# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the GNU General Public License version 3. from llama_recipes.utils.config_utils import update_config from llama_recipes.configs import quantization_config as QUANT_CONFIG from peft import PeftModel from transformers import AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig from warnings import warn # Function to load the main model for text generation def load_model(model_name, quantization, use_fast_kernels, **kwargs): if type(quantization) == type(True): warn("Quantization (--quantization) is a boolean, please specify quantization as '4bit' or '8bit'. Defaulting to '8bit' but this might change in the future.", FutureWarning) quantization = "8bit" bnb_config = None if quantization: quant_config = QUANT_CONFIG() update_config(quant_config, **kwargs) bnb_config = quant_config.create_bnb_config(quantization) print(f"use_fast_kernels{use_fast_kernels}") kwargs = {} if bnb_config: kwargs["quantization_config"]=bnb_config kwargs["device_map"]="auto" kwargs["low_cpu_mem_usage"]=True kwargs["attn_implementation"]="sdpa" if use_fast_kernels else None model = AutoModelForCausalLM.from_pretrained( model_name, return_dict=True, **kwargs, ) return model # Function to load the PeftModel for performance optimization def load_peft_model(model, peft_model): peft_model = PeftModel.from_pretrained(model, peft_model) return peft_model # Loading the model from config to load FSDP checkpoints into that def load_llama_from_config(config_path): model_config = LlamaConfig.from_pretrained(config_path) model = LlamaForCausalLM(config=model_config) return model