUTzN06FD5+flp5cqVSk1NNSp8h2GxWGx/Uz777DMVLlxYX375pc6ePWubCeCxxx7TyJEjVapUKc2aNUu7du1SQECAmjRpokGDBqlbt24kzLNJUlKSwsLCVL9+ffXo0cOWME9JSVFERISioqI0cuRIValSRVu3bpWLi4sqV66sKlWqqGzZsvL39zf4CHKvtNe8ixcvatmyZbap2M1ms1JSUlSiRAk9//zz6t+/v0qWLGlLmEvSnj17lCdPHpLmOZSHh4fq1q2rN954Q61atTI6HAAPgUpzAMglnnnmGW3btk3Lly+/p9r86tWrslqtGjRo0H2fe/daR2XLltWiRYuUlJSkY8eOKX/+/AoJCVFwcLCOHTumSpUq6fjx46pbt26mxt+wYUPNmDFDkZGRKlSokHbu3KnU1FQ1bNjwnr5/vUBlMpnk7++vyMhISdKVK1ckSVOnTn3g94uLi2PtQQAAYDfSqvmaN28uZ2dnbdq0SXPmzFHv3r3VtWtXLVq0SAUKFNDVq1dlsVg0c+ZM3blzR127djU6dIdz48YNpaSkqH79+rYL4RaLRV5eXmrYsKHi4uK0ePFi1atXT0OGDNGmTZuUkJCgl156SUWLFjU6fIdhsVhUuHBhpaSk6Pjx47bZrQoXLixXV1elpqaqSpUqKlSokF566SUFBgbq5MmTGjt2bLqEBTLfP1XEvv3223rnnXf05Zdf6tVXX1VoaKhtGva3335bN27coCI2izETgP1xcnJSdHR0umX2fv/9d/3+++/atGmTPDw8VLp0ab311lsaO3as3n//fY0cOdK29jyyRtq5dO7cOQ0fPlzdu3e3vX5ZLBY5Ozvr9u3bio6OTneDSUREhNauXatNmzbpvffek7e3t1GHgH+QN29e1axZUxJLJAH2gKQ5AOQSd1ebp00fmCbtDvC33nrrvmu63V19VLZsWaWmpurkyZM6duyY7eJR2bJldfz4cV26dEkxMTEqV65cpsZfr149zZo1S9u2bVPHjh21bds2lSxZ0jbt6L9htVolST179lRwcPB9+7BeGgAAsCcmk8mWOG/cuLGsVqs2bdqkmTNnqnXr1mrdurUmTpwoNzc3+fr6ys3NTR988IGcnJzSrQuMrHf+/HldvXpVgYGBkv43Zbv0Z8VR/fr19cMPP9gStW3btjUyXIdVuHBhDRo0SDNnztSSJUvUq1cv+fr6avLkyWrSpImKFSsmq9WqIUOGaPPmzTKZTOrTpw9VsdngrxWxaVJSUnTz5k25u7trzJgxGjdunCZPnqzBgwerdOnStvOMisus9XdrY48bN04ffPCBbSaA8uXL28Zl6NCh+uCDD7Ry5UpbAgnZJzExUTExMTp//rwuX76sX3/9VVu2bFHx4sXVtWtXubu7a8mSJVqyZIlGjhypMWPGyMvLy+iwc7W0cyk8PFxvv/22nnnmGdv1vLTkamRkpN5//3117tzZ9vdn/vz5OnXqlOLi4jRq1CgFBQUZeBT4N0iYAzkfSXMAyEXSks0rVqxI1+7v7y+r1arChQv/YxK6VKlScnZ21rFjx3T8+HE99dRTkqRy5cppw4YNOnTokO1xZvL09FS1atX0yy+/qEGDBjpx4oR69ep1375pleRprFZruguTfn5+kv68KFmpUqVMjRMAAMAodyfOmzRpIknaunWr1qxZo/79+6t58+aKjIyUh4eHSpYsec/amMgeaVPY7tq1S3Xq1LlnSvzChQvLz89PUVFRBkSHuxUpUkR9+vTRd999p2+//Vbnz59Xo0aN1LNnT9u5VqxYMfXs2ZObT7LRw1bEjhgxQuPGjdP48eM1cuRIlS5d2sCoHQczAdgnDw8P9evXz7ZueWxsrHr27KmKFSvK399fKSkp2rlzp8LDwyVJ77zzjsER525333wyevRoFSpUSF26dJGUPmE+bNgw1a1bVw0aNLA9t3HjxvL391flypW5SQgAMhnv9gEgF/H391eDBg20fv36dBfhatWqJbPZrMWLF9uqsNNYrVbdvn3b9tjV1VUlS5bU9u3bdf36dVulebly5ZSUlKQ1a9bIz89P+fPnz/T4GzZsqPDwcM2ZM0dms1n16tW7b7+tW7fa1niS/rwgeevWLVWtWlWSFBISYlvLLiEh4Z7nx8TEZHrsAAAA2SEtcS5JTZo0UcOGDXXr1i1Nnz5dTk5Oqly5sq3i0mKxkDA3QKFCheTh4aGtW7falg+SZFt7OTY2Vq6urgoJCTEqRNylSJEi6t27t8xmszw8PFSrVi1J/zvX0s43EubZ568VscuWLdN3332nGzduqGvXrurcubNOnz6tJUuWaMSIESpZsqTy5ctndNgO45/Wxo6JidGYMWNUtGhRTZ48WadOnUq39jxJPuNUqFBBX3zxhYYOHaovvvhCLVq0sN3oZTablSdPHvn5+clisaQbM2Suu6dkHzlypAIDAxUXF6eZM2dKkm2WoLNnz6pevXoaMGCA7QY8i8WigIAANWnShHMJALIAleYAkMt07NhRW7du1eXLl1W8eHFJfybTu3Xrpvnz5ysyMlI1a9aUu7u7IiIitGfPHjVr1sxWUS79mSBfvny5PDw8bNXb3t7eCggI0OXLl9W4ceMsib1atWrKly+fdu3apapVqz5wTSZPT0+9++67aty4saKjo7Vq1Sr5+/urWbNmkv78sPfSSy9p3LhxGjJkiBo3bqwCBQro5s2bOnLkiPLkyaM333wzS44BAAAgq92v4nzz5s1auHChevToYbuISpLPGAULFlT//v31+eefKywsTE8//bSKFy9uG48ff/xRN2/ezPSZm/DoihQpohdeeEEzZszQsmXLZDabVbZs2XtmCUD2oCI2Z2MmAPvm6+srX1/fdG0pKSlavHixTpw4oe7du/P+IYuZzWadPn1ab7/9tjp27KhnnnlGGzdu1Pfffy9J6tOnj8xms2rVqmW7kevu50ri7xMAZBGS5gCQy6RVm2/ZsiVde/v27VWkSBGtWrVKixYtkvTnh6VKlSqpRo0a6fqmVZeXKVMm3YelsmXL6vLly7btmc3Z2Vl169bVTz/9lG7qqb/q0KGDzp8/r+XLlys+Pl4VK1ZU//795ebmZuvz2GOPaezYsVq8eLHWrVunhIQE+fj4qFSpUmrRokWWxA8AAJBd/po4t1qt2rBhgw4cOKCmTZvatsEYNWvWVJ8+fTRjxgz98ccfKlOmjPLnz6+IiAjt379f7777rgoVKmR0mLiLv7+/+vTpo1mzZmnOnDnq1auXQkNDjQ7LYaVVxMbExMjX1zfd2sp/rYhNa0P2+DdrY48YMUJjxoxhJoAcbOvWrTp9+rR27NihESNGqEiRIkaH5BASExPVsmVLde7cWZL0+OOPS1K6xLkklgYBgGxmsv51nl4AAAz03XffadOmTfr666/TJcEl6ciRIxo9erSGDBmiOnXqGBQhAABAznF3cvzDDz+U2WzWsGHDDI4KaU6dOqUVK1boypUr8vDwUFBQkFq3bq2iRYsaHRoe4NKlSwoLC9Pzzz9/TzUmjJdWEbtp0yaNGjWKBJ9BDh8+rLFjx6pAgQL3nQlgwoQJ8vT01ODBg40OFX/j8uXL+uabb5Q3b15169ZNxYoVMzokh5T2Xi4uLk47duzQ999/r/r165M4BwADUGkOAMgxkpKStG3bNtWuXfuehDkAAADudXfFua+vr2JjY5WSkiJnZz7u5wSlS5fWkCFDZDKZZDKZuPBtB4oWLapBgwZxDuVAVMTmHMwEkDsEBATotddek4uLizw8PIwOx2Gl3fzo4eGRruLcbDarV69enD8AkI34BAAAyJC0C7MPYjab032Avp/o6GgdOnRIu3btUmxsrNq0aZPZYQIAAORaJpPJNlXugAEDSPblMGkJ87T/I+fjHMp5Ll++rE2bNilv3rx67733qIjNAVgbO3fw9vY2OgTcJS1xbjKZ9PXXX8vFxUU9evQwOiwAcBh8CgAAZMjHH3+so0ePPnB7oUKFNHXq1L/dR3h4uCZPnixvb2/16dNHwcHBmRwlAABA7ubl5aV33nlHrq6uRoeCv7g7UU7SHHg0VMTmfMwEAGQODw8P1a1bV05OTgoNDTU6HABwKKxpDgDIkDNnzig2NvaB211dXVW2bNlsjAgAAAAAAGQX1sYGMl/a8jsAgOxD0hwAAAAAAAAA8Miio6OZCQAAANg1kuYAAAAAAAAAAAAAAIdlNjoAAAAAAAAAAAAAAACMQtIcAAAAAAAAAAAAAOCwSJoDAAAAAAAAAAAAABwWSXMAAAAAAAAAAAAAgMMiaQ4AAAAAAAAAAAAAcFgkzQEAAAAAAAAAAAAADoukOQAAAAD8v/buNrTJq4/j+K9Nn2czo32ImbVTpLroKmNtNxUaR2ttpRSGm+ADKiI4toHbG/dmjm5OJGN0E5QKc5vMwWisDjqfXZ2uFqo2tnYVmyLUWanRSVO7NaatJvcLMZg703abWW/ufD8Q6HWd/znXyfWyv5xzAAAAAAAAELUIzQEAAAAAAAAAAAAAUSturCcAAAAAAAAAANHC7Xarrq5ObW1t8ng8iouL05QpUzR37lwVFxcrISFh1GMdPXpUiYmJWrBgQeQmDAAAEAUIzQEAAAAAAADgX3D+/HlVVVUpPj5ehYWFysrK0t27d9XR0aE9e/aou7tb69evH/V4x44dU2pqKqE5AADAP0RoDgAAAAAAAAARdvPmTX3++edKT0/XBx98IJPJFGwrLS2V2+3W+fPnx3CGkePz+ZSUlDTW0wAAAHikmEAgEBjrSQAAAAAAAADA/7MvvvhCx48f1+bNmzVjxozH1v7000/6+eef1d3dLa/Xq8zMTJWVlamkpCRY89Zbb+m3334L6We1WlVZWSlJGhgY0N69e3XmzBndvn1bEydOVFFRkSoqKhQbGxvs8/vvv2v37t1qbm5WTEyM8vLyVF5ero0bN+rNN98MWcXe3t4uh8Ohrq4uGQwGWa1WLV++XJMnTw7WOBwO1dbWqqqqSvv27VNra6vS09NVVlam6upq2e12TZ06NWTe+/fvV01NjaqrqzVhwoS/+moBAAD+MVaaAwAAAAAAAECEOZ1OZWZmjhiYS/e3Xc/KylJeXp4MBoOcTqd27dolv9+v0tJSSdLq1av19ddfKykpSa+++qokafz48ZKkwcFBVVZWqre3V8XFxUpLS5PL5dJ3332nvr4+rVmzRpLk9/tlt9t1+fJllZSUyGKxqLm5WTt27AibU1tbm7Zu3aqMjAy9/vrrGhoa0uHDh7Vp0ybZ7XZlZGSE1FdVVclsNmvZsmUKBAJ6+eWX9eWXX6qhoSEsND99+rRmzZpFYA4AAMYMoTkAAAAAAAAARJDX61Vvb6/y8vJGVf/hhx8qISEheF1aWqotW7bo4MGDwdC8oKBANTU1Sk1NVWFhYUj/AwcOyO1265NPPtGkSZMkSQsXLtSECRNUV1en8vJypaWl6dy5c+rs7NSaNWu0ePFiSVJJSYk+/vjjsDl9++23GjdunLZs2aJx48ZJkvLz87Vx40Y5HA69/fbbIfXZ2dnasGFDyL38/Hw1NjZq5cqVwdXuXV1dunbtmioqKkb1bgAAACIhduQSAAAAAAAAAMDfdefOHUlScnLyqOofDsy9Xq/6+/tltVp148YNeb3eEfs3NTXpueee01NPPaX+/v7g5/nnn5ff79elS5ckSa2trTIYDCoqKgr2jY2N1aJFi0LG83g8unLlimw2WzAwl+4H47m5uWppaQmbw8KFC8Pu2Ww2eTweXbx4MXivoaFBCQkJeumll0b8XgAAAJHCSnMAAAAAAAAAiKAHYfmD8HwkHR0d2rt3rzo7OzU4OBjS5vV6lZKS8tj+169f16+//qp169b9afvt27clSbdu3ZLJZFJiYmJIu9lsDrl+cHa6xWIJG+uZZ57RhQsX5PP5lJSUFLz/39u1S1Jubq5MJpMaGhqCAX5jY6Py8vJG/YMCAACASCA0BwAAAAAAAIAISklJkclkUnd394i1brdbmzdvlsVi0apVqzRx4kTFxcWppaVFBw8elN/vH3GMQCCg3NzcR255/mfh95P28Gr5B2JjYzV//nzV19dr3bp1crlc8ng8YdvLAwAA/NsIzQEAAAAAAAAgwl588UX9+OOP6uzsVE5OziPrnE6nhoeH9d577yktLS14/+EtzUeSmZkpn8+n3Nzcx9alpaWpvb1dg4ODIavN3W53SF16erokqaenJ2yMnp4epaamhqwyfxybzaYDBw7I6XSqpaVFRqNRc+bMGVVfAACASOFMcwAAAAAAAACIsIqKCiUmJmrnzp3q6+sLa3e73Tp06JBiY+//yzYQCATbvF6vTp48GdYnKSlJAwMDYffnzp2rzs5Otba2hrUNDAzo3r17kqQ5c+bo3r17qq+vD7b7/X4dPXo0pI/JZNKzzz6rU6dOhTzv6tWrunDhgl544YXHfveHZWdnKzs7WydOnNCZM2c0b948GQyGUfcHAACIBFaaAwAAAAAAAECEmc1mbdiwQZ999pneffdd2Ww2ZWVl6e7du3K5XGpqatKCBQtUXl6uuLg42e12FRcXy+fzqb6+XkajUR6PJ2TMqVOn6vjx49q3b5/MZrOefvppzZ49WxUVFWpubpbdbpfNZtO0adM0ODioq1evqqmpSTt27JDRaFRBQYGmT5+ub775Rm63WxaLRU6nU3/88UfY/FeuXKmtW7fq/fff1yuvvKKhoSEdOXJEKSkpWrp06V96F4WFhdqzZ0/wbwAAgLEWE3j4J4sAAAAAAAAAgIi5fv266urq1NbWJo/Ho/j4eE2ZMkXz589XUVGR4uPj1dzcrJqaGvX09Gj8+PEqKSmR0WhUdXW1tm/froyMDElSX1+fdu7cqUuXLunOnTuyWq2qrKyUJPl8Pu3fv19NTU26deuWkpOTZbFYVFBQoLKyMsXF3V9P1d/fr927d8vpdComJkYFBQUqKirSpk2b9M4772jevHnBuf/yyy9yOBzq6uqSwWCQ1WrVihUrNHny5GCNw+FQbW2tdu3aJaPR+KfvoK+vT2+88YYyMzO1bdu2CL1pAACA0SM0BwAAAAAAAAAEnT17Vp9++qk++ugjzZw584mP39/fr/Xr12vJkiV67bXXnvj4AAAAfxVnmgMAAAAAAABAlBoaGgq59vv9OnLkiJKTkzVt2rSIPPPkyZPy+/1szQ4AAP5ncKY5AAAAAAAAAESpr776SkNDQ8rJydHw8LDOnj0rl8ulZcuWKSEh4Yk+q729XdeuXdP333+v/Pz84DbzAAAAY43QHAAAAAAAAACi1OzZs/XDDz/I6XRqeHhYZrNZa9euVWlp6RN/Vm1trVwul2bOnKm1a9c+8fEBAAD+Ls40BwAAAAAAAAAAAABELc40BwAAAAAAAAAAAABELUJzAAAAAAAAAAAAAEDUIjQHAAAAAAAAAAAAAEQtQnMAAAAAAAAAAAAAQNQiNAcAAAAAAAAAAAAARC1CcwAAAAAAAAAAAABA1CI0BwAAAAAAAAAAAABELUJzAAAAAAAAAAAAAEDU+g+oEg/VevODFwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Total number of items in the sampled dataset: 800\n" ] } ], "source": [ "def sample_category(group):\n", " if len(group) > 100:\n", " return group.sample(n=100, random_state=42)\n", " else:\n", " return group\n", "\n", "# Group by New_Category and apply the sampling function\n", "sampled_data = result.groupby('New_Category').apply(sample_category).reset_index(drop=True)\n", "\n", "# Set up the matplotlib figure\n", "fig, axs = plt.subplots(2, 2, figsize=(20, 15))\n", "\n", "# 1. Bar plot of Category distribution\n", "sns.countplot(data=sampled_data, x='New_Category', order=sampled_data['New_Category'].value_counts().index, ax=axs[0, 0])\n", "axs[0, 0].set_title('Distribution of Categories')\n", "axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right')\n", "\n", "# 2. Bar plot of Type distribution\n", "sns.countplot(data=sampled_data, x='New_Type', order=sampled_data['New_Type'].value_counts().index, ax=axs[0, 1])\n", "axs[0, 1].set_title('Distribution of Types')\n", "axs[0, 1].set_xticklabels(axs[0, 1].get_xticklabels(), rotation=45, ha='right')\n", "\n", "# 3. Heatmap of Category vs Type\n", "cross_tab = pd.crosstab(sampled_data['New_Category'], sampled_data['New_Type'])\n", "sns.heatmap(cross_tab, annot=True, fmt='d', cmap='YlGnBu', ax=axs[1, 0])\n", "axs[1, 0].set_title('Heatmap of Category vs Type')\n", "\n", "# 4. Grouped bar plot of Type distribution within each Category\n", "cross_tab_normalized = cross_tab.div(cross_tab.sum(axis=1), axis=0)\n", "cross_tab_normalized.plot(kind='bar', stacked=False, ax=axs[1, 1])\n", "axs[1, 1].set_title('Type Distribution within each Category')\n", "axs[1, 1].set_xlabel('Category')\n", "axs[1, 1].set_ylabel('Proportion')\n", "axs[1, 1].legend(title='Type', bbox_to_anchor=(1.05, 1), loc='upper left')\n", "axs[1, 1].set_xticklabels(axs[1, 1].get_xticklabels(), rotation=45, ha='right')\n", "\n", "# Adjust layout and display the plot\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "# Print the total number of items in the sampled dataset\n", "print(f\"Total number of items in the sampled dataset: {len(sampled_data)}\")" ] }, { "cell_type": "code", "execution_count": 79, "id": "8232d4d8-6239-4fa8-a1c9-a6e7fa70243b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FilenameTitleSizeCategoryGenderTypeDescriptionNew_CategoryNew_Type
0d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpgStylish and Trendy Tank Top with Celestial DesignMTopsFCasualThis white tank top is a stylish and trendy pi...TopsCasual
15c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpgClassic White SweatshirtMTopsFCasualThis classic white sweatshirt is a timeless pi...TopsCasual
2b2e084c7-e3a0-4182-8671-b908544a7cf2.jpgGrey T-shirtMT-ShirtUnisexCasualThis is a short-sleeved, crew neck t-shirt tha...T-ShirtCasual
587846aa9-86cc-404a-af2c-7e8fe941081d.jpgLong-Sleeved V-Neck ShirtLTopsUCasualA long-sleeved, V-neck shirt with a solid purp...TopsCasual
704fa06fb-d71a-4293-9804-fe799375a682.jpgSilver Metallic Buckle SandalsLFootwearFCasualThese silver metallic buckle sandals feature a...ShoesCasual
\n", "
" ], "text/plain": [ " Filename \\\n", "0 d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg \n", "1 5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg \n", "2 b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg \n", "5 87846aa9-86cc-404a-af2c-7e8fe941081d.jpg \n", "7 04fa06fb-d71a-4293-9804-fe799375a682.jpg \n", "\n", " Title Size Category Gender \\\n", "0 Stylish and Trendy Tank Top with Celestial Design M Tops F \n", "1 Classic White Sweatshirt M Tops F \n", "2 Grey T-shirt M T-Shirt Unisex \n", "5 Long-Sleeved V-Neck Shirt L Tops U \n", "7 Silver Metallic Buckle Sandals L Footwear F \n", "\n", " Type Description New_Category \\\n", "0 Casual This white tank top is a stylish and trendy pi... Tops \n", "1 Casual This classic white sweatshirt is a timeless pi... Tops \n", "2 Casual This is a short-sleeved, crew neck t-shirt tha... T-Shirt \n", "5 Casual A long-sleeved, V-neck shirt with a solid purp... Tops \n", "7 Casual These silver metallic buckle sandals feature a... Shoes \n", "\n", " New_Type \n", "0 Casual \n", "1 Casual \n", "2 Casual \n", "5 Casual \n", "7 Casual " ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.head()" ] }, { "cell_type": "code", "execution_count": 80, "id": "354db8c0-b348-44df-9900-3560c9db136b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "First few rows of the final dataset:\n", " Filename \\\n", "0 d7ed1d64-2c65-427f-9ae4-eb4aaa3e2389.jpg \n", "1 5c1b7a77-1fa3-4af8-9722-cd38e45d89da.jpg \n", "2 b2e084c7-e3a0-4182-8671-b908544a7cf2.jpg \n", "5 87846aa9-86cc-404a-af2c-7e8fe941081d.jpg \n", "7 04fa06fb-d71a-4293-9804-fe799375a682.jpg \n", "\n", " Title Size Gender \\\n", "0 Stylish and Trendy Tank Top with Celestial Design M F \n", "1 Classic White Sweatshirt M F \n", "2 Grey T-shirt M Unisex \n", "5 Long-Sleeved V-Neck Shirt L U \n", "7 Silver Metallic Buckle Sandals L F \n", "\n", " Description Category Type \n", "0 This white tank top is a stylish and trendy pi... Tops Casual \n", "1 This classic white sweatshirt is a timeless pi... Tops Casual \n", "2 This is a short-sleeved, crew neck t-shirt tha... T-Shirt Casual \n", "5 A long-sleeved, V-neck shirt with a solid purp... Tops Casual \n", "7 These silver metallic buckle sandals feature a... Shoes Casual \n", "\n", "Columns in the final dataset:\n", "['Filename', 'Title', 'Size', 'Gender', 'Description', 'Category', 'Type']\n", "\n", "Final dataset saved as 'final_balanced_sample_dataset.csv'\n" ] } ], "source": [ "final_data = result.drop(columns=['Type', 'Category'])\n", "\n", "# Rename 'New_Type' to 'Type' and 'New_Category' to 'Category'\n", "final_data = final_data.rename(columns={'New_Type': 'Type', 'New_Category': 'Category'})\n", "\n", "# Print the first few rows of the final dataset\n", "print(\"\\nFirst few rows of the final dataset:\")\n", "print(final_data.head())\n", "\n", "# Print the column names of the final dataset\n", "print(\"\\nColumns in the final dataset:\")\n", "print(final_data.columns.tolist())\n", "\n", "# Save the final DataFrame\n", "final_data.to_csv('final_balanced_sample_dataset.csv', index=False)" ] }, { "cell_type": "markdown", "id": "eede2e0c", "metadata": {}, "source": [ "#### Next Step\n", "\n", "We have made a lot of progress! Now our dataset is great to be embedded and used for our final step. \n", "\n", "The next part will be the easiest, however, we will still prompt engineer a bit" ] }, { "cell_type": "code", "execution_count": null, "id": "ee854540-3908-4428-a063-72c8997a2540", "metadata": {}, "outputs": [], "source": [ "#fin" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 5 }