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Abstract—In the era of Large Language Models (LLMs), Knowledge Distillation (KD) emerges as a pivotal methodology for transferring
advanced capabilities from leading proprietary LLMs, such as GPT-4, to their open-source counterparts like LLaMA and Mistral.
Additionally, as open-source LLMs flourish, KD plays a crucial role in both compressing these models, and facilitating their self-
improvement by employing themselves as teachers. This paper presents a comprehensive survey of KD’s role within the realm of
LLM, highlighting its critical function in imparting advanced knowledge to smaller models and its utility in model compression and self-
improvement. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization – providing a
comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across
diverse fields. Crucially, the survey navigates the interaction between data augmentation (DA) and KD, illustrating how DA emerges
as a powerful paradigm within the KD framework to bolster LLMs’ performance. By leveraging DA to generate context-rich, skill-
specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness,
ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful
guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing
future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential
for more accessible, efficient, and powerful AI solutions. Most importantly, we firmly advocate for compliance with the legal terms
that regulate the use of LLMs, ensuring ethical and lawful application of KD of LLMs. An associated Github repository is available at
https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.

Index Terms—Large language models, knowledge distillation, data augmentation, skill distillation, supervised fine-tuning

✦

1 INTRODUCTION

In the evolving landscape of artificial intelligence (AI),
proprietary1 Large Language Models (LLMs) such as GPT-
3.5 (Ouyang et al., 2022), GPT-4 (OpenAI et al., 2023),
Gemini (Team et al., 2023) and Claude2 have emerged as
groundbreaking technologies, reshaping our understanding
of natural language processing (NLP). These models, char-
acterized by their vast scale and complexity, have unlocked
new realms of possibility, from generating human-like text
to offering sophisticated problem-solving capabilities. The
core significance of these LLMs lies in their emergent abil-
ities (Wei et al., 2022a,b; Xu et al., 2024a), a phenomenon
where the models display capabilities beyond their explicit
training objectives, enabling them to tackle a diverse array
of tasks with remarkable proficiency. These models excel
in understanding and generation, driving applications from
creative generation to complex problem-solving (OpenAI
et al., 2023; Liang et al., 2022). The potential of these models

1. For simplicity, we use ‘proprietary’ to represent both versatile yet
close-source LLMs like GPT-4 and open-source yet huge LLMs like
LLaMA-2-70B, which encapsulate rich knowledge with a large number
of parameters.

2. https://www.anthropic.com/claude-in-slack

extends far beyond current applications, promising to revo-
lutionize industries, augment human creativity, and redefine
our interaction with technology.

Despite the remarkable capabilities of proprietary LLMs
like GPT-4 and Gemini, they are not without their shortcom-
ings, particularly when viewed in light of the advantages
offered by open-source models. A significant drawback is
their limited accessibility and higher cost (OpenAI et al.,
2023). These proprietary models often come with substantial
usage fees and restricted access, making them less attain-
able for individuals and smaller organizations. In terms of
data privacy and security (Wu et al., 2023a), using these
proprietary LLMs frequently entails sending sensitive data
to external servers, which raises concerns about data pri-
vacy and security. This aspect is especially critical for users
handling confidential information. Moreover, the general-
purpose design of proprietary LLMs, while powerful, may
not always align with the specific needs of niche applica-
tions. The constraints of accessibility, cost, and adaptability
thus present significant challenges in leveraging the full
potential of proprietary LLMs.

In contrast to proprietary LLMs, open-source models
like LLaMA (Touvron et al., 2023) and Mistral (Jiang et al.,
2023a) bring several notable advantages. One of the primary
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benefits of open-source models is their accessibility and
adaptability. Without the constraints of licensing fees or
restrictive usage policies, these models are more readily
available to a broader range of users, from individual re-
searchers to smaller organizations. This openness fosters a
more collaborative and inclusive AI research environment,
encouraging innovation and diverse applications. Addition-
ally, the customizable nature of open-source LLMs allows
for more tailored solutions, addressing specific needs that
generic, large-scale models may not meet.

However, the open-source LLMs also have their own
set of drawbacks, primarily stemming from their relatively
limited scale and resources compared to their proprietary
counterparts. One of the most significant limitations is
the smaller model scale, which often results in lower per-
formance on real-world tasks with a bunch of instruc-
tions (Zheng et al., 2023a). These models, with fewer pa-
rameters, may struggle to capture the depth and breadth
of knowledge embodied in larger models like GPT-4. Ad-
ditionally, the pre-training investment in these open-source
models is typically less substantial. This reduced investment
can lead to a narrower range of pre-training data, poten-
tially limiting the models’ understanding and handling of
diverse or specialized topics (Liang et al., 2022; Sun et al.,
2024a). Moreover, open-source models often undergo fewer
fine-tuning steps due to resource constraints. Fine-tuning
is crucial for optimizing a model’s performance for spe-
cific tasks or industries, and the lack thereof can hinder
the model’s effectiveness in specialized applications. This
limitation becomes particularly evident when these models
are compared to the highly fine-tuned proprietary LLMs,
which are often tailored to excel in a wide array of complex
scenarios (OpenAI et al., 2023).

Primarily, recognizing the disparities between propri-
etary and open-source LLMs, KD techniques have surged
as a means to bridge the performance gap between these
models (Gou et al., 2021; Gupta and Agrawal, 2022). Knowl-
edge distillation, in this context, involves leveraging the
more advanced capabilities of leading proprietary models
like GPT-4 or Gemini as a guiding framework to enhance
the competencies of open-source LLMs. This process is
akin to transferring the ‘knowledge’ of a highly skilled
teacher to a student, wherein the student (e.g., open-source
LLM) learns to mimic the performance characteristics of
the teacher (e.g., proprietary LLM). Compared to traditional
knowledge distillation algorithms (Gou et al., 2021), data
augmentation (DA) (Feng et al., 2021) has emerged as a
prevalent paradigm to achieve knowledge distillation of
LLMs, where a small seed of knowledge is used to prompt
the LLM to generate more data with respect to a specific
skill or domain (Taori et al., 2023). Secondly, KD still retains
its fundamental role in compressing LLMs, making them
more efficient without significant loss in performance. (Gu
et al., 2024; Agarwal et al., 2024). More recently, the strategy
of employing open-source LLMs as teachers for their own
self-improvement has emerged as a promising approach,
enhancing their capabilities significantly (Yuan et al., 2024a;
Chen et al., 2024a). Figure 1 provides an illustration of these
three key roles played by KD in the context of LLMs.

A key aspect of the knowledge distillation is the en-
hancement of skills such as advanced context following

Closed-Source LLMs Open-Source LLMs Smaller LMs

Advance Compress

Self-Improvement

Direction of KD

① ②

③

Fig. 1: KD plays three key roles in LLMs: 1) Primarily
enhancing capabilities, 2) offering traditional compression
for efficiency, and 3) an emerging trend of self-improvement
via self-generated knowledge.

(e.g., in-context learning (Huang et al., 2022a) and in-
struction following (Taori et al., 2023)), improved align-
ment with user intents (e.g., human values/principles (Cui
et al., 2023a), and thinking patterns like chain-of-thought
(CoT) (Mukherjee et al., 2023)), and NLP task specialization
(e.g., semantic understanding (Ding et al., 2023a), and code
generation (Chaudhary, 2023)). These skills are crucial for
the wide array of applications that LLMs are expected
to perform, ranging from casual conversations to com-
plex problem-solving in specialized domains. For instance,
in vertical domains like healthcare (Wang et al., 2023a),
law (LAW, 2023), or science (Zhang et al., 2024), where
accuracy and context-specific knowledge are paramount,
knowledge distillation allows open-source models to sig-
nificantly improve their performance by learning from the
proprietary models that have been extensively trained and
fine-tuned in these areas.

The benefits of knowledge distillation in the era of
LLMs are multifaceted and transformative (Gu et al., 2024).
Through a suite of distillation techniques, the gap between
proprietary and open-source models is significantly nar-
rowed (Chiang et al., 2023; Xu et al., 2023a) and even
filled (Zhao et al., 2023a). This process not only streamlines
computational requirements but also enhances the environ-
mental sustainability of AI operations, as open-source mod-
els become more proficient with lesser computational over-
head. Furthermore, knowledge distillation fosters a more
accessible and equitable AI landscape, where smaller enti-
ties and individual researchers gain access to state-of-the-art
capabilities, encouraging wider participation and diversity
in AI advancements. This democratization of technology
leads to more robust, versatile, and accessible AI solutions,
catalyzing innovation and growth across various industries
and research domains.

The escalating need for a comprehensive survey on the
knowledge distillation of LLMs stems from the rapidly
evolving landscape of AI (OpenAI et al., 2023; Team et al.,
2023) and the increasing complexity of these models. As AI
continues to penetrate various sectors, the ability to effi-
ciently and effectively distill knowledge from proprietary
LLMs to open-source ones becomes not just a technical
aspiration but a practical necessity. This need is driven by
the growing demand for more accessible, cost-effective, and
adaptable AI solutions that can cater to a diverse range
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Fig. 2: An overview of this survey on knowledge distillation of large language models. Note that ‘Section’ is abbreviated
as ‘Sec.’ in this figure. RMS(·) denotes the student reward model. 1⃝ 2⃝ 3⃝ 4⃝ denote the steps in KD of LLMs.

of applications and users. A survey in this field is vital
for synthesizing the current methodologies, challenges, and
breakthroughs in knowledge distillation. It may serve as a
beacon for researchers and practitioners alike, guiding them
to distill complex AI capabilities into more manageable and
accessible forms. Moreover, such a survey can illuminate the
path forward, identifying gaps in current techniques and
proposing directions for future research.

Survey Organization. The remainder of this survey is orga-
nized into several comprehensive sections, each designed to
offer a deep dive into the multifaceted aspects of knowledge
distillation within the realm ofLLMs. Following this intro-
duction, §2 provides a foundational overview of knowledge
distillation, comparing traditional techniques with those
emerging in the era of LLMs and highlighting the role of
data augmentation (DA) in this context. §3 delves into the
approaches to elicit knowledge from teacher LLMs and core
distillation algorithms, examining methods from supervised
fine-tuning to more complex strategies involving divergence
and similarity, reinforcement learning, and ranking opti-
mization. Then, §4 focuses on skill distillation, exploring
how student models can be enhanced to improve context
understanding, alignment with user intentions, and perfor-
mance across a variety of NLP tasks. This includes discus-
sions on natural language understanding (NLU), genera-
tion (NLG), information retrieval, recommendation systems,
and the evaluation of text generation. In §5, we venture
into domain-specific vertical distillation, showcasing how
knowledge distillation techniques are applied within spe-
cialized fields such as law, healthcare, finance, and science,

illustrating the practical implications and transformative
impact of these approaches. The survey suggests open
problems in §6, identifying current challenges and gaps in
knowledge distillation research that offer opportunities for
future work. Finally, the conclusion and discussion in §7
synthesize the insights gained, reflecting on the implica-
tions for the broader AI and NLP research community and
proposing directions for future research. Figure 2 shows an
overview of this survey.

2 OVERVIEW

2.1 Comparing Traditional Recipe

The concept of knowledge distillation in the field of AI
and deep learning (DL) refers to the process of transferring
knowledge from a large, complex model (teacher) to a
smaller, more efficient model (student) (Gou et al., 2021).
This technique is pivotal in mitigating the challenges posed
by the computational demands and resource constraints of
deploying large-scale models in practical applications.

Historically, knowledge distillation techniques, prior to
the era of LLMs, primarily concentrated on transferring
knowledge from complex, often cumbersome neural net-
works to more compact and efficient architectures (Sanh
et al., 2019; Kim and Rush, 2016). This process was largely
driven by the need to deploy machine learning models in
resource-constrained environments, such as mobile devices
or edge computing platforms, where the computational
power and memory are limited. The focus was predomi-
nantly on ad-hoc neural architecture selection and training
objectives tailored for single tasks. These earlier methods
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KD Algorithms

Knowledge

Labeling
AnnoLLM (He et al., 2023a), PandaLM (Wang et al., 2023b), CoT-Distill (Hsieh et al., 2023)
Orca (Mukherjee et al., 2023), Orca 2 (Mitra et al., 2023), Baize (Xu et al., 2023b),
Mammoth (Yue et al., 2023a), Mixed Distill (Chenglin et al., 2023)

Expansion
Self-Instruct (Wang et al., 2022a), Alpaca (Taori et al., 2023), Code Alpaca (Chaudhary, 2023)
Self-Align (Sun et al., 2024b), WizardLM (Xu et al., 2023a), WizardCoder (Luo et al., 2023a),
WizardMath (Luo et al., 2023b), AugGPT (Dai et al., 2023a), TDG (He et al., 2023b)

Curation
UltraChat (Ding et al., 2023b), Phi-1 (Gunasekar et al., 2023), Phi-1.5 (Li et al., 2023a),
Phi-2 (Mar, 2023), Magicoder (Wei et al., 2023), WaveCoder (Yu et al., 2024)
ZeroGen (Ye et al., 2022), SunGen (Gao et al., 2023a), InPars (Bonifacio et al., 2022)

Feature BabyLlama (Timiryasov and Tastet, 2023), MiniLLM (Gu et al., 2024),
GKD (Agarwal et al., 2024), QuantGPT (Tao et al., 2022a), LLM-QAT (Liu et al., 2023a),

Feedback
CAI (Bai et al., 2022a), WizardMath (Luo et al., 2023b), UltraFeedback (Cui et al., 2023a),
Zephyr (Tunstall et al., 2023), CycleAlign (Hong et al., 2023), RLAIF (Lee et al., 2023a),
Lion (Jiang et al., 2023b), PERsD (Chen et al., 2023a), GKD (Agarwal et al., 2024)

Self-Knowledge
Self-Instruct (Wang et al., 2022a), Self-Align (Sun et al., 2024b), RLCD (Yang et al., 2024),
ImpDistill (Jung et al., 2023), LMSI (Huang et al., 2023a), ReST (Gulcehre et al., 2023),
Self-Rewarding (Yuan et al., 2024a), Baize (Xu et al., 2023b), STaR (Zelikman et al., 2022)

Distillation

Supervised Fine-Tuning Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), WizardLM (Xu et al., 2023a),
Self-Instruct (Wang et al., 2022a), Baize (Xu et al., 2023b), STaR (Zelikman et al., 2022),

Divergence and Similarity DistilGPT (Sanh et al., 2019), f-Distill (Wen et al., 2023), MiniLLM (Gu et al., 2024)
TED (Liang et al., 2023a), GKD (Agarwal et al., 2024),BabyLlama(Timiryasov and Tastet, 2023)

Reinforcement Learning CAI (Bai et al., 2022a), UltraFeedback (Cui et al., 2023a), WizardMath (Luo et al., 2023b),
MiniLLM (Gu et al., 2024), GKD (Agarwal et al., 2024), GPT3 Reward (Kwon et al., 2023)

Rank Optimization Zephyr (Tunstall et al., 2023), CycleAlign (Hong et al., 2023),

Skill
Distillation

Context Following

Instruction Following
Self-Instruct (Wang et al., 2022a), Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023),
WizardLM (Xu et al., 2023a), Orca (Mukherjee et al., 2023), Orca 2 (Mitra et al., 2023),
WizardMath (Luo et al., 2023b), Llama-GPT4 (Peng et al., 2023a),

Multi-turn Dialogue Vicuna (Chiang et al., 2023), Baize (Xu et al., 2023b), UltraLLaMA (Ding et al., 2023b),
CAMEL (Li et al., 2023b), OpenChat (Wang et al., 2023c), Zephyr (Tunstall et al., 2023),

RAG Capbility KARD (Kang et al., 2023a), SAIL (Luo et al., 2023c), Self-RAG (Asai et al., 2023),

Alignment

Thinking Pattern Selfee (Ye et al., 2023), Orca (Mukherjee et al., 2023), Orca 2 (Mitra et al., 2023),
AFT (Wang et al., 2023d), AdaptLLM (Cheng et al., 2023), KnowPAT (Zhang et al., 2023a),

Preference
CAI (Bai et al., 2022a), GPT-3 Reward (Kwon et al., 2023), ILF (Scheurer et al., 2023),
ALMoST (Kim et al., 2023a), RLEF (Roit et al., 2023), RLAIF (Lee et al., 2023a),
Zephy (Tunstall et al., 2023), UltraFeedback (Cui et al., 2023a),

Value CAI (Bai et al., 2022a), Align Honesty (Yang et al., 2023a), SANDBOX (Liu et al., 2023b),
Self-Align (Sun et al., 2024b), UltraFeedback (Cui et al., 2023a), RLCD (Yang et al., 2024)

Agent

Tool Using
Toolformer (Schick et al., 2023), Graph-ToolFormer (Zhang, 2023), Gorilla (Patil et al., 2023),
ToolAlpaca (Tang et al., 2023a), ToolLLM (Qin et al., 2023a), CRAFT (Yuan et al., 2023a),
Confucius (Gao et al., 2023b), MLLM-Tool (Wang et al., 2024), α-UMi (Shen et al., 2024),

Planning FireAct (Chen et al., 2023b), AgentTuning (Zeng et al., 2023a), Lumos (Yin et al., 2023a),
AUTOACT (Qiao et al., 2024), TPTU-v2 (Kong et al., 2023),

NLP Task
Specialization

NLU
AugGPT (Dai et al., 2023a), GPT Annotation (Gilardi et al., 2023), (Ding et al., 2023a),
TDG (He et al., 2023b), SunGen (Gao et al., 2023a), Mix Distill (Chenglin et al., 2023),
Annollm (He et al., 2023a), UDG (Wang et al., 2021a), ZeroGen (Ye et al., 2022),

NLG
InheritSumm (Xu et al., 2023c), RECOMP (Xu et al., 2024b), MaRio (Ramnath et al., 2023),
ID (Jung et al., 2023), GPT-3 Labeling (Wang et al., 2021b), BioGPT (Guo et al., 2023a),
ChatGPT NMT (Yang and Nicolai, 2023),

Information Retrieval
QUILL (Srinivasan et al., 2022), Promptgator (Dai et al., 2023b), InPars (Bonifacio et al., 2022),
AugTriever (Meng et al., 2023), (Sun et al., 2023a), RankVicuna (Pradeep et al., 2023a),
RankZephyr (Pradeep et al., 2023b), ExaRanker (Ferraretto et al., 2023),

Recommendation NDR (Mysore et al., 2023), InstrcutRec (Zhang et al., 2023b), ONCE (Liu et al., 2023c),

Text Generation Evaluation PandaLM (Wang et al., 2023b), Prometheus (Kim et al., 2024), InstructScore (Xu et al., 2023d),
TigerScore (Jiang et al., 2023c), Auto-J (Li et al., 2024a),

Code
CodeAlpaca (Chaudhary, 2023), CodeLlama (Rozière et al., 2023), Magicoder (Wei et al., 2023)
Phi-1 (Gunasekar et al., 2023), PERsD (Chen et al., 2023a), MFTCoder (Liu et al., 2023d),
WaveCoder (Yu et al., 2024), Code Clean (Jain et al., 2023),

Multi-Modality
LLaVA (Liu et al., 2023e), SVIT (Zhao et al., 2023b), LVIS-Instruct4V (Wang et al., 2023e), Shikra (Chen et al., 2023c),
LSKD (Park et al., 2023), DetGPT (Pi et al., 2023; Zhao et al., 2023c), LRV (Liu et al., 2023f), NExT-GPT (Wu et al., 2023b),
Valley (Luo et al., 2023d), ILuvUI (Jiang et al., 2023d), StableLLaVA (Li et al., 2023c), PointLLM (Xu et al., 2023e),

Verticalization
Distillation

Law (Huang et al., 2023b; Cui et al., 2023b); Medical & Healthcare (Zhang et al., 2023c; Chen et al., 2023d); Finance (Zhang and Yang, 2023);
Science (Xie et al., 2023a; Zhang et al., 2024) and Misc. (Dan et al., 2023; Guo et al., 2023b)

Fig. 3: Taxonomy of Knowledge Distillation of Large Language Models. The detailed taxonomy of Verticalization
Distillation is shown in Figure 7.
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involved training a smaller student network to mimic the
output of a larger teacher network, often through techniques
like soft target training, where the student learns from
the softened softmax output of the teacher. Please refer to
the survey (Gou et al., 2021) for more details on general
knowledge distillation techniques in AI and DL.

In contrast, the advent of LLMs has revolutionized
the knowledge distillation landscape. The current era of
knowledge distillation in LLMs shifts the focus from mere
architecture compression to knowledge elicitation and trans-
fer (Taori et al., 2023; Chaudhary, 2023; Tunstall et al., 2023).
This paradigm change is largely due to the expansive and
deep-seated knowledge that LLMs like GPT-4 and Gemini
possess. And the inaccessible parameters of LLMs make it
hard to compress them by using pruning (Han et al., 2016) or
quantization (Liu et al., 2023a) techniques. Unlike the earlier
era, where the goal was to replicate the output behavior of
the teacher model or reduce the model size, the current focus
in LLM-based knowledge distillation is to elicit the specific
knowledge these models have.

The key to this modern approach lies in heuristic and
carefully designed prompts, which are used to elicit specific
knowledge (Ding et al., 2023b) or capabilities (Chaudhary,
2023) from the LLMs. These prompts are crafted to tap
into the LLM’s understanding and capabilities in various
domains, ranging from natural language understanding (He
et al., 2023a) to more complex cognitive tasks like reason-
ing (Hsieh et al., 2023) and problem-solving (Qiao et al.,
2024). The use of prompts as a means of knowledge elici-
tation offers a more flexible and dynamic approach to dis-
tillation. It allows for a more targeted extraction of knowl-
edge, focusing on specific skills or domains of interest. This
method is particularly effective in harnessing the emergent
abilities of LLMs, where the models exhibit capabilities
beyond their explicit training objectives.

Furthermore, this era of knowledge distillation also em-
phasizes the transfer of more abstract qualities such as
reasoning patterns (Mitra et al., 2023), preference align-
ment (Cui et al., 2023a), and value alignment (Sun et al.,
2024b). This is in stark contrast to the earlier focus on output
replication (Taori et al., 2023), indicating a shift towards
a more holistic and comprehensive transfer of cognitive
capabilities. The current techniques involve not just the
replication of outputs, but also the emulation of the thought
processes (Mitra et al., 2023) and decision-making (Asai
et al., 2023) patterns of the teacher model. This involves
complex strategies like chain-of-thought prompting, where
the student model is trained to learn the reasoning process
of the teacher, thereby enhancing its problem-solving and
decision-making capabilities.

2.2 Relation to Data Augmentation (DA)
In the era of LLMs, Data Augmentation (DA) (Wang et al.,
2022a; Ye et al., 2022) emerges as a critical paradigm integral
to the process of knowledge distillation. Unlike traditional
DA techniques such as paraphrasing (Gangal et al., 2022) or
back-translation (Longpre et al., 2019), which primarily aim
at expanding the training dataset in a somewhat mechanical
manner, DA within the context of LLMs focuses on the
generation of novel, context-rich training data tailored to
specific domains and skills.

The relationship between DA and KD in LLMs is both
symbiotic and foundational. By leveraging a set of seed
knowledge, KD employs DA to prompt LLMs to produce
explicit data that encapsulates specific skills or domain
expertise (Chaudhary, 2023; West et al., 2022). This method
stands out as a potent mechanism for bridging the knowl-
edge and capability gap between proprietary and open-
source models. Through DA, LLMs are prompted to create
targeted, high-quality datasets that are not merely larger in
volume but are also rich in diversity and specificity. This
approach enables the distillation process to be more effec-
tive, ensuring that the distilled models not only replicate
the teacher model’s output behavior but also embody its
deep-seated understanding and cognitive strategies.

DA acts as a force multiplier, enabling the distilled mod-
els to acquire and refine capabilities that would otherwise
require exponentially larger datasets and computational re-
sources. It facilitates a more effective transfer of knowledge,
focusing on the qualitative aspects of learning rather than
quantitative expansion. This strategic use of DA within
KD processes underscores a pivotal shift towards a more
efficient, sustainable, and accessible approach to harnessing
the power of LLMs. It empowers open-source models with
the ability to approximate the contextual adeptness, ethical
alignment, and deep semantic insights characteristic of their
proprietary counterparts, thereby democratizing access to
advanced AI capabilities and fostering innovation across a
broader spectrum of applications and users.

2.3 Survey Scope
Building on the discussions introduced earlier, this survey
aims to comprehensively explore the landscape of knowl-
edge distillation within the context of LLMs, following
a meticulously structured taxonomy as in Figure 3. The
survey’s scope is delineated through three primary facets:
KD Algorithms, Skill Distillation, and Verticalization Dis-
tillation. Each facet encapsulates a range of subtopics and
methodologies. It’s important to note that KD algorithms
provide the technical foundations for skill distillation and
verticalization distillation.

KD Algorithms. This segment focuses on the technical
foundations and methodologies of knowledge distillation. It
includes an in-depth exploration of the processes involved
in constructing knowledge from teacher models (e.g., pro-
prietary LLMs) and integrating this knowledge into student
models (e.g., open-source LLMs). Under the umbrella of
‘knowledge’, we delve into strategies such as labeling (Hsieh
et al., 2023), expansion (Taori et al., 2023), curation (Gu-
nasekar et al., 2023), feature understanding (Agarwal et al.,
2024), feedback mechanisms (Tunstall et al., 2023), and self-
knowledge generation (Wang et al., 2022a). This exploration
seeks to uncover the various ways in which knowledge
can be identified, expanded, and curated for effective dis-
tillation. The ‘distillation’ subsection examines learning ap-
proaches like supervised fine-tuning (SFT) (Wang et al.,
2022a), divergence minimization (Agarwal et al., 2024),
reinforcement learning techniques (Cui et al., 2023a), and
rank optimization strategies (Tunstall et al., 2023). Together,
these techniques demonstrate how KD enables open-source
models to obtain knowledge from proprietary ones.
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Skill Distillation. This facet examines the specific compe-
tencies and capabilities enhanced through KD. It encom-
passes detailed discussions on context following (Taori et al.,
2023; Luo et al., 2023c), with subtopics like instruction
following and retrieval-augmented generation (RAG) Capa-
bility. In the realm of alignment (Mitra et al., 2023; Tun-
stall et al., 2023), the survey investigates thinking patterns,
persona/preference modeling, and value alignment. The
‘agent’ category delves into skills such as Tool Using and
Planning. NLP task specialization (Dai et al., 2023a; Jung
et al., 2023; Chaudhary, 2023) is scrutinized through lenses
like natural language understanding (NLU), natural lan-
guage generation (NLG), information retrieval, recommen-
dation systems, text generation evaluation, and code gen-
eration. Finally, the survey addresses multi-modality (Liu
et al., 2023e; Zhao et al., 2023b), exploring how KD enhances
LLMs’ ability to integrate multiple forms of input.

Verticalization Distillation. This section assesses the ap-
plication of KD across diverse vertical domains, offering
insights into how distilled LLMs can be tailored for spe-
cialized fields such as Law (LAW, 2023), Medical & Health-
care (Wang et al., 2023a), Finance (Zhang and Yang, 2023),
Science (Zhang et al., 2024), among others. This exploration
not only showcases the practical implications of KD tech-
niques but also highlights their transformative impact on
domain-specific AI solutions.

Through these facets, this survey provides a compre-
hensive analysis of KD in LLMs, guiding researchers and
practitioners through methodologies, challenges, and op-
portunities in this rapidly evolving domain.

Declaration. This survey represents our earnest effort to
provide a comprehensive and insightful overview of knowl-
edge distillation techniques applied to LLMs, focusing on
algorithms, skill enhancement, and domain-specific appli-
cations. Given the vast and rapidly evolving nature of
this field, especially with the prevalent practice of elic-
iting knowledge from training data across academia, we
acknowledge that this manuscript may not encompass every
pertinent study or development. Nonetheless, it endeavors
to introduce the foundational paradigms of knowledge dis-
tillation, highlighting key methodologies and their impacts
across a range of applications.

2.4 Distillation Pipeline in LLM Era

Seed
Knowledge

Skill/Domain

Teacher LLM

Knowledge Elicitation
Student Model

Distillation Algorithm

steer

drive Generated
Knowledge

Learning
Objective

train

Fig. 4: An illustration of a general pipeline to distill knowl-
edge from a large language model to a student model.

The general distillation pipeline of LLMs is a structured
and methodical process aimed at transferring knowledge

from a sophisticated teacher model to a less complex student
model. This pipeline is integral for leveraging the advanced
capabilities of models like GPT-4 or Gemini in more acces-
sible and efficient open-source counterparts. The outline of
this pipeline can be broadly categorized into four distinct
stages, each playing a crucial role in the successful distilla-
tion of knowledge. An illustration is shown in Figure 4. The
detailed pipeline could also be seen in Figure 2.

I. Target Skill or Domain Steering Teacher LLM. The
first stage involves directing the teacher LLM towards a
specific target skill or domain. This is achieved through care-
fully crafted instructions or templates that guide the LLM’s
focus. These instructions are designed to elicit responses
that demonstrate the LLM’s proficiency in a particular area,
be it a specialized domain like healthcare or law, or a skill
such as reasoning or language understanding.

II. Seed Knowledge as Input. Once the target area is
defined, the next step is to feed the teacher LLM with
seed knowledge. This seed knowledge typically comprises
a small dataset or specific data clues relevant to the elicit
skill or domain knowledge from the teacher LLM. It acts
as a catalyst, prompting the teacher LLM to generate more
elaborate and detailed outputs based on this initial infor-
mation. The seed knowledge is crucial as it provides a
foundation upon which the teacher model can build and
expand, thereby creating more comprehensive and in-depth
knowledge examples.

III. Generation of Distillation Knowledge. In response
to the seed knowledge and steering instructions, the teacher
LLM generates knowledge examples. These examples are
predominantly in the form of question-and-answer (QA)
dialogues or narrative explanations, aligning with the nat-
ural language processing/understanding capabilities of the
LLM. In certain specialized cases, the outputs may also in-
clude logits or hidden features, although this is less common
due to the complexity and specific requirements of such
data forms. The generated knowledge examples constitute
the core of the distillation knowledge, encapsulating the
advanced understanding and skills of the teacher LLM.

IV. Training the Student Model with a Specific Learn-
ing Objective. The final stage involves the utilization of
the generated knowledge examples to train the student
model. This training is guided by a loss function that aligns
with the learning objectives. The loss function quantifies
the student model’s performance in replicating or adapting
the knowledge from the teacher model. By minimizing this
loss, the student model learns to emulate the target skills or
domain knowledge of the teacher, thereby acquiring similar
capabilities. The process involves iteratively adjusting the
student model’s parameters to reduce the discrepancy be-
tween its outputs and those of the teacher model, ensuring
the effective transfer of knowledge.

In essential, the above four stages can be abstracted
as two formulations. The first formulation represents the
process of eliciting knowledge:

D(kd)
I = {Parse(o, s)|o ∼ pT (o|I ⊕ s),∀s ∼ S}, (1)

where ⊕ denotes fusing two pieces of text, I denotes an
instruction or a template for a task, skill, or domain to
steer the LLM and elicit knowledge, s ∼ S denotes an
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example of the seed knowledge, upon which the LLM can
explore to generate novel knowledge, Parse(o, s) stands for
to parse the distillation example ( e.g., (x, y)) from the
teacher LLM’s output o (plus the input s in some cases),
and pT represents the teacher LLM with parameters θT .
Given the datasets D(kd)

I built for distillation, we then define
a learning objective as

L =
∑

I
LI(D(kd)

I ; θS), (2)

where
∑

I denotes there could be multiple tasks or skills
being distilled into one student model, LI(·; ·) stands for a
specific learning objective, and θS parameterizes the student
model.

Following our exploration of the distillation pipeline and
the foundational concepts underlying knowledge distilla-
tion in the LLM era, we now turn our focus to the specific
algorithms that have gained prominence in this era.

3 KNOWLEDGE DISTILLATION ALGORITHMS

This section navigates through the process of knowledge
distillation. According to Section 2.4, it is categorized into
two principal steps: ‘Knowledge,’ focusing on eliciting
knowledge from teacher LLMs (Eq.1), and ‘Distillation,’
centered on injecting this knowledge into student models
(Eq.2). We will elaborate on these two processes in the
subsequent sections.

3.1 Knowledge
This section focuses on the approaches to elicit knowledge
from teacher LLMs. According to the manners to acquire
knowledge, we divided them into Labeling, Expansion, Data
Curation, Feature, Feedback, and Self-Knowledge. Figure 5
shows an illustration of these knowledge elicitation meth-
ods.

3.1.1 Labeling
Labeling knowledge refers to using a teacher LLM to label
the output y for a given input x as the seed knowledge,
according to the instruction I or demonstrations c, where
c = (x1, y1), . . . , (xn, yn). This method of eliciting knowl-
edge from teacher LLMs is straightforward yet effective and
has been widely applied across various tasks and appli-
cations. It requires only the collection of an input dataset
and feeding it into LLMs to obtain the desired generations.
Moreover, the generation of y is controllable through the
predefined I and c. This process can be formulated as
follows:

D(lab) = {x, y|x ∼ X , y ∼ pT (y|I ⊕ c⊕ x)}. (3)

Input x could be sourced from existing NLP task
datasets, which serve as typical reservoirs for distillation
efforts. Numerous works have sought to harness the capa-
bilities of powerful LLMs as teachers for annotating dataset
samples across a range of tasks. For instance, efforts in
natural language understanding involve using LLMs to cat-
egorize text (Gilardi et al., 2023; Ding et al., 2023a; He et al.,
2023a), while in natural language generation, LLMs assist
in generating sequences for outputs (Hsieh et al., 2023; Jung
et al., 2023; Wang et al., 2021b). Text generation evaluation

tasks leverage LLMs to label evaluated results (Li et al.,
2024b; Wang et al., 2023b), and reasoning tasks utilize LLMs
for labeling Chains of Thought (CoT) explanations (Hsieh
et al., 2023; Li et al., 2022; Ho et al., 2023; Magister et al.,
2023; Fu et al., 2023; Ramnath et al., 2023; Li et al., 2023d;
Liu et al., 2023g), among others. Rather than concentrating
on specific tasks, many current works focus on labeling
outputs based on instructions, thereby teaching student
models to solve tasks in a more flexible way by following in-
structions. Collections of various NLP tasks, complemented
by instructional templates, serve as valuable input sources
for x. For instance, FLAN-v2 collections (Longpre et al.,
2023) offers extensive publicly available sets of tasks with
instructions, which are labeled with responses generated
by teacher LLMs in Orca (Mukherjee et al., 2023; Mitra
et al., 2023). The instructions from these NLP tasks are
built from predefined templates, which lack diversity and
may have gaps between human’s natural query. The real
conversations between humans and chat models provide
large-scale data with real queries and generations labeled
by powerful LLMs, like ShareGPT. Additionally, Xu et al.
(2023b) and Anand et al. (2023) label the real questions
sampled from forums like Quora and Stack Overflow.

Moreover, the process of labeling could be guided by
instructions I or demonstrations c. A commonly used in-
struction type for guiding labeling is chain-of-thought (CoT)
prompt (Hsieh et al., 2023; Fu et al., 2023; Magister et al.,
2023). Mukherjee et al. (2023) add multiple system messages
(e.g. “You must generate a detailed and long answer.” or
“explain like I’m five, think step-by-step”) to elicit rich
signals. Yue et al. (2023a) and Chenglin et al. (2023) la-
bel a hybrid of knowledge of chain-of-thought (CoT) and
program-of-thought (PoT) rationales. Xu et al. (2023b) pro-
pose a self-chat technique that two teacher LLMs simulate
the real conversational to generate multi-turn dialogues for
a question from Quora and Stack Overflow.

3.1.2 Expansion

While the labeling approach is simple and effective, it faces
certain limitations. Primarily, it is constrained by the scale
and variety of the input data. In real-world applications,
especially those involving user conversations, there are also
concerns regarding the privacy of the data involved. To
address these limitations, various expansion methods have
been proposed (Wang et al., 2022a; Taori et al., 2023; Chaud-
hary, 2023; Si et al., 2023; Ji et al., 2023a; Luo et al., 2023b,a;
Wu et al., 2023c; Sun et al., 2024b; Xu et al., 2023a; Guo
et al., 2023c; Rozière et al., 2023; West et al., 2022). These
methods take the demonstrations as seed knowledge and
aim to expand a large scale and various data by in-context
learning.

A key characteristic of these expansion methods is the
utilization of the in-context learning ability of LLMs to gen-
erate data similar to the provided demonstrations c. Unlike
in the labeling approach, where the input x is sampled
from the existing dataset, in the expansion approach, both x
and y are generated by teacher LLMs. This process can be
formulated as follows:

D(exp) = {(x, y)|x ∼ pT (x|I ⊕ c), y ∼ pT (y|I ⊕ x)}. (4)
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Fig. 5: An illustration of different knowledge elicitation methods from teacher LLMs. Labeling: The teacher generates
the output from the input; Expansion: The teacher generates samples similar to the given demonstrations through in-
context learning; Data Curation: The teacher synthesizes data according to meta-information, such as a topic or an entity;
Feature: Feed the data into the teacher and extract its internal knowledge, such as logits and features; Feedback: The teacher
provides feedback on the student’s generations, such as preferences, corrections, expansions of challenging samples, etc;
Self-Knowledge: The student first generates outputs, which is then filtered for high quality or evaluated by the student itself.

In this formulation, x and y represent the new input-
output pairs generated by the teacher LLM. The input x
is generated based on a set of input-output demonstrations
c. The output y is then generated in response to the new
input x under the guidance of an instruction I . Note that
the demonstrations could be predefined or dynamically
updated by adding the newly generated samples.

Expansion techniques have been widely utilized to
extract extensive instruction-following knowledge from
teacher LLMs. Wang et al. (2022a) first introduces an iter-
ative bootstrapping method, Self-Instruct, to utilize LLMs
to generate a wide array of instructions based on sev-
eral demonstrations sampled from 175 manually-written in-
structions. The newly generated instructions are then added
back to the initial pool, benefiting subsequent expansion
iterations. Subsequently, Taori et al. (2023) applies this ex-
pansion method to a more powerful teacher LLM, text-
davinci-003, to distill 52K high-quality data. To improve
the diversity and coverage during expansion, Wu et al.
(2023c) and (Sun et al., 2024b) prompt the teacher LLM to
generate instructions corresponding to some specific topics.
Xu et al. (2023a) propose an Evol-Instruct method to ex-
pand the instructions from two dimensions: difficulty (e.g.
rewriting the question to be more complex) and diversity
(e.g. generating more long-tailed instructions). This Evol-
Instruct method is domain-agnostic and has been used to
expand the distillation of coding (Luo et al., 2023a) and
math (Luo et al., 2023b). Additionally, expansion methods
can significantly augment NLP task datasets with similar
samples, thereby enhancing task performance. For instance,
AugGPT (Dai et al., 2023a) leverages a teacher LLM to
rephrase each sentence in the training samples into multi-
ple conceptually similar, but semantically varied, samples
to improve classification performance. Similarly, TDG (He

et al., 2023b) proposes the Targeted Data Generation (TDG)
framework, which automatically identifies challenging sub-
groups within data and generates new samples for these
subgroups using LLMs through in-context learning.

In summary, the expansion method leverages the in-
context learning strengths of LLMs to produce more var-
ied and extensive datasets with both inputs and outputs.
However, the quality and diversity of the generated data
are heavily reliant on the teacher LLMs and the initial seed
demonstrations. This dependence can lead to a dataset with
inherent bias from LLMs (Yu et al., 2023a; Wei et al., 2023)
and a homogeneity issue where the generations may be
prone to similarity ultimately, limiting the diversity this
method seeks to achieve (Ding et al., 2023b). Moreover, the
expansion process may inadvertently amplify any biases
present in the seed data.

3.1.3 Data Curation
The pursuit of high-quality and scalable data generation in
knowledge distillation from LLMs has led to the emergence
of the Data Curation approach. This method arises in re-
sponse to the limitations observed in both the Labeling and
Expansion approaches. These methods often yield data of
variable quality and face constraints in quantity. In Labeling,
the seed knowledge is sourced from task datasets, leading
to potential noise and dirty data. Meanwhile, in Expansion,
the input x is derived from seed demonstrations, which
can result in homogeneous data when generated in large
quantities. To overcome these challenges, the Data Curation
method curates high-quality or large-scale data by extensive
meta-information as seed knowledge (Ding et al., 2023b;
Gunasekar et al., 2023; Li et al., 2023a; Mar, 2023; Liu et al.,
2023d; Wei et al., 2023; Yu et al., 2024; Ye et al., 2022; Gao
et al., 2023a; Yang and Nicolai, 2023).
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A distinct feature of Data Curation is its approach
to synthesize data from scratch. Numerous diverse meta-
information, such as topics or knowledge points, could be
incorporated into this process to generate controllable x
and y. Thus, this process can be meticulously controlled
to yield datasets that are not only large in scale but also
of high quality. The formulation for Data Curation can be
represented as:

D(cur) = {(x, y)|x ∼ pT (x|I ⊕m), y ∼ pT (y|I ⊕ x)}. (5)

In this formulation, m represents the diverse meta-
information used to guide the synthesis of x, and I is the
instruction guiding teacher LLMs to generate x or y.

Different studies primarily vary in their source and
method of leveraging meta-information. UltraChat (Ding
et al., 2023b) effectively demonstrates the process of curating
both high-quality and diverse data by distilled knowledge.
They collect extensive meta-information across three do-
mains: Questions about the World, Creation and Generation,
and Assistance on Existing Materials. For example, under
Questions about the World, they explore 30 meta-topics like
”Technology” and ”Food and Drink.” the teacher LLMs
then use this meta-information to distill a broad array
of instructions and conversations, achieving a substantial
scale of 1.5 million instances. UltraChat stands out with its
lexical and topical diversity. The UltraLLaMA model, fine-
tuned on this data, consistently surpasses other open-source
models. Another notable series, phi (Gunasekar et al., 2023;
Li et al., 2023a; Mar, 2023), focuses on distilling smaller,
high-quality datasets akin to ”textbooks.” Phi-1(Gunasekar
et al., 2023) experiments with synthesizing ”textbook qual-
ity” data in the coding domain. Their approach involves
distilling clear, self-contained, instructive, and balanced con-
tent from LLMs, guided by random topics or function names
to enhance diversity. The distilled data is a synthesis of 1
billion tokens of Python textbooks, complete with natural
language explanations and code snippets, as well as 180 mil-
lion tokens of Python exercises with solutions. Remarkably,
the phi-1 model, despite its smaller size, outperforms nearly
all open-source models on coding benchmarks like Hu-
manEval and MBPP while being 10 times smaller in model
size and 100 times smaller in dataset size. MFTCoder (Liu
et al., 2023d) utilizes hundreds of Python knowledge points
as meta-information to create a CodeExercise Dataset. In
contrast, Magicoder (Wei et al., 2023) and WaveCoder (Yu
et al., 2024) get raw code collections from open-source
code datasets, using this as meta-information for generating
instructional data. In the context of NLU tasks, certain
studies (Ye et al., 2022; Gao et al., 2023a; Wang et al., 2021a)
explore the use of labels as meta-information to synthesize
corresponding samples for data augmentation. Similarly, in
information retrieval tasks, there are efforts to utilize docu-
ments as meta-information for generating potential queries,
thereby constructing large-scale retrieval pairs (Bonifacio
et al., 2022; Meng et al., 2023).

In conclusion, Data Curation through teacher LLMs has
emerged as a promising technique for synthesizing datasets
that are not only high-quality and diverse but also large
in scale. The success of models like phi-1 in specialized
domains underscores the efficacy of this method. The ability

to create synthetic datasets will become a crucial technical
skill and a key area of focus in AI (Li et al., 2023a).

3.1.4 Feature
The previously discussed knowledge elicitation methods
are typically applied to powerful black-box models, which
are expensive and somewhat unreproducible due to calling
API. In contrast, white-box distillation offers a more trans-
parent and accessible approach for researchers. It involves
leveraging the output distributions, intermediate features,
or activations from teacher LLMs, which we collectively
refer to as Feature knowledge. White-box KD approaches
have predominantly been studied for smaller encoder-based
LMs, typically those with fewer than 1 billion parameters
(cf. Gou et al. (2021) for detail). However, recent research
has begun to explore white-box distillation in the context of
generative LLMs (Timiryasov and Tastet, 2023; Liang et al.,
2023a; Gu et al., 2024; Agarwal et al., 2024; Liu et al., 2023a;
Wen et al., 2023; Wan et al., 2024a; Zhao and Zhu, 2023; Qin
et al., 2023b; Boizard et al., 2024; Zhong et al., 2024).

The typical method for acquiring this feature knowledge
involves teacher LLMs annotating the output sequence y
with its internal representations. These annotations are then
distilled into the student model using methods such as
Kullback-Leibler Divergence (KLD). The process of eliciting
feature knowledge can be formulated as follows:

D(feat) = {(x, y, ϕfeat(x, y; θT )) | x ∼ X , y ∼ Y}. (6)

In this formulation, Y is the output set, which can be
generated by teacher LLMs, the student model, or directly
sourced from the dataset. ϕfeat(·; θT ) represents the opera-
tion of extracting feature knowledge (such as output distri-
bution) from the teacher LLM.

The most straightforward method to elicit feature knowl-
edge of teacher is to label a fixed dataset of sequences with
token-level probability distributions (Sanh et al., 2019; Wen
et al., 2023). To leverage the rich semantic and syntactic
knowledge in intermediate layers of the teacher model,
TED (Liang et al., 2023a) designs task-aware layer-wise
distillation. They align the student’s hidden representations
with those of the teacher at each layer, selectively extracting
knowledge pertinent to the target task. Gu et al. (2024) and
Agarwal et al. (2024) introduce a novel approach where
the student model first generates sequences, termed ‘self-
generated sequences.’ The student then learns by using
feedback (i.e. output distribution) from teacher on these
sequences. This method is particularly beneficial when the
student model lacks the capacity to mimic teacher’s distri-
bution. Moreover, various LLM-quantization methods with
distilling feature knowledge from teacher LLMs have been
proposed (Tao et al., 2022a; Liu et al., 2023a; Kim et al.,
2023b). These methods aim to preserve the original output
distribution when quantizing the LLMs, ensuring minimal
loss of performance. Additionally, feature knowledge could
serve as a potent source for multi-teacher knowledge distil-
lation. Timiryasov and Tastet (2023) leverages an ensemble
of GPT-2 and LLaMA as teacher models to extract output
distributions. Similarly, FuseLLM (Wan et al., 2024a) inno-
vatively combines the capabilities of various LLMs through
a weighted fusion of their output distributions, integrating
them into a singular LLM. This approach has the potential
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to significantly enhance the student model’s capabilities,
surpassing those of any individual teacher LLM.

In summary, feature knowledge offers a more transpar-
ent alternative to black-box methods, allowing for deeper
insight into and control over the distillation process. By
utilizing feature knowledge from teacher LLMs, such as out-
put distributions and intermediate layer features, white-box
approaches enable richer knowledge transfer. While show-
ing promise, especially in smaller models, its application
is not suitable for black-box LLMs where internal parame-
ters are inaccessible. Furthermore, student models distilled
from white-box LLMs may underperform compared to their
black-box counterparts, as the black-box teacher LLMs (e.g.
GPT-4) tend to be more powerful.

3.1.5 Feedback
Most previous works predominantly focus on one-way
knowledge transfer from the teacher to the student for
imitation, without considering feedback from the teacher
on the student’s generation. The feedback from the teacher
typically offers guidance on student-generated outputs by
providing preferences, assessments, or corrective informa-
tion. For example, a common form of feedback involves
teacher ranking the student’s generations and distilling this
preference into the student model through Reinforcement
Learning from AI Feedback (RLAIF) (Bai et al., 2022a).
Here is a generalized formulation for eliciting feedback
knowledge:

D(fb) = {(x, y, ϕfb(x, y; θT ))|x ∼ X , y ∼ pS(y|x)}, (7)

where y denotes the output generated by the student
model in response to x, and ϕfb(·; θT )) represents providing
feedback from teacher LLMs. This operation evaluates the
student’s output y given the input x, by offering assess-
ment, corrective information, or other forms of guidance.
This feedback knowledge can not only be distilled into
the student to also generate feedback (such as creating a
student preference model) but, more importantly, enable
the student to refine its responses based on the feedback.
Various methods have been explored to elicit this advanced
knowledge (Bai et al., 2022a; Luo et al., 2023b; Cui et al.,
2023a; Kwon et al., 2023; Jiang et al., 2023b; Chen et al.,
2023a; Gu et al., 2024; Agarwal et al., 2024; Chen et al., 2024b;
Guo et al., 2024; Ye et al., 2023; Hong et al., 2023; Lee et al.,
2023a).

Preference, as previously discussed, represents a notable
form of feedback knowledge from teacher models. Various
knowledge of preferences could be distilled from teachers
by prompting it with specific criteria. Bai et al. (2022a) in-
troduce RLAIF for distilling harmlessness preferences from
LLMs. This involves using an SFT-trained LLM to generate
response pairs for each prompt, then ranking them for
harmlessness to create a preference dataset. This dataset is
distilled into a Preference Model (PM), which then guides
the RL training of a more harmless LLM policy. Wizard-
Math (Luo et al., 2023b) places emphasis on mathematical
reasoning. They employ ChatGPT as teacher to directly
provide process supervision and evaluate the correctness
of each step in the generated solutions. To scale up high-
quality distilled preference data, Cui et al. (2023a) develop a
large-scale preference dataset for distilling better preference

models, UltraFeedback. It compiles various instructions and
models to produce comparative data. Then, GPT-4 is used
to score candidates from various aspects of preference,
including instruction-following, truthfulness, honesty and
helpfulness.

Beyond merely assessing student generations, teachers
can also furnish extensive feedback on instances where
students underperform. In Lion (Jiang et al., 2023b), teacher
model pinpoints instructions that pose challenges to the
student model, generating new, more difficult instructions
aimed at bolstering the student’s abilities. PERsD (Chen
et al., 2023a) showcases a method where teacher offers
tailored refinement feedback on incorrect code snippets gen-
erated by students, guided by the specific execution errors
encountered. Similarly, SelFee (Ye et al., 2023) leverages
ChatGPT to generate feedback and revise the student’s
answer based on the feedback. In contrast, FIGA (Guo et al.,
2024) revises the student’s response by comparing it to
the ground-truth response. Furthermore, teacher model’s
distribution over the student’s generations can itself act
as a form of feedback. MiniLLM (Gu et al., 2024) and
GKD (Agarwal et al., 2024) present an innovative strategy
wherein the student model initially generates sequences,
followed by teacher model producing an output distribution
as feedback. This method leverages the teacher’s insight
to directly inform and refine the student model’s learning
process.

3.1.6 Self-Knowledge
The knowledge could also be elicited from the student itself,
which we refer to as Self-Knowledge. In this setting, the same
model acts both as the teacher and the student, iteratively
improving itself by distilling and refining its own previously
generated outputs. This knowledge uniquely circumvents
the need for an external, potentially proprietary, powerful
teacher model, such as GPT-series LLMs. Furthermore, it
allows the model to surpass the limitations or “ceiling”
inherent in traditional teacher-student methods. Eliciting
self-knowledge could be formulated as:

D(sk) = {(x, y, ϕsk(x, y))|x ∼ S, y ∼ pS(y|I ⊕ x)}, (8)

where ϕsk(·) is a generalized function that represents an
additional process to the self-generated outputs y, which
could include but is not limited to filtering, rewarding, or
any other mechanisms for enhancing or evaluating y. It
could be governed by external tools or the student itself θS .
Recent research in this area has proposed various innovative
methodologies to elicit self-knowledge, demonstrating its
potential for creating more efficient and autonomous learn-
ing systems. (Allen-Zhu and Li, 2020; Wang et al., 2022a;
Sun et al., 2024b; Yang et al., 2024; Jung et al., 2023; Huang
et al., 2023a; Gulcehre et al., 2023; Yuan et al., 2024a; Xu
et al., 2023b; Zelikman et al., 2022; Chen et al., 2024a; Zheng
et al., 2024; Li et al., 2024c; Zhao et al., 2024; Singh et al.,
2023; Chen et al., 2024c; Hosseini et al., 2024)

A notable example of this methodology is Self-
Instruct (Wang et al., 2022a), which utilizes GPT-3 for
data augmentation through the Expansion approach, gen-
erating additional data samples to enhance the dataset.
This enriched dataset subsequently fine-tunes the original
model. Other methods aim to elicit targeted knowledge
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from student models by modifying prompts, and leveraging
these data for further refinement. In Self-Align (Sun et al.,
2024b), they find that models fine-tuned by Self-Instruct
data tend to generate short or indirect responses. They
prompt this model with verbose instruction to produce in-
depth and detailed responses. Then, they employ context-
distillation (Askell et al., 2021) to distill these responses
paired with non-verbose instructions back to the model.
Similarly, RLCD (Yang et al., 2024) introduces the use of
contrasting prompts to generate preference pairs from an
unaligned LLM, encompassing both superior and inferior
examples. A preference model trained on these pairs then
guides the enhancement of the unaligned model through
reinforcement learning. Several other approaches employ
filtering methods to refine self-generated data. For exam-
ple, Impossible Distillation (Jung et al., 2023) targets sen-
tence summarization tasks, implementing filters based on
entailment, length, and diversity to screen self-generated
summaries. LMSI (Huang et al., 2023a) generates multiple
CoT reasoning paths and answers for each question, and
then retains only those paths that lead to the most consistent
answer.

Note that refined self-knowledge can be iteratively ac-
quired as the student model continuously improves, further
enhancing the student’s capabilities. This is Gulcehre et al.
(2023) introduces a Reinforced Self-Training (ReST) frame-
work that cyclically alternates between Grow and Improve
stages to progressively obtain better self-knowledge and
refine the student model. During the Grow stage, the student
model generates multiple output predictions. Then, in the
Improve stage, these self-generated outputs are ranked
and filtered using a scoring function. Subsequently, the lan-
guage model undergoes fine-tuning on this curated dataset,
employing an offline RL objective. Self-Play (Chen et al.,
2024a) introduces a framework resembling iterative DPO,
where the language model is fine-tuned to differentiate the
self-generated responses from the human-annotated data.
These self-generated responses could be seen as “negative
knowledge” to promote the student to better align with
the target distribution. Self-Rewarding (Yuan et al., 2024a)
explores a novel and promising approach by utilizing the
language model itself as a reward model. It employs LLM-
as-a-Judge prompting to autonomously assign rewards for
the self-generated responses. The entire process can then
be iterated, improving instruction following and reward
modeling capabilities.

3.2 Distillation

This section focuses on the methodologies for effectively
transferring the elicited knowledge from teacher LLMs into
student models. We explore a range of distillation tech-
niques, from the strategies that enhance imitation by Su-
pervised Fine-Tuning, Divergence and Similarity, to advanced
methods like Reinforcement Learning and Rank Optimization,
as shown in Figure 3.

3.2.1 Supervised Fine-Tuning
Supervised Fine-Tuning (SFT), or called Sequence-Level KD
(SeqKD) (Kim and Rush, 2016), is the simplest and one of
the most effective methods for distilling powerful black-box

Divergence Type D(p, q) Function

Forward KLD
∑

p(t) log
p(t)
q(t)

Reverse KLD
∑

q(t) log
q(t)
p(t)

JS Divergence 1
2

(∑
p(t) log

2p(t)
p(t)+q(t)

+
∑

q(t) log
2q(t)

p(t)+q(t)

)
TABLE 1: Functional forms of D for various divergence
types. p: reference

Similarity Function LF Expression

L2-Norm Distance ∥ΦT (fT (x, y))− ΦS(fS(x, y))∥2
L1-Norm Distance ∥ΦT (fT (x, y))− ΦS(fS(x, y))∥1
Cross-Entropy Loss −

∑
ΦT (fT (x, y)) log(ΦS(fS(x, y)))

Maximum Mean Discrepancy MMD(ΦT (fT (x, y)),ΦS(fS(x, y)))

TABLE 2: Summary of similarity functions in knowledge
distillation.

LLMs. SFT finetunes student model by maximizing the like-
lihood of sequences generated by the teacher LLMs, aligning
the student’s predictions with those of the teacher. This
process can be mathematically formulated as minimizing
the objective function:

LSFT = Ex∼X ,y∼pT (y|x) [− log pS(y|x)] , (9)

where y is the output sequence produced by the teacher
model. This simple yet highly effective technique forms
the basis of numerous studies in the field. Numerous re-
searchers have successfully employed SFT to train student
models using sequences generated by teacher LLMs (Taori
et al., 2023; Chiang et al., 2023; Wu et al., 2023c; Xu et al.,
2023a; Luo et al., 2023b). Additionally, SFT has been ex-
plored in many self-distillation works (Wang et al., 2022a;
Huang et al., 2023c; Xu et al., 2023b; Zelikman et al., 2022).
Due to the large number of KD works applying SFT, we
only list representative ones here. More detailed works can
be found in §4.

3.2.2 Divergence and Similarity
This section mainly concentrates on algorithms designed for
distilling feature knowledge from white-box teacher LLMs,
including distributions and hidden state features. These
algorithms can be broadly categorized into two groups:
those minimizing divergence in probability distributions
and those aimed at enhancing the similarity of hidden
states.

Divergence. Divergence-based methods minimize diver-
gence between the probability distributions of the teacher
and student models, represented by a general divergence
function D:

LDiv = E
x∼X ,y∼Y

[D (pT (y|x), pS(y|x))] , (10)

The specific form of D varies depending on the type of
divergence employed. Table 1 outlines the functional forms
of D for different divergence measures. The commonly-used
standard KD objectives essentially minimize the approxi-
mated forward Kullback-Leibler divergence (KLD) between
the teacher and the student distribution (Sanh et al., 2019;
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p argminq KL(p||q) argminq KL(q||p)

Fig. 6: Comparison of Forward and Reverse KL Diver-
gences in Approximating a Target Distribution. Forward
KL divergence approach tends to cover all modes of the
target distribution but is less precise, i.e. “mode-covering”
behavior. Reverse KL divergence method focuses predom-
inantly on the most prominent mode, thereby exhibiting a
“mode-seeking” behavior.

Wen et al., 2023; Timiryasov and Tastet, 2023; Liang et al.,
2023a; Chen et al., 2024d) , which forces pS to cover all the
modes of pT . However, when a student model is unable
to learn all modes of a highly complex teacher, the re-
sultant “mode-covering” behavior might cause the student
to assign probability mass to tokens with low probability
under the teacher’s distribution (cf. Figure 6 blue curve).
This mode-covering phenomenon can potentially lead to
hallucinations and low-quality generations. Alternatively,
mode-seeking divergences like reverse KL prioritize tokens
where the teacher assigns high probabilities (cf. Figure 6
green curve). This approach can mitigate the risk of low-
quality outputs, fostering more accurate generations. How-
ever, it often does so at the cost of reduced diversity.
Gu et al. (2024) adopt reverse KL divergence to prevent
students from overestimating low-probability regions of the
teacher’s distribution, employing Policy Gradient methods
for optimization. Both Agarwal et al. (2024) and Sason and
Verdú (2016) assess the effect of different divergence func-
tions in LLM distillation, finding the optimal divergence to
be task-dependent. For instance, forward KL divergence is
more suitable for tasks like Machine Translation, where the
output has fewer modes or variations, while reverse KL
divergence is preferable for tasks like dialogue generation
and instruction tuning, which involve multiple modes and
a wider range of potential responses. Thus, the nature of the
task significantly influences the selection of the divergence
function for optimal performance.

Similarity. Similarity-based methods in knowledge distilla-
tion aim to align the hidden states or features of the student
model with those of the teacher. These methods use various
similarity metrics to measure and optimize the congruence
of internal representations between the two models. The
objective is to ensure that the student model not only
produces similar outputs to the teacher but also processes
information in a comparable manner. The formulation for a
similarity-based objective might look like this:

LSim = E
x∼X ,y∼Y

[LF (ΦT (fT (x, y)) ,ΦS (fS(x, y)))] , (11)

where fT (x, y) and fS(x, y) are the feature maps of the
teacher and student models, respectively. The transforma-

tion functions ΦT and ΦS are applied to these feature maps
to ensure they are in the same shape, facilitating direct
comparison. The similarity function LF is used to match
these transformed feature maps. Table 2 shows common
choices for LF . Few works have employed similarity-based
methods in the KD of LLMs. Among them, Liang et al.
(2023a) propose Task-Aware Layer-Wise Distillation (TED),
a method that utilizes task-aware filters. These filters are
designed to selectively capture the most pertinent informa-
tion for a specific task from the teacher model. The key
objective is to minimize the discrepancy between the filtered
representations in both teacher and student models. While
similarity-based approaches are common in encoder-based
LMs (Sun et al., 2019, 2020; Jiao et al., 2020; Hou et al.,
2020; Zuo et al., 2022; Liang et al., 2021), their application in
LLM knowledge distillation is not as widespread. However,
considering their effectiveness, we anticipate an increase in
research exploring these methods for LLM distillation in the
near future.

3.2.3 Reinforcement Learning

This section explores advanced methods of distilling knowl-
edge into student models using reinforcement learning (RL).
This approach is especially relevant for leveraging the feed-
back from teacher to train student models (Bai et al., 2022a;
Cui et al., 2023a; Luo et al., 2023b; Agarwal et al., 2024; Chen
et al., 2024b; Ma et al., 2023a; Pang et al., 2023; Du et al.,
2023a). The RL-based distillation process typically involves
two main stages:

Distilled Reward Model Training. The first stage involves
training a reward model rϕ using the feedback data D(fd)

generated by teacher LLMs. Preference data, as one of the
typical feedback, is employed to train the student reward
model (Bai et al., 2022a; Cui et al., 2023a; Lee et al., 2023a;
Kim et al., 2023a). They usually consist of input-output
pairs (x, yw, yl). Here, yw and yl represent “winning” and
“losing” outputs relative to the teacher’s preferences. The
loss function for the reward model is defined as:

LRM(rϕ,D(fd)) = − E
(x,yw,yl)∼D(fd)

[log σ (rϕ (x, yw)− rϕ (x, yl))]

(12)

This formulation guides the reward model to correctly
distinguish between more and less preferable outputs based
on the teacher’s criteria. Instead of learning the instance-
level rewards, RLMEC (Chen et al., 2024b) adopts a dif-
ferent approach by training a generative reward model. It
is trained on an erroneous solution rewriting data distilled
from a teacher LLM. This distilled reward model can pro-
duce token-level rewards for RL training.

Reinforcement Learning Optimization. In the second stage,
the student model, represented by a policy πθ , is optimized
to maximize the expected reward as per the trained reward
model. Simultaneously, it minimizes the divergence from
a reference policy πref , typically the initial policy of the
student model trained by SFT, controlled by a factor β. The
RL objective is given by:
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max
πθ

E
x∼X,y∼πθ(y|x)

[rϕ(x, y)]− βDKL [πθ(y | x)∥πref(y | x)]

(13)

This RL framework not only ensures that the student model
learns the explicit content from the teacher but also effec-
tively adopts the teacher’s preference patterns. The use of
RL, particularly with the PPO (Schulman et al., 2017) algo-
rithm, offers a robust mechanism for aligning the student
model’s outputs with the teacher. Alternatively, the teacher
LLM can also serve as the reward model to directly assign
rewards during RL, circumventing the need for training a
reward model (Lee et al., 2023a; Kwon et al., 2023). While
this approach may exhibit superior performance, it comes
at a higher computational cost compared to employing a
smaller distilled reward model.

3.2.4 Ranking Optimization
Ranking optimization presents a stable and computationally
efficient alternative to RL for injecting preference feedback
into language models (Rafailov et al., 2023; Song et al.,
2023a; Yuan et al., 2023b). This method, diverging from
traditional RL approaches, directly incorporates ranking
information into language models from a fixed preference
dataset during fine-tuning. Intuitively, it directly updates
policy to increase the relative likelihood of preferred over
less favored responses. This direct optimization of prefer-
ences, without the need for sampling outputs, makes the
process more stable and efficient. Recently, some works have
been proposed to explore using ranking optimization to
distill teacher’s preferences into student models (Tunstall
et al., 2023; Hong et al., 2023; Yuan et al., 2024a).

Zephyr (Tunstall et al., 2023) utilizes Direct Preference
Optimization (DPO) (Rafailov et al., 2023) to distill the
preference alignment in teacher LLMs. DPO streamlines
the objective of reinforcement learning (as in Eq. 13),
which involves reward maximization with a KL-divergence
constraint, into a single-stage policy training. Specifically,
DPO’s training goal is to maximize the following expecta-
tion:

E
(x,yw,yl)∼D(fd)

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
,

(14)

where yw is preferred over yl according to the teacher
LLM. Hong et al. (2023) (Hong et al., 2023) adopt two
ranking-based optimization objectives, Rank Responses to
align Human Feedback (RRHF) (Yuan et al., 2023b) and
Preference Ranking Optimization (PRO) (Song et al., 2023a),
for preference distillation. RRHF (Yuan et al., 2023b) focuses
on a ranking loss defined as:

LRRHF =
∑
ri<rj

max(0, pi − pj), (15)

where ri and rj are the reward scores assigned by the
teacher LLM for responses yi and yj , respectively, and pi, pj
are their corresponding conditional log probabilities under
the policy πθ . This approach emphasizes direct comparison
and ranking of responses based on the teacher’s preferences.
PRO (Song et al., 2023a) expands the concept of pairwise

comparison to handle preference rankings of any length. For
a given instruction x and a sequence of responses ordered by
teacher preference as y1 ≻ y2 ≻ ... ≻ yn, the RPO training
objective is:

LPRO = −
n−1∑
k=1

log
exp (pk)∑n
i=k exp (pi)

, (16)

where pk represents the conditional log probabilities for
yk under the student policy πθ . By iteratively contrasting
the likelihood of generating responses, PRO optimizes the
student LM to prioritize the most preferred response while
progressively ranking the rest in the order of diminishing
preference.

4 SKILL DISTILLATION

Building upon the foundation laid out in Section 3 about
eliciting knowledge and distillation algorithms, we shift our
focus to how these techniques facilitate the distillation of
specific skills in LLMs. Our exploration will encompass
a diverse range of skills exhibited by LLMs, including
Context Following, Alignment, Agent, NLP Task Specializa-
tion and Multi-Modality. Context Following focuses on the
student’s ability to comprehend and respond effectively
to input information. Alignment delves into the student’s
capability to align its output with the teacher’s responses.
Moving forward, Agent underscores the autonomous nature
of language models. NLP Task Specialization highlights the
LLM’s versatility in specializing across various Natural
Language Processing tasks, demonstrating its adaptability.
Finally, Multi-Modality encompasses the knowledge trans-
fer from teacher LLMs to multi-modal models. Table 3
summarizes the representative works, encompassing details
such as the skills involved, seed knowledge, teacher LLM,
student model, knowledge elicitation method, and training
objectives.

4.1 Context Following
This part concentrates on the distillation of context follow-
ing skills from LLMs. This process involves transferring the
ability of LLMs to handle a variety of complex contexts —
such as few-shot demonstrations, intricate instructions, dia-
logue history, and retrieval-augmented information — into
smaller models. Many research efforts in this domain aim
to imbue smaller models with these sophisticated, context-
following capabilities. Our discussion here will dissect this
facet of skill distillation, categorizing it based on different
types of context and elaborating on how each is distilled
and incorporated into smaller, efficient models.

4.1.1 Instruction Following
Instruction-following capacity enables LLMs to understand
and follow user-given instructions. This ability significantly
enhances human-AI interaction, allowing for seamless un-
derstanding and execution of tasks as directed by users. A
primary method for acquiring this skill involves construct-
ing instruction-like prompt-response pairs and employing
Supervised Fine Tuning (SFT) for model training. Data for
this purpose can be manually curated by human experts
or transformed from existing NLP tasks into instructional
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Methods Skill Seed Knowledge Teacher LLM Student Model Knowledge Elicitation Objective

Context Following

Self-Instruct (Wang et al., 2022a) IF 175 human-curated tasks GPT3 GPT3 Expansion + Self-Knowledge SFT
Alpaca (Taori et al., 2023) IF 175 human-curated tasks GPT3 LLaMA Expansion + Self-Knowledge SFT

LaMini-LM (Wu et al., 2023c) IF 3.5K Wikipedia Categories +
Mixed Dataset ChatGPT Various Models Expansion SFT

WizardLM (Xu et al., 2023a) IF Alpaca Data ChatGPT LLaMA Expansion SFT
Lion (Jiang et al., 2023b) IF Alpaca Cata ChatGPT LLaMA Labeling + Expansion + Feedback -
BabyLlama (Timiryasov and Tastet, 2023) IF 10M-word BabyLM dataset GPT-2 + small LLaMA 58M-parameter LLaMA Feature D&S
MiniLLM (Gu et al., 2024) IF Dolly Dataset GPT2 + OPT + LLaMA GPT2 + OPT + LLaMA Feature D&S
Self-Align (Sun et al., 2024b) IF Human-written Principles LLaMA LLaMA Expansion + Self-Knowledge SFT
Self-Rewarding (Yuan et al., 2024a) IF Human-written Samples LLaMA LLaMA Self-Knowledge SFT + RL
STaR (Zelikman et al., 2022) IF Arithmetic + CommonsenseQA + GSM8K GPT-J GPT-J Self-Knowledge SFT
Llama-GPT4 (Peng et al., 2023a) IF Alpaca Dataset GPT4 LLaMA Labeling SFT
Reflection-Tuning (Li et al., 2023e) IF Alpaca/WizardLM Dataset ChatGPT LLaMA Labeling SFT
Selective Reflection-Tuning (Li et al., 2024d) IF Alpaca/WizardLM Dataset ChatGPT LLaMA Labeling SFT
Vicuna (Chiang et al., 2023) IF/MD Human Conversation ChatGPT + GPT4 LLaMA Labeling SFT
Koala (Geng et al., 2023) IF/MD Human Conversation ChatGPT LLaMA Labeling SFT
Baize (Xu et al., 2023b) IF/MD Quora + Stack Overflow ChatGPT LLaMA Expansion + Self-Knowledge SFT
UltraChat (Ding et al., 2023b) IF/MD Wikidata + Text Material + C4 ChatGPT LLaMA Curation SFT
Orca (Mukherjee et al., 2023) IF/TP FLAN-v2 ChatGPT + GPT4 LLaMA Labeling SFT
Orca2 (Mitra et al., 2023) IF/TP FLAN-v2 + Few-Shot/Math/Synthetic GPT4 LLaMA Labeling SFT
SelFee (Ye et al., 2023) IF/TP Human Conv, Flan/Code/Math Collection ChatGPT LLaMA Labeling SFT
CoT-Distill (Hsieh et al., 2023) IF/TP e-SNLI + ANLI + CQA + SVAMP PaLM T5 Labeling SFT
KnowPAT (Zhang et al., 2023a) IF/TP CPKG + QA Data ChatGPT + ChatGLM + Vicuna-7B LLaMA Labeling SFT
DEBATunE (Li et al., 2024e) IF/TP Controversial Topics ChatGPT LLaMA Labeling SFT
Phi-1 (Gunasekar et al., 2023) IF/Code - GPT3.5 phi-1 Curation SFT
Phi-1.5 (Li et al., 2023a) IF/Code 20k Topics from Web GPT3.5 phi-1 Curation + Labeling SFT
SAIL (Luo et al., 2023c) IF/RAG Alpaca Data + Web Content GPT4 LLaMA Label SFT
KARD (Kang et al., 2023b) IF/RAG MedQAUSMLE ChatGPT T5 + OPT Label SFT + D&S
Self-RAG (Asai et al., 2023) IF/RAG Open-Instruct GPT4 LLaMA Labeling SFT

Alignment

OpenChat (Wang et al., 2023c) IF/Preference Human Conversation ChatGPT + GPT4 LLaMA Labeling SFT + RL
Zephyr (Tunstall et al., 2023) IF/Preference Mixed Datasets GPT4 Mistral Labeling + Feedback SFT + RO
ALMoST (Kim et al., 2023a) IF/Preference Human-written Prompts LLaMA LLaMA Expansion + Labeling SFT + RL
RLCD (Yang et al., 2024) IF/Preference Human-written Prompts LLaMA LLaMA Labeling SFT + RL
RLAIF (Lee et al., 2023a) IF/Preference Human-written Prompts PaLM 2 PaLM 2 Labeling + Feedback RL
GPT3 Reward (Kwon et al., 2023) Preference Human-written Prompts GPT3 GPT3 Labeling RL
ILF (Scheurer et al., 2023) Preference Task-specific Datasets GPT3 + FeedME GPT3 Labeling RL
ULTRAFEEDBACK (Cui et al., 2023a) Preference Mixed Datasets GPT4 LLaMA Labeling RL
Constitutional AI (Bai et al., 2022a) Preference/Value Human-written Prompts Self-defined Student Model Self-defined Model Labeling + Expansion + Feedback SFT + RL

SANDBOX (Liu et al., 2023b) Value Simulation text-davinci-002/-003 +
GPT4 + ChatGPT LLaMA Data Curation SFT + RL

Agent

Toolformer (Schick et al., 2023) Tool CCNet GPT-J GPT-J Labeling SFT
Graph-ToolFormer (Zhang, 2023) Tool Mixed Graph Dataset ChatGPT GPT-J + LLaMA Labeling SFT
Gorilla (Patil et al., 2023) Tool Online API Documentation GPT4 LLaMA Expansion SFT
GPT4Tools (Yang et al., 2023b) Tool Image Content ChatGPT LLaMA Curation + Expansion SFT
ToolAlpaca (Tang et al., 2023a) Tool Public-apis Repository ChatGPT LLaMA Curation SFT
ToolLLM (Qin et al., 2023a) Tool Real-world APIs ChatGPT LLaMA Curation SFT
MLLM-Tool (Wang et al., 2024) Tool HuggingFace Model Cards GPT4 LLaMA Curation SFT
FireAct (Chen et al., 2023b) Planning Mixed QA Dataset GPT4 LLaMA Labeling SFT
AgentTuning (Zeng et al., 2023a) Planning 6 Agent Tasks GPT4 + ChatGPT LLaMA Labeling + Expansion SFT
Lumos (Yin et al., 2023a) Planning Mixed Interactive Tasks GPT4 LLaMA Labeling SFT
AUTOACT (Qiao et al., 2024) Planning Mixed QA Tasks LLaMA LLaMA Labeling SFT

NLP Task Specialization

AugGPT (Dai et al., 2023a) NLU Amazon/Symptoms/PubMed20k Dataset ChatGPT BERT Label SFT
TDG (He et al., 2023b) NLU SST + QQP + MNLI GPT3 BERT Expansion SFT
SunGen (Gao et al., 2023a) NLU Text Classification Tasks GPT2 DistilBERT Curation SFT
UDG (Wang et al., 2021a) NLU NLU Tasks GPT3 BERT Expansion SFT
InheritSumm (Xu et al., 2023c) NLG Pile + ArXiv + CNN/DM + WikiHow GPT3.5 ZCode++ Label SFT
DIMSUM+ (Jung et al., 2023) NLG None GPT2 + CTRL + BioGPT T5 Curation + Self-Knowledge SFT
Genie (Yehudai et al., 2024) NLG ELI5 + ASQA + NQ + CNN/DM Falcon + LLaMA FLAN + LLaMA Label SFT
GKD (Agarwal et al., 2024) NLG/NLU/IF XSum+WMT14 en-de+GSM8K+FLAN2021 T5-XL T5 Feature + Feedback D&S + RL
QUILL (Srinivasan et al., 2022) IR IR Datasets T5 4-layer Transformer Internal Knowledge D&S
RankVicuna (Pradeep et al., 2023a) IR IR Datasets ChatGPT LLaMA Labeling SFT
RankZephyr (Pradeep et al., 2023b) IR IR Datasets ChatGPT + GPT4 Mistral Labeling SFT
NDR (Mysore et al., 2023) Recommendation Recommendation Datasets GPT3 MPnet-110M Labeling SFT
InstrcutRec (Zhang et al., 2023b) Recommendation 39 instruction templates ChatGPT Flan-T5 Expansion + Self-Knowledge SFT
ONCE (Liu et al., 2023c) Recommendation Recommendation Dataset ChatGPT LLaMA Labeling SFT
PandaLM (Wang et al., 2023b) Evaluation Alpaca Data ChatGPT LLaMA Labeling SFT
Prometheus (Kim et al., 2024) Evaluation 50 Seed Rubrics GPT4 LLaMA Labeling SFT
InstructScore (Xu et al., 2023d) Evaluation Mixed Dataset GPT4 LLaMA Labeling SFT
WizardMath (Luo et al., 2023b) Math GSM8k + MATH ChatGPT LLaMA Expansion + Feedback SFT + RL
Mammoth (Yue et al., 2023a) Math/TP Mixed Math Dataset GPT4 LLaMA Labeling SFT
Mixed Distill (Chenglin et al., 2023) Math/TP SVAMP + GSM8K + ASDIV + StrategyQA ChatGPT LLaMa Labeling SFT
WizardCoder (Luo et al., 2023a) Code Code Alpaca Data ChatGPT StarCoder Expansion SFT
Magicoder (Wei et al., 2023) Code Existing Source Codes ChatGPT LLaMa Curation SFT
WaveCoder (Yu et al., 2024) Code Existing Source Codes GPT4 LLaMa Curation SFT
Code Alpaca (Chaudhary, 2023) Code Code Instructions ChatGPT LLaMA Expansion + Self-Knowledge SFT
Code Llama (Rozière et al., 2023) Code Human-written Instructions LLaMA LLaMA Expansion + Self-Knowledge SFT
Code Clean (Jain et al., 2023) Code Code Datasets ChatGPT LLaMA Labeling SFT

Multi-Modality

LLaVA (Liu et al., 2023e) Vision-Language COCO GPT4 LLaMA Labeling SFT
SVIT (Zhao et al., 2023b) Vision-Language Visual Genome + COCO GPT4 LLaMA Labeling SFT
LVIS-Instruct4V (Wang et al., 2023e) Vision-Language LVIS GPT4V LLaMA Labeling SFT
LLaVAR (Zhang et al., 2023d) Vision-Language LAION GPT4 LLaMA Labeling SFT
Macaw-LLM (Lyu et al., 2023) Multiple Modalities Image/Video with Caption ChatGPT LLaMA Labeling SFT
MIMIC-IT (Li et al., 2023f) Multiple Modalities Image/Video Dataset ChatGPT LLaMA Labeling SFT
ChatBridge (Zhao et al., 2023d) Multiple Modalities Task-Specific/Multimodal-Chat Data GPT4 + ChatGPT LLaMA Labeling SFT

TABLE 3: A summary of skill distillation works. IF: Instruction Following, MD: Multi-turn Dialoue, TP: Think Pattern,
RAG: Retrieval-Augmented Generation, NLU: Natural Language Understanding, NLG: Natural Language Generation, IR:
Information Retrieval, SFT: Supervised Fine-Tuning, D&S: Divergence and Similarity, RL: Reinforcement Learning, RO:
Ranking Optimization.

formats with templates, such as prefacing machine transla-
tion data with ”Translate this sentence to Spanish:”. However,
these approaches have limitations. Manual data creation is
labor-intensive, while template-based transformation lacks
diversity in instructions and may not align well with natural
human input. LLMs like GPT-4 offer an efficient alternative
for creating diverse and controlled SFT data by their capabil-
ities of in-context learning and instruction following. Most

relevant works use OpenAI’s GPT series models to generate
prompt-response data pairs and then train the student LLMs
by supervised fine-tuning (Wang et al., 2022a; Taori et al.,
2023; Chiang et al., 2023; Wu et al., 2023c; Xu et al., 2023a;
Mukherjee et al., 2023; Mitra et al., 2023; Luo et al., 2023b;
Peng et al., 2023a).

Basic Instructions. Self-Instruct (Wang et al., 2022a) lever-
ages the in-context learning capability of GPT-3 to expand
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a seed pool of 175 tasks to 52K task-agnostic instructions,
ensuring a broad spectrum of general instructions. Addi-
tionally, a filtering and post-processing stage is introduced
to eliminate redundant or similar instructions. Notably,
through training with this enriched dataset, GPT-3 acquires
the ability to follow instructions, enabling it to perform
comparably to InstructGPT in zero-shot instruction tasks
and when provided with expert-written instructions for
novel tasks. Based on the self-instruct method, Taori et al.
(2023) train an Alpaca model using the Llama 7B model
on 52K instruction-following demonstrations, generated in
a similar style as self-instruct but utilizing the more robust
text-davinci-003 model. To enhance the diversity of instruc-
tional data, Wu et al. (2023c) introduce a technique known
as Topic-Guided Instruction Generation. This method involves
gathering 3.5K common topics from Wikipedia to serve as
guidance during the generation process.

Complex Instructions. Some works promote students to
solve more complex instructions (Xu et al., 2023a; Luo et al.,
2023b,a; Guo et al., 2023c). According to Xu et al. (2023a), in-
struction datasets derived from human-written seeds often
exhibit low to moderate complexity. To enhance the com-
plex instruction-following capabilities of smaller models,
WizardLM (Xu et al., 2023a) introduces Evol-Instruct. This
method gradually transforms instructions into more com-
plex forms through a multi-step evolution process, focusing
on both increasing difficulty levels and expanding the di-
versity of topics. They conducted four rounds of evolution
using the OpenAI ChatGPT API, resulting in a dataset of
250k complex instructions. Subsequently, they trained the
LLaMA 7B model, referred to as WizardLM, on this dataset.
In the high-difficulty section of test instructions, WizardLM
even outperformed ChatGPT, achieving a win rate 7.9%
higher than ChatGPT. Zhao et al. (2023e) further conduct
preliminary studies revealing the effectiveness of increasing
instruction complexity. Instruction Fusion (Guo et al., 2023c)
further uses teacher LLMs to increase the complexity by
fusing two distinct evolved instructions. Furthermore, this
concept of “evolving” instructions has been extended to
distill specific skills such as coding (Luo et al., 2023a) and
mathematics (Luo et al., 2023b).

Human Instructions. In contrast to works that rely on gener-
ating instructions from ChatGPT, which may lack diversity
and have gaps with real human instructions, Vicuna (Chiang
et al., 2023) and Koala (Geng et al., 2023) showcase impres-
sive performance by using human conversations and natu-
ral instructions from community-contributed conversations.
These conversations, found in platforms like ShareGPT, pro-
vide a forum for users to share their interactions with Chat-
GPT. It’s important to note, however, that models trained
on such natural conversations might mimic the style but
may not fully capture the reasoning process of the original
teacher (Gudibande et al., 2023; Mukherjee et al., 2023).

System Instructions. To encourage student models to learn
the reasoning process, Orca and Orca 2 (Mukherjee et al.,
2023; Mitra et al., 2023) enhance the prompt, response data
pairs by introducing a system message (e.g., ”explain like
I’m five, think step-by-step”) to encourage student mod-
els to grasp the reasoning process. This system message

prompts GPT-4 to provide explanation traces that eluci-
date the teacher’s reasoning process. Orca 2 (Mitra et al.,
2023) further trains the student model to identify the most
effective solution strategy for each task, guided by Orca’s
performance. This approach significantly improves the abil-
ity of smaller models to follow instructions that involve
reasoning.

High-Quality Instructions. As demonstrated in Zhou et al.
(2023a) and (Li et al., 2024f), the data quality is crucial
for instruction following training. UltraChat (Ding et al.,
2023b) distills large-scale data with high-quality and di-
verse instructions from teacher LLMs by various meta-
information. The UltraLLaMA model, fine-tuned on this
data, consistently surpasses other open-source models. The
Phi series models (Gunasekar et al., 2023; Li et al., 2023a;
Mar, 2023) prioritize data quality and employ synthetic
methods to generate data of “textbook quality” to enhance
the learning experience for smaller models. Notably, Phi
exhibits the ability to follow instructions effectively even
without specific instruction fine-tuning. What’s particularly
remarkable is that Phi-2, with just 2.7 billion parameters,
outperforms Mistral and Llama-2 models with 7B and 13B
parameters across various benchmark evaluations.

Improved Instructions. Another line of work focuses on
improving the quality of existing instruction data, including
both the improvement of instruction and corresponding
response. SelFee (Ye et al., 2023) utilizes the ChatGPT to iter-
atively improve the quality of responses. ExpertLLaMA (Xu
et al., 2023f) improves the quality of responses by augment-
ing vanilla instructions with specialized Expert Identity
descriptions. Reflection-Tuning (Li et al., 2023e) improves
both the instruction and response sequentially by reflecting
on specific criteria. DEITA (Liu et al., 2023h) proposes to
enhance and score instructions in three directions includ-
ing complexity, quality, and diversity to get high-quality
distillation data. MUFFIN (Lou et al., 2023) proposes to
scale the instruction according to the input by diversifying
these tasks with various input facets. Selective Reflection-
Tuning (Li et al., 2024d) first involves the student model
in the data improvement pipeline with a novel student-
selection module, in which the student model is able to
decide the data learn from.

In summary, distilling instruction data from teachers
presents a promising avenue for training cheap and re-
producible instruction-following language models. Cur-
rent small models have made strides in enhancing var-
ious aspects of instruction-following ability, like diver-
sity, complexity and explanation. However, student mod-
els trained on instruction data expanded by ChatGPT of-
ten mimic ChatGPT’s style without replicating its factual
accuracy (Gudibande et al., 2023). Achieving a more ca-
pable instruction-following capability requires a stronger
teacher LLM (Gudibande et al., 2023) and access to di-
verse, high-quality instruction data, such as the one used
in Orca (Mukherjee et al., 2023; Mitra et al., 2023), which
incorporates extensive task instructions from the Flan 2022
Collection (Longpre et al., 2023).
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4.1.2 Multi-turn Dialogue
While instruction following focuses on single-instance com-
mand execution, multi-turn dialogue extends this to com-
prehend and maintain context through ongoing interactions.
This skill is vital for models to engage meaningfully in
human-like conversations and respond coherently over suc-
cessive dialogue turns. Some works have been dedicated
to train to small chat models by distilling multi-turn knowl-
edge from teacher LLMs (Chiang et al., 2023; Xu et al., 2023b;
Ding et al., 2023b; Li et al., 2023b; Wang et al., 2023c; Tunstall
et al., 2023).

ShareGPT serves as a platform for users to share their
conversations with ChatGPT, offering a vast repository of
multi-turn conversations readily available. Some small chat
models are trained using this data to acquire the capability
for engaging in multi-turn dialogues (Chiang et al., 2023; Ye
et al., 2023; Wang et al., 2023c). For example, Vicuna (Chiang
et al., 2023) is a chat model exclusively trained on ShareGPT
data. Despite its sole training source being ShareGPT, Vi-
cuna achieves a high MT-Bench (Zheng et al., 2023a) score
assigned by GPT-43. In the study conducted by Wang et al.
(2023c), GPT-3.5 and GPT-4 are employed to generate mixed
responses using ShareGPT data. They assign higher rewards
to responses generated by GPT-4, aiming to incentivize
student models to produce high-quality responses. Addi-
tionally, Ye et al. (2023) enhance the quality of multi-turn
data from ShareGPT by generating self-feedback on model
responses and iteratively refining the responses based on
the received feedback.

To enhance the multi-turn capabilities of student models,
another line of research focuses on expanding conversa-
tional datasets through self-chat and using them to train
smaller models (Xu et al., 2023b; Ding et al., 2023b; Tunstall
et al., 2023). For instance, Xu et al. (2023b) initiate their work
by using questions sourced from Quora and Stack Overflow
as seeds, resulting in the collection of 111.5k dialogues
through self-chat. Subsequently, they employ parameter-
efficient tuning to train a chat model named Baize. Ding
et al. (2023b) first construct a significantly larger dataset
called UltraChat, comprising 1.5 million high-quality multi-
turn dialogues. They achieve this by distilling instructions
and dialogues from ChatGPT. Notably, UltraChat encom-
passes a wide range of topics and instructions. Building
upon the UltraChat dataset, they fine-tune a LLaMA model,
resulting in the creation of a powerful chat model known as
UltraLLaMA. UltraLLaMA consistently outperforms other
open-source chat models, including Vicuna and Baize. Fur-
thermore, UltraChat is employed in conjunction with an
AI preference-aligned chat model named Zephyr (Tunstall
et al., 2023). Zephyr enhances intent alignment through
the application of distilled direct preference optimization
(dDPO).

4.1.3 RAG Capbility
LLMs are known to lack the ability to utilize up-to-date
knowledge, and often produce responses containing factual
inaccuracies due to their sole reliance on the parametric
knowledge. Retrieval-Augmented Generation (RAG) is a

3. MT-Bench: a multi-turn question set, where the generations of
models are evaluated by LLM, like GPT-4.

promising technique to decrease this issue. Handling the
augmented context of retrieved information is also a non-
trivial skill of LLMs. Several approaches to distill RAG
capabilities have been proposed (Kang et al., 2023a; Luo
et al., 2023c; Asai et al., 2023).

SAIL (Luo et al., 2023c) starts by retrieving search results
for each training case using search APIs, creating search-
augmented instructions that include both the instruction
and grounding information. To encourage the language
model to prioritize informative retrieval results, they input
each retrieved passage along with the ground truth response
into the entailment model to label each retrieval result for
relevance. Subsequently, the search-augmented instructions
and relevance labels are fed into teacher LLMs (like GPT-
4) for generating responses. Following fine-tuning on this
training set, the student model becomes proficient at de-
noising search results and generating accurate responses.
KARD (Kang et al., 2023b) distills rationales r from the
teacher LLM in response to questions x. These rationales
are then utilized to train two models: a student LM and a
Reranker. For training the student LM, the rationales serve
as a means to retrieve relevant knowledge d, and the student
LM is subsequently fine-tuned using the rationales along-
side questions and knowledge. However, during inference,
only questions are available. To address this, the Reranker
is trained to mimic how the retriever scores passages with
the rationale by minimizing the KL divergence between
Retriever(d|r) and Reranker(d|x). However, the integra-
tion of a fixed number of passages in language models,
without considering their necessity or relevance, can reduce
versatility and lead to the generation of unhelpful responses.
To equip student LMs with adaptive RAG capabilities, Self-
Rag (Asai et al., 2023) distills this adaptive ability from
teacher LLMs into a small critic model. This critic model
determines whether retrieval is necessary and evaluates the
quality of the retrieved results by generating ‘reflection to-
kens.’ For instance, Self-Rag initiates the retrieval operation
when generating the reflection token Retrieve . To distill
this critic data, GPT-4 is prompted to assess the need for
retrieval using few-shot demonstrations I , the task input
x, and output y to predict a reflection token r as follows:
p(r|I, x, y).

4.2 Alignment
4.2.1 Thinking Pattern
Most existing methods mainly focus on directly aligning the
direct responses of the student models to the responses of
teacher models (Taori et al., 2023). Though effective, these
models might suffer the problems that they tend to learn to
imitate the response style of the teacher models, but not the
reasoning process (Mukherjee et al., 2023). Thus in order to
better distill from the teacher models, methods are proposed
that not only imitate the pure responses but some novel
thinking patterns (Ye et al., 2023; Mukherjee et al., 2023;
Mitra et al., 2023; Wang et al., 2023d; Cheng et al., 2023;
Zhang et al., 2023a).

Motivated by the effectiveness of LLMs in generat-
ing their own feedback without relying on external mod-
els (Schick et al., 2022; Madaan et al., 2023; Saunders
et al., 2022), SelFee (Ye et al., 2023) proposes to train a
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model that has been fine-tuned to continuously revise its
own answer until it provides a high-quality response in a
single inference. During training, it utilizes both the final
response and feedback chain as the fitting target. This pat-
tern, response with the revision process, shows a promising
performance gain. Following SelFee, Reflection-Tuning (Li
et al., 2023e, 2024d) also utilizes the reflection process as the
learning pattern. Noticing the lack of reasoning imitation
of the previous methods, Orca (Mukherjee et al., 2023)
first proposes Explanation tuning, which aims to learn the
reasoning steps, including explanation traces, step-by-step
thought processes, and other complex instructions, from the
teacher model, rather than just the vanilla styles. Extensive
experiments verify the effectiveness of distilling with this
thinking pattern. The following Orca2 (Mitra et al., 2023)
further presents to equip the student models with the ability
to utilize different solution strategies for different tasks, mo-
tivated by the capability discrepancies between the smaller
and larger models. By employing this training pattern, the
student models are able to gain a better reasoning ability. Be-
sides learning with the corresponding revision or reflection
process, another thinking pattern that recently appeared is
generating both responses and preferences. Zhang et al.
(2023a) propose to learn both the knowledge and corre-
sponding preference for domain-specific QA with LLMs.
Recently, DEBATunE (Li et al., 2024e) proposes to improve
the controllability of LLMs in generating statements on
controversial topics. By engaging two agents in a structured
multi-round debate on controversial topics, salient and in-
depth statements can be obtained and further distilled into
the student models.

4.2.2 Preference
The previously mentioned methods primarily focus on the
basic capability of student models to produce outcomes
that are strictly accurate but may not align with human
preferences, reaching alignment at this level enables these
models to aid in various tasks without meeting higher-level
demands. Early methods mainly utilize human feedback for
the alignment of human preferences (Ziegler et al., 2019;
Stiennon et al., 2020; Wu et al., 2021; Ouyang et al., 2022; Bai
et al., 2022b; Köpf et al., 2023; Yuan et al., 2023b). However,
obtaining human feedback is costly and labor-intensive,
thus methods that learn from AI feedback are also proposed
to align with human preferences (Bai et al., 2022a; Kwon
et al., 2023; Scheurer et al., 2023; Kim et al., 2023a; Roit et al.,
2023; Yang et al., 2024; Lee et al., 2023a; Tunstall et al., 2023;
Cui et al., 2023a; Wang et al., 2023f).

The concept of RLAIF, introduced by Bai et al. (2022a),
involves the integration of preferences labeled by LLMs
with those labeled by humans. This approach is designed
to simultaneously optimize two key objectives: ensuring
the helpfulness of the output and minimizing any potential
harm, making the responses of LLMs more aligned with
Human preferences. Kwon et al. (2023) develop a proxy
reward function using LLMs like GPT-3, which is created by
first providing the LLM with a description of the behaviors
desired by the user, along with a small number of examples.
The LLM then produces rewards by evaluating how closely
the outputs of a model align with the provided descrip-
tions, essentially measuring their relevance to the estab-

lished ground truth. Scheurer et al. (2023) propose Imitation
Learning from Language Feedback, in which a language
model is utilized to improve various outputs generated by
a model. This refinement is based on a reference provided
by a human. Following this process, the most effectively
refined output is chosen to be used in further supervised
fine-tuning. As outlined by Kim et al. (2023a), ALMoST in-
volves condensing human preferences into a set of heuristic
guidelines. An example of such a rule is the idea that larger
LLMs that utilize more comprehensive and higher-quality
prompts are likely to yield superior responses. Based on
these established guidelines, comparison data is generated
using responses from LLMs of different sizes and with
varying prompts. This data is then used to train a reward
model. Yang et al. (2024) propose Reinforcement Learning
from Contrast Distillation, which aims to align language
models without relying on human feedback. This approach
involves training a preference model using simulated pairs
of preferences, including both high-quality and low-quality
examples which are generated through contrasting prompts,
positive and negative.

Lee et al. (2023a) further highlight the effectiveness of
RLAIF. This work proposes that RLAIF not only matches but
in some cases surpasses RLHF, and interestingly, RLAIF can
also enhance the performance of Supervised Fine-Tuning.
Another notable discovery is that directly prompting the
LLM for reward scores during reinforcement learning can
be more effective than the conventional approach of training
a reward model based on LLM preferences. Wang et al.
(2023f) propose Conditioned-RLFT, which treats different
data sources as coarse-grained reward labels and develops
a class-conditioned policy to effectively utilize the varying
qualities of data, which is a Reinforcement Learning-free
supervised learning approach. Cui et al. (2023a) propose a
large-scale, high-quality, and diversified preference dataset
labeled by GPT4 for comprehensive feedback. Tunstall et al.
(2023), by proposing distilled Direct Preference Optimiza-
tion (Rafailov et al., 2023) on UltraFeedback, obtaining a
small by powerful LLM.

4.2.3 Value
Attaining alignment with human preferences allows large
models to optimize human satisfaction by operating in a
manner that aligns with human preferences. However, to
establish trustworthy LLMs, the notion of ’aligning LLMs
with human values’ is proposed and the key principles of
alignment are often summarized as the “HHH” criteria:
helpful, harmless, honest (Weidinger et al., 2021; Askell
et al., 2021). Numerous methods have been undertaken for
building trustworthy LLMs. However, due to the intrinsic
difficulty of this aim, which is still an unsolved problem
for proprietary models (Sun et al., 2024a), most existing
methods rely on constructing high-quality human prefer-
ence datasets (Ji et al., 2023b; Solaiman and Dennison, 2021;
Bai et al., 2022b; Qiu et al., 2022; Kiesel et al., 2022; Liu et al.,
2022a), utilizing human-written rules as constrains (Glaese
et al., 2022; Sun et al., 2023b, 2024b), etc. For detailed
progress on trustworthy LLMs, please further refer to Yao
et al. (2023a); Liu et al. (2023i); Sun et al. (2024a).

Though slightly under-explored, aligning LLMs with
human values by distilling is still possible (Bai et al., 2022a;
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Cui et al., 2023a; Yang et al., 2024; Sun et al., 2024b). For
instance, Bai et al. (2022a) propose RLAIF, utilizing AI-
generated labels to interactively improve both helpfulness
and harmlessness. Sun et al. (2024b) prompt the student
model with 16 principles as guidelines for generating help-
ful, ethical, and reliable responses. Similarly, both harmless
and harmful generations could be elicited by modifying
the prompts, and then are used to train the preference
model (Yang et al., 2024). Cui et al. (2023a) utilize GPT-
4 to rank generations regarding helpfulness, truthfulness,
and honesty. Liu et al. (2023b) advance the alignment of
LLMs with societal values by incorporating simulated social
interactions into the training process. This approach encom-
passes a range of elements, including demonstrations that
are both in alignment and in conflict with social norms, as
well as collective ratings, in-depth feedback, and responses
that are revised iteratively.

4.3 Agent

4.3.1 Tool Using
While recent LLMs have shown proficiency in solving var-
ious tasks, they still tend to make mistakes when handling
large numerical values or executing intricate mathematical
calculations (Qian et al., 2022; She et al., 2023; Manikandan
et al., 2023; Liang et al., 2023b; Mialon et al., 2023). Thus
equipping LLM agents with the capability to utilize tools
has been increasingly focused on. Commonly used methods
mainly relied on human-curated data for training (Parisi
et al., 2022; Nakano et al., 2022; Qin et al., 2023c; Song
et al., 2023b) or prompt designing(Cai et al., 2023; Shen
et al., 2023a; Hao et al., 2024). Recently, distillation-based
methods are also proposed (Schick et al., 2023; Zhang, 2023;
Patil et al., 2023; Tang et al., 2023a; Qin et al., 2023a; Yuan
et al., 2023a; Gao et al., 2023b; Wang et al., 2024; Shen et al.,
2024; Yuan et al., 2024b).

Toolformer (Schick et al., 2023) utilizes a self-supervised
manner, avoiding large human annotations, to obtain the
most required APIs to use and further distill this capability
to the model itself. The performance of the GPT-J-based
Toolformer surpasses OPT (66B) (Zhang et al., 2022) and
GPT3 (175B) (Brown et al., 2020) greatly. Graph-ToolFormer
(Zhang, 2023) aims to equip LLMs with the ability to process
and reason over complex graph data, which is designed
to enhance LLMs with graph reasoning skills using exter-
nal graph reasoning API tools by adopting ChatGPT to
annotate and augment a larger graph reasoning statement
dataset for training. Gorilla (Patil et al., 2023) addresses the
limitations of current LLMs in generating accurate input
arguments and reduces the problem of ”hallucination” or
generating incorrect API usage and it collects thousands of
models from platforms like HuggingFace and Torch Hub
as the API calls and utilizes GPT4 to generate synthetic
instruction data for training. GPT4Tools (Yang et al., 2023b)
introduces to enable open-source LLMs like LLaMA and
OPT to use multimodal tools, a capability previously limited
to advanced proprietary models like ChatGPT and GPT-4.
The approach involves generating an instruction-following
dataset by prompting an advanced teacher model with mul-
timodal contexts, using the Low-Rank Adaptation optimiza-
tion. ToolAlpaca (Tang et al., 2023a) proposes a framework

aimed at enhancing the tool-use capabilities of compact
language models for embodied intelligence. It creates a
dataset with 3938 instances from over 400 real-world tool
APIs across 50 categories and utilizes ChatGPT to generate
documentation for each prompt for later training. ToolLLM
(Qin et al., 2023a) proposes a comprehensive framework for
enhancing LLMs with tool-use proficiency, focusing on data
creation, model training, and evaluation by distilling from
chatGPT. Their ToolLLaMA shows impressive performance
in executing complex instructions and handling new APIs,
rivaling ChatGPT. CRAFT (Yuan et al., 2023a) builds a
general tool creation and retrieval framework, which uti-
lizes GPT4 to generate code snippets as the created tools.
During the inference, other small LLMs could select and
retrieve from the generated code snippets to execute or
generate other methods conditioned on the given snippets.
Confucius (Gao et al., 2023b) introduces a tiered training
strategy for LLMs to master tool usage through a graduated
curriculum and an innovative method called Iterative Self-
instruction from Introspective Feedback (ISIF) for dynamic
dataset enhancement to handle complex tools. MLLM-Tool
(Wang et al., 2024) is a multi-modal tool agent capable
of interpreting instructions embedded in visual or audio
content through the integration of multi-modal encoders
with open-source large language models. As a trainable
method, the initial instruction-answer pairs are generated
by utilizing GPT4. Shen et al. (2024) demonstrate that small
LLMs are weak tool learners and proposes a multi-LLM
framework that decomposes the tool-use ability of a single
model into a planner, caller, and summarizer for the tool
using, leading to a supreme performance. The two-stage
training strategy introduced by this work is powered by
ChatGPT and GPT4 for collecting execution trajectories for
the training set. Yuan et al. (2024b) notice the potential
issue of the current lengthy tool documentation, which
hinders LLMs from understanding how to utilize a tool,
thus proposing EASYTOOL to purify the important infor-
mation from extensive documentation. The ground truth
summarization of the training documents is obtained by
using ChatGPT.

4.3.2 Planning
Another important aspect for LLM agents is the ability to
decompose high-level tasks to a chosen set of actionable
steps (Huang et al., 2022b), which is especially useful when
acting in interactive environments. Huang et al. (2022b) first
demonstrate that LLMs can generate plausible goal-driven
action plans without training, introduces non-invasive tools
to enhance model executability, and assesses these methods
through human evaluation to balance executability and
semantic accuracy. Most existing methods utilize prompting
strategies for task planning (Singh et al., 2022; Zhou et al.,
2023b; Song et al., 2023c; Wang et al., 2023g; Yao et al.,
2023b; Liu et al., 2023j; Hao et al., 2023; Hu et al., 2023a), or
building human-curated data for training (Lin et al., 2023a;
Valmeekam et al., 2023). Recently, there have also been some
distilling methods emerging (Chen et al., 2023b; Zeng et al.,
2023a; Yin et al., 2023a; Qiao et al., 2024; Kong et al., 2023).

FireAct (Chen et al., 2023b) introduces an innovative ap-
proach for refining LLMs. This method involves fine-tuning
smaller-scale LLMs using agent trajectories that are derived
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from a variety of tasks and prompting techniques. Applying
this method with trajectories generated by GPT4 has been
shown to consistently enhance performance. AgentTuning
(Zeng et al., 2023a) aims to enhance the performance of
LLMs in executing agent tasks without sacrificing their
wide-ranging capabilities. By utilizing a new dataset called
AgentInstruct, which includes high-quality interaction tra-
jectories, it applies a hybrid instruction-tuning approach
that merges these trajectories with general domain instruc-
tions. Lumos (Yin et al., 2023a) pertains to a novel frame-
work designed to train agents using a unified data format
and modular architecture based on open-source LLMs. This
system comprises three key modules: planning, grounding,
and execution, enabling the decomposition of tasks into
subgoals and actionable steps. TPTU-v2 (Kong et al., 2023)
focuses on improving the task planning and tool usage abili-
ties of LLMs in real-world scenarios, by utilizing data gener-
ated by human experts or LLMs. It introduces a framework
comprising three components: an API Retriever, an LLM
Finetuner, and a Demo Selector. AUTOACT (Qiao et al.,
2024) proposes an agent learning framework that does not
require large-scale annotated data or synthetic trajectories
from high-resource models like GPT-4. Instead, it uses a self-
instruct method to generate its own planning trajectories
with limited initial data. It then applies a division-of-labor
strategy, creating sub-agents specialized in different aspects
of the task completion process.

Distillation also works out for the training of embodied
multi-modal agents (Sumers et al., 2023; Yang et al., 2023c;
Ma et al., 2023a; Du et al., 2023a; Sumers et al., 2023). For
instance, Sumers et al. (2023) aim to enhance the ability of
AI agents to follow instructions by using pretrained vision-
language models to provide supervision for understanding
and acting upon language within their operational environ-
ment, leveraging model distillation and hindsight experi-
ence replay to teach them contextually relevant interactions
in a simulated 3D setting. Emma (Yang et al., 2023c) evalu-
ates the challenges and inefficiency of training an embodied
agent in a noisy visual world without expert guidance, and
proposes to train them in a simulated environment using
imitation learning, guided by an expert Language Model
(like ChatGPT), which operates in a corresponding text-
based simulation, focusing on the same tasks.

4.4 NLP Task Specialization
NLP tasks often grapple with challenges like data scarcity,
interpretability issues, privacy concerns, and noisy data.
The “Knowledge” section of our survey illustrates various
methods for distilling knowledge from LLMs, effectively
setting the stage for student models to adapt to a range
of NLP tasks. This knowledge provides supervision for
the training of student models through information aug-
mentation (e.g., CoT and explanation), data augmentation,
and semantic representation. By transferring the distilled
knowledge from LLMs, student models can better handle
diverse NLP challenges, improving task performance and
addressing data limitations more robustly.

4.4.1 Natural Language Understanding
Natural Language Understanding (NLU) is a fundamen-
tal NLP task that involves comprehending and interpret-

ing human language. The knowledge distilled from LLMs,
such as through data labeling or augmentation, is typi-
cally transferred into encoder-based language models like
BERT (Vaswani et al., 2017) and RoBERTa (Liu et al., 2019).

Regarding the task of classification, certain studies have
been noteworthy (Dai et al., 2023a; Gilardi et al., 2023; He
et al., 2023b; Gao et al., 2023a; Chenglin et al., 2023; Li
et al., 2023g). AugGPT (Dai et al., 2023a) focuses on both
general and clinical domain text classification. To address
the limitations of small-scale clinical datasets, which often
lack expert annotation and are subject to stringent privacy
regulations, AugGPT utilizes knowledge from teacher LLMs
to rephrase each sentence in the training samples. This
process creates multiple conceptually similar but seman-
tically distinct samples, enhancing the dataset’s richness
and diversity. Another approach is demonstrated by Gilardi
et al. (2023), who employ ChatGPT as an annotator to cate-
gorize inputs. This method has been shown to outperform
crowd-workers in several tasks, including relevance, stance,
topics, and frame detection. Furthermore, He et al. (2023b)
propose Targeted Data Generation (TDG), a novel approach
for identifying challenging subgroups within a dataset. TDG
leverages LLMs, along with human-in-the-loop, to generate
new data specifically tailored for these subgroups, thereby
enriching the dataset and improving model performance
in sentiment analysis and natural language inference tasks.
To facilitate the clinical information extraction task, Tang
et al. (2023b) elicit diverse samples from LLMs by providing
examples and different seeds of clinical entities, i.e. the
Curation manner.

Several studies have also focused on multiple NLU
tasks (Ding et al., 2023a; He et al., 2023a; Wang et al.,
2021a; He et al., 2022; Ye et al., 2022; Meng et al., 2022).
For example, He et al. (2023a) utilize the knowledge in
GPT-3.5 to annotate inputs with labels and explanations
for various NLU tasks, including user input and keyword
relevance assessment, BoolQ, and WiC. Wang et al. (2021a)
employ few-shot prompts to expand high-quality training
data using GPT-3, i.e. the Expansion manner. Beyond merely
employing a single approach to elicit NLP task knowledge,
Ding et al. (2023a) explore a combination of Labeling, Ex-
pansion, and Curation methods to extract knowledge from
GPT-3 for distilling data for both sequence- and token-level
NLP tasks.

4.4.2 Natural Language Generation

Natural Language Generation (NLG) is a key aspect of eval-
uating the capabilities of LLMs, encompassing tasks such as
summarization, machine translation, and other open-ended
text generation tasks. Known for their potent generative
abilities and creativity, LLMs excel in these areas, making
them prime sources for distilling knowledge into student
models tailored for NLG tasks (Xu et al., 2023c, 2024b;
Ramnath et al., 2023; Agarwal et al., 2024). Additionally,
the knowledge distilled from LLMs can be effectively used
for NLG task-specific data augmentation (Jung et al., 2023;
Wang et al., 2021b; Guo et al., 2023a; Yang and Nicolai,
2023; Wang et al., 2023h; Yang et al., 2023d). While the
previous sections have focused on the works about open-
ended generation and multi-turn dialogue, this part will
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specifically highlight the distillation techniques relevant to
other NLG tasks.

Although automatic metrics often favor smaller, fine-
tuned models in summarization tasks, human evaluators
tend to prefer the summaries generated by LLMs. Address-
ing this discrepancy, Xu et al. (2023c) develop a student sum-
marization model by distilling a GPTSUMM dataset, which
comprises over 4 million paragraph-summary pairs gener-
ated by querying GPT-3.5. In a different approach, Jung et al.
(2023) introduce ‘Impossible Distillation,’ a method that
creates high-quality summarization-specific dataset from
weak teacher LLMs. This method involves training a stu-
dent model on the generated dataset and enhancing its
capabilities through Self-Knowledge. Turning to the task of
machine translation, where creating parallel corpora is tra-
ditionally expensive and time-consuming, Yang and Nicolai
(2023) propose a three-step distillation process. This process
involves generating seeds of verbs and nouns, forming sen-
tences, and then translating these sentences. Their findings
suggest that while the distilled dataset may lack diversity,
it effectively improves the translation signal for training
student translation models. To distill high-quality content-
grounded data automatically, Genie (Yehudai et al., 2024)
proposes a general methodology containing three key steps:
(a) preparation of the content, (b) distillation of responses
from a teacher LLM corresponding to the content, and (c)
filtering mechanism to ensure the quality and faithfulness of
the generated data. Genie demonstrates that student models
trained through this distilled data can match or even surpass
models trained on human-generated data.

4.4.3 Information Retrieval

Information Retrieval (IR) represents a crucial branch of
computer science, focused on efficiently retrieving infor-
mation relevant to user queries from extensive reposito-
ries (Cai et al., 2022; Liu et al., 2022b; Feng et al., 2023;
Shen et al., 2023b). A typical IR system encompasses three
main components: the query rewriter, the retriever, and
the reranker. Recent studies have highlighted the effective-
ness of employing LLMs in IR systems, e.g. in enhancing
the reranking stage through both point-wise and list-wise
ranking methods (Ma et al., 2023b; Sun et al., 2023a; Qin
et al., 2023d). However, the practical application of LLMs in
IR systems faces challenges, primarily due to their slower
generation speed, which conflicts with the low-latency re-
quirements of IR tasks (Sun et al., 2023a). As a result,
the KD of LLMs emerges as a more promising approach
for IR, offering a way to infuse the distilled knowledge
from LLMs into various stages of the IR pipeline without
compromising on speed. There has been a significant body
of work demonstrating how knowledge distilled from LLMs
can benefit each component of the IR system, including the
Query Rewriter (Srinivasan et al., 2022; Ma et al., 2023c), the
Retriever (Dai et al., 2023b; Sachan et al., 2022, 2023; Schick
and Schütze, 2021; Meng et al., 2023; Peng et al., 2023b), and
the Reranker (Bonifacio et al., 2022; Sun et al., 2023a; Pradeep
et al., 2023a,b; Saad-Falcon et al., 2023; Ferraretto et al., 2023;
Jeronymo et al., 2023; Sun et al., 2023c).

Query Rewriter. The Query Rewriter (QR) is a pivotal com-
ponent in IR systems, tasked with enhancing the precision

and expressiveness of user queries by refining or modifying
the initial query to more accurately align with the user’s
information needs. One notable approach is QUILL (Srini-
vasan et al., 2022), which introduces a two-stage distillation
method for query intent understanding. Initially, a retrieval-
augmented LLM, serving as the ‘professor,’ is distilled into
a non-retrieval augmented teacher LLM, aiming to bolster
its understanding capabilities. Subsequently, this enhanced
teacher LLM is distilled into a final student model using a
large dataset, further refining the process. Incorporating the
QR into IR systems, Ma et al. (2023c) develop a ’Rewrite-
Retrieve-Read’ framework. This process begins with an
LLM rewriting the queries via prompting, followed by a
retrieval-augmented reading stage. To integrate the rewrit-
ten queries effectively into the IR system, the knowledge
gleaned from the LLM is distilled into a compact student
rewriter. This rewriter is then fine-tuned using feedback
from the LLM reader through reinforcement learning.

Retriever and Reranker. In IR systems, the Retriever is
designed to efficiently locate the top-k relevant texts from
a large corpus. It encodes both queries and documents into
vector representations and performs retrieval by computing
the dot product between these vectors. The Reranker further
refines the order of the retrieved documents to improve
the overall quality of the output. This is achieved in two
primary ways, including Pointwise Reranker and Listwise
Reranker. Pointwise Reranker takes both the query and a
single candidate document as input to directly generate a
relevance score. Listwise Reranker directly reorders a list of
input documents in terms of their relevance.

Retriever and Pointwise Reranker. For the retriever and
pointwise reranker, a common application of KD from LLMs
is the generation of pseudo-queries for given documents.
This approach aims to expand the pairwise data, enhancing
the training of dense retrievers or rerankers. For example,
InPars (Bonifacio et al., 2022) utilizes GPT-3 to generate
multiple pseudo-queries for an unlabeled document. To
ensure the relevance of these queries, the system filters
them based on the highest log probabilities of generating a
query conditioned on the documents. Subsequently, InPars
fine-tunes a reranker based on monoT5 (Raffel et al., 2020).
Another similar approach, Promptagator (Dai et al., 2023b),
introduces a few-shot dense retrieval method that leverages
a small number of demonstrations from the target domain
for pseudo-query generation. Diverging from the reliance
on unlabeled documents, Sachan et al. (2022) distill knowl-
edge from GPT-4 to curate diverse synthetic data for text
embedding tasks across nearly 100 languages. They fine-
tune powerful decoder-only LLMs, such as Mistral-7b (Jiang
et al., 2023a), on this synthetic data using standard con-
trastive loss. Remarkably, this method demonstrates strong
performance on text embedding and multilingual retrieval
benchmarks without any labeled data. Beyond generating
pseudo-queries, teacher LLMs can also be employed to gen-
erate relevance scores as soft labels. These scores are used
to train the retriever by minimizing the KL-divergence loss
between the teacher and student distributions, as explored
by Sachan et al. (2023).

Listwise Reranker. A distinct set of studies focuses on
listwise reranking, where its advantage lies in compar-
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ing multiple documents simultaneously to determine the
optimal reorder. RankGPT (Sun et al., 2023a) leverages
GPT-4 to generate permutations for a group of candidate
passages. To distill this listwise ranking knowledge into a
pointwise student reranker, various training loss functions
are employed, such as Listwise Cross-Entropy (Bruch et al.,
2019), RankNet (Burges et al., 2005), and LambdaLoss (Wang
et al., 2018). Building upon RankGPT’s framework, RankVi-
cuna (Pradeep et al., 2023a) and RankZephyr (Pradeep
et al., 2023b) further refine this approach by directly fine-
tuning a listwise reranker using teacher-generated textual
permutations. This enables the student reranker to produce
sequences of ranked results directly, bypassing the interme-
diate step of calculating individual relevance scores.

4.4.4 Recommendation
Recommender systems are integral to enhancing user ex-
perience in various online services, providing personalized
content based on user preferences and behaviors. Many
works have demonstrated that LLMs could be directly used
as recommenders without fine-tuning (Wang et al., 2023i;
Dai et al., 2023c) or generate auxiliary textual features to
benefit recommender systems (Xi et al., 2023; Ren et al.,
2023; Wei et al., 2024). (Wang et al., 2023j; Ren et al., 2023;
Wei et al., 2024). However, the real-time nature of online rec-
ommender systems demands rapid response times, posing
a challenge with the inherent inference latency associated
with LLMs. To address this, several studies have explored
ways to distill and integrate the knowledge from LLMs into
recommender systems, thereby leveraging their advanced
capabilities while mitigating latency issues for efficient real-
time recommendations (Mysore et al., 2023; Zhang et al.,
2023b; Liu et al., 2023c).

Mysore et al. (2023) tackle data scarcity in narrative-
driven recommendation (NDR), where users provide de-
tailed descriptions of their preferences. They utilize GPT-3
to create synthetic narrative queries from user-item interac-
tions via few-shot prompting, then distill this data into re-
trieval models for NDR. Similarly, GENRE (Liu et al., 2023c)
employs GPT-3.5 to augment datasets with new knowledge
about news summarization, user profiles, and personalized
content, aiding the training of content-based recommenda-
tion models. To bridge the gap between language models
and recommender systems, some research views behavior
modeling as an extension of language modeling (Cui et al.,
2022; Liu et al., 2023k). InstructRec (Zhang et al., 2023b),
for instance, interprets recommendation as instruction fol-
lowing. They use ChatGPT to distill a wealth of user-
personalized instruction data reflecting diverse preferences
and intentions based on real historical interactions. This
data is then used to fine-tune a 3B student language model
specifically for recommendation purposes.

4.4.5 Text Generation Evaluation
Text generation evaluation, i.e. NLG evaluation, focuses on
assessing the quality of generated content. Unlike tradi-
tional NLG evaluation metrics like BLEU (Papineni et al.,
2002) or ROUGE (Lin, 2004), which primarily rely on
surface-level text comparisons, LLMs, trained on extensive
corpora and refined through techniques like RLHF, offer a
more human-aligned assessment. This sophistication has led

to the increasing use of LLMs in NLG evaluation (detailed
further in (Li et al., 2024b)). Through KD of LLMs, student
evaluators could enhance inference efficiency and achieve
more flexible and highly customized evaluation (Wang et al.,
2023b; Kim et al., 2024; Xu et al., 2023d; Jiang et al., 2023c; Li
et al., 2024a).

PandaLM (Wang et al., 2023b) concentrates on a pairwise
evaluator designed to compare two pieces of generated
content. It utilizes a teacher LLM (GPT-3.5) to judge which
response is better for a given instruction and input, provid-
ing reasons for its decision. Addressing the need for cus-
tomized and flexible criteria to meet realistic user demands,
Prometheus (Kim et al., 2024) distills GPT-4 to construct a
training dataset that includes reference answers and a vari-
ety of customized scoring rubrics. This dataset is then used
to tune LLaMA for evaluating model-generated responses.
Instructscore (Xu et al., 2023d) takes a more fine-grained ap-
proach by using GPT-4 to create detailed analysis data. This
data is employed to tune LLaMA, enabling it to perform
error analysis on generated texts compared to reference
texts. The system further refines its evaluation capabilities
through self-training with real model-generated response-
reference pairs. For reference-free evaluation across diverse
domains, TigerScore (Jiang et al., 2023c) samples data from
a variety of text generation datasets, such as summariza-
tion, translation, and data-to-text. It distills error analysis
knowledge from GPT-4 and uses this to fine-tune LLaMA.
Lastly, to adapt evaluation to real-world scenarios beyond
conventional NLP tasks, Auto-J (Li et al., 2024a) collects
real-world user queries and their evaluations from a teacher
LLM. This massive dataset of real-world scenarios is then
used to distill evaluation knowledge into LLaMA through
fine-tuning, enhancing its practical applicability.

4.4.6 Code
LLMs, trained on extensive corpora containing code, are
highlighted for their proficiency in code-related tasks. Their
capabilities extend beyond direct code generation to include
the provision of external knowledge and data, which is
crucial in distilling their expertise into smaller, more effi-
cient models. Several works have successfully distilled code
knowledge from LLMs into those compact and specialized
code models (Chaudhary, 2023; Rozière et al., 2023; Gu-
nasekar et al., 2023; Wei et al., 2023; Chen et al., 2023a;
Liu et al., 2023d; Yu et al., 2024; Jain et al., 2023; Su and
McMillan, 2023; Guo et al., 2023d).

A primary focus in these student code models is on
code generation, a task of both common utility and practical
significance. For instance, Code Alpaca (Chaudhary, 2023)
fine-tunes Llama using self-instruct with ChatGPT-distilled
instructions specifically for code generation tasks. Similarly,
Code Llama-instruct (Rozière et al., 2023) is fine-tuned via
self-instruct, prompting Llama-2 (Touvron et al., 2023) with
coding problems, and further refined with unit tests. Phi-
1 (Gunasekar et al., 2023) aims to enhance the quality of dis-
tilled code data by extracting “textbook quality” data from
a teacher LLM, incorporating Python textbook and exercise
data. Magicoder (Wei et al., 2023) addresses potential biases
in teacher LLMs by referencing a wealth of open-source
code, yielding more diverse and grounded data for code
generation. To consider the capability of the student model
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and leverage the feedback of the teacher, PERsD (Chen et al.,
2023a) introduces a Personalized Distillation method where
the teacher LLM refines the student’s generated code based
on the execution feedback of the executor.

However, these models primarily target the code gener-
ation task, lacking generalizability across a broader range
of code-related tasks. To address this issue, MFTCoder (Liu
et al., 2023d) utilizes self-instruct to distill diverse code data
from teacher LLMs for various tasks, such as code comple-
tion and text-to-code generation, training a student model
via multi-task learning. WaveCoder (Yu et al., 2024), in
contrast, creates a comprehensive instruction tuning dataset
covering four universal code-related tasks distilled from
GPT-3.5-turbo. WaveCoder first selects a diverse coreset of
raw data using the KCenterGreedy (Sener and Savarese,
2018) clustering method, then employs the teacher LLM
for generating task definitions and outputs. The teacher
model also plays a role in evaluating and filtering this data.
Notably, WaveCoder demonstrates superior generalization
across different code-related tasks compared to other open-
source models.

4.5 Multi-Modality
Multimodal Large Language Models (MLLMs) surpass tra-
ditional language-only LLMs by understanding and pro-
cessing information across multiple modalities, more closely
mirroring human perception and enabling a broader range
of real-world applications. There is a growing trend towards
developing MLLMs that follow multimodal instructions,
facilitating tasks with enhanced levels of interactivity. To ad-
dress the scarcity of multimodal instruction-following data
and to harness the commonsense and world knowledge
embedded in teacher LLMs, numerous studies have focused
on multimodal knowledge distillation from LLMs (Liu et al.,
2023e; Zhao et al., 2023b; Wang et al., 2023e; Chen et al.,
2023c; Park et al., 2023; Pi et al., 2023; Zhao et al., 2023c; Liu
et al., 2023f; Wu et al., 2023b; Luo et al., 2023d; Jiang et al.,
2023d; Li et al., 2023c; Xu et al., 2023e).

Vision-Language. In the vision-language domain,
LLaVA (Liu et al., 2023e) pioneers the extension of the
Self-Instruct approach from the language to the multimodal
field. It translates images into textual descriptions,
including captions and bounding boxes, and distills
GPT-4 for generating new data in the context of seed
examples. This approach creates a LLaVA-Instruct-150k
dataset, which serves as the foundation for further
developments like LLaVA-1.5 (Liu et al., 2023l) and
GPT4ROI (Zhang et al., 2023e), enhancing the instruction-
following capabilities of MLLMs. To expand the dataset’s
scale, SVIT (Zhao et al., 2023b) introduces a 4.2 million
image dataset, distilled from GPT-4 by leveraging manual
image annotations. It employs a novel data recipe to select
an informative, diverse, and balanced subset of training
data. LVIS-Instruct4V (Wang et al., 2023e) leverages GPT-
4V (OpenAI, 2023), a powerful large multimodal model,
as a teacher to distill a more accurate and context-aware
instruction-following dataset, focusing on fine-grained
understanding. Further advancements include integrating
specific region referencing in image-based instruction
following. For instance, Shikra (Chen et al., 2023c) uses

GPT-4 to distill referential question-answer pairs from
the Flickr30K (Plummer et al., 2015) dataset, enhancing
the understanding of referential regions within images.
LSKD (Park et al., 2023) introduces localized references
to specific image regions, prompting the teacher LLM
to generate commonsense inferences about these areas.
To enhance the visual instruction tuning pipeline with
text-rich images, LLaVAR (Zhang et al., 2023d) employs
the text-only GPT-4 as a teacher, using recognized texts
and image captions to generate 16K conversation pairs for
text-rich images. The resultant student MLLM demonstrates
enhanced interaction skills in content that combines both
text and imagery.

Multiple Modalities. To extend knowledge distillation
of LLMs to encompass more modalities, such as audio
and video, several innovative approaches have been in-
troduced. These methods typically involve transforming
these modalities into a textual format comprehensible to
teacher LLMs, followed by the distillation of the teacher.
Macaw-LLM (Lyu et al., 2023) leverages GPT-4 to generate
instruction-response pairs corresponding to the content of
images or videos. MIMIC-IT (Li et al., 2023f) aims to broaden
the scope to language, image, and video understanding,
creating a substantial dataset with 2.8 million multimodal
instruction-response pairs distilled from ChatGPT. Chat-
Bridge (Zhao et al., 2023d), on the other hand, represents
a novel approach in multimodal language modeling. It
translates various non-textual modalities into text, combin-
ing fine-grained and global descriptions. This information
is then used to distill responses from ChatGPT or GPT-4
through an in-context learning process, effectively bridging
the gap between different modalities.

Others. Beyond distilling instruction-following data, sev-
eral methods have emerged that concentrate on harnessing
different aspects of knowledge from LLMs. For instance,
EMMA (Yang et al., 2023c) trains an MLLM to act as
an embodied reflex agent within a visual environment.
It achieves this by distilling GPT-4’s skills in a parallel
textual world, generating actions and providing reflective
feedback. Silkie (Li et al., 2023h) takes a unique approach by
distilling preferences from GPT-4V, focusing on criteria like
helpfulness and visual faithfulness. Ha et al. (2023) represent
another innovative direction, where it generates, labels,
and distills diverse robot-centric exploration experiences by
LLMs into a multi-task visuo-linguo-motor policy.

5 DOMAIN-SPECIFIED VERTICAL DISTILLATION

This section shifts from skill distillation to examine KD of
LLMs in various vertical domains, including Law, Medical
& Healthcare, Finance, and Science, etc. It delves into cus-
tomizing distilled LLMs for these fields, showing its signifi-
cant role in enhancing domain-specific AI applications. The
taxonomy of these works is shown in Figure 7.

5.1 Law
Law holds a crucial position in molding societies, over-
seeing human interactions, and ensuring justice prevails.
Informed decision-making, legal interpretation, and the pro-
vision of legal advice by professionals hinge on precise
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Verticalization Distillation

Law LawyerLLaMA (Huang et al., 2023b), LawGPT (Cui et al., 2023b), Fuzi (Wu et al., 2023d)

Medical and Healthcare
Huatuogpt (Zhang et al., 2023c), Huatuogpt-II (Chen et al., 2023d), Doctorglm (Xiong et al., 2023),
Alpacare (Zhang et al., 2023f), Huatuo (Wang et al., 2023a), ChatDoctor (Li et al., 2023i),
MedAlpaca (Han et al., 2023), PMC-LLaMA (Wu et al., 2023e), DISC-MedLLM (Bao et al., 2023a)

Finance XuanYuan (Zhang and Yang, 2023)

Science

DARWIN (Xie et al., 2023a), SciGLM (Zhang et al., 2024), WizardMath (Luo et al., 2023b),
MAmmoTH (Yue et al., 2023a), TORA (Gou et al., 2024), AstroLLaMA-Chat (Perkowski et al., 2024),
G-LLaVA (Gao et al., 2023c), GIMLET (Zhao et al., 2023f), LLM-Prop (Rubungo et al., 2023),
InstructMol (Cao et al., 2023a), Prot2Text (Abdine et al., 2023), BioMedGPT (Luo et al., 2023e),
xTrimoPGLM (Chen et al., 2024e), K2 (Deng et al., 2023), OceanGPT (Bi et al., 2023),
MarineGPT (Zheng et al., 2023b), GeoGalactica (Lin et al., 2024),

Miscellaneous EduChat (Dan et al., 2023), Owl (Guo et al., 2023b)

Fig. 7: Taxonomy of Verticalization Distillation.

and current information. Legal intelligent applications in
different scenarios usually require combinations of multiple
fundamental capabilities of legal text retrieval, understand-
ing, reasoning and generating (Zhang et al., 2023g; Sun,
2023; Lai et al., 2023). To address challenges like legal ter-
minology, subtle interpretations, and the constant evolution
of legislation presents distinctive challenges that demand
customized resolutions. To handle the above challenges,
several studies have investigated the customization of LLMs
for intelligent legal services (Cui et al., 2023b; Yue et al.,
2023b; Huang et al., 2023b; Wu et al., 2023d). This involves
a continued pre-training process on extensive legal corpora,
followed by fine-tuning with self-constructed instructions or
augmented data using advanced LLMs.

Huang et al. (2023b) have unveiled a Chinese legal
large model named LawyerLLaMA. The model undergoes
an initial pre-training phase on an extensive legal corpus,
systematically assimilating knowledge of the Chinese legal
system. Subsequently, fine-tuning occurs through the analy-
sis of objective questions from the Chinese National Judicial
Examination (Zhong et al., 2020) and the gathering of re-
sponses to legal consultations using ChatGPT. This process
equips the model with the ability to apply legal knowledge
to specific scenarios. Cui et al. (2023b) present LawGPT,
built upon the foundation of OpenLLAMA. The model is
trained using a construction process that incorporates real-
world legal text, legal regulations, judicial interpretations,
and actual legal consultation data. Additionally, the authors
utilize the ChatGPT API for assisted construction, enabling
the generation of supplementary data derived from the
existing dataset. Wu et al. (2023d) have developed a large-
scale Chinese legal model (named Fuzi) with ChatGLM
as its foundation. This model undergoes training on an
extensive Chinese legal corpus, which incorporates unsu-
pervised judicial language data, including diverse judgment
documents and legal regulations. Additionally, it undergoes
supervised judicial fine-tuning with data encompassing le-
gal QA and case retrieval. Fuzi’s training also involves both
general instruction fine-tuning datasets, such as Alpaca,
and domain-specific instruction fine-tuning datasets from
LawyerLLaMA (Huang et al., 2023b) and LawGPT (Cui
et al., 2023b).

5.2 Medical and Healthcare
The integration of LLMs holds great potential for trans-
forming medicine and healthcare. Extensive research has
focused on adapting general-purpose LLMs to the medical
domain (Singhal et al., 2023), such as electronic health
records, and healthcare applications like patient care (Zhu
et al., 2023). Recent work has focused on enhancing medi-
cal instruction-following data with advanced teacher LLMs
to better align with complex user instructions. Given the
abundance of medical data, most studies combine real-
world data with distilled instruction data from teacher
LLMs (Zhang et al., 2023c; Xiong et al., 2023; Zhang et al.,
2023f; Wang et al., 2023a; Li et al., 2023i; Han et al., 2023; Wu
et al., 2023f; Bao et al., 2023a; Chen et al., 2023d).

While existing studies predominantly concentrate on
training using dedicated medical dialogue datasets com-
prising medical textbooks (Wu et al., 2023e), biomedical
papers (Luo et al., 2023e) medical knowledge-graphs (Bao
et al., 2023b), or authentic doctor-patient interactions (Bao
et al., 2023b), an expanding body of research is delv-
ing into the augmentation of medical instruction-following
data with advanced LLMs to enhance the alignment with
practical user instructions. Zhang et al. (2023c) introduce
HuatuoGPT specifically tailored for medical consultations.
The model leverages both distilled data from ChatGPT and
real-world data from doctors during the supervised fine-
tuning stage. In a parallel effort, Xiong et al. (2023) con-
struct a dataset of medical dialogues in Chinese, em-
ploying ChatGPT’s assistance. Their methodology encom-
passed various techniques to train DoctorGLM, an easily
deployable LLM designed for tasks such as diagnoses,
drug recommendations, and other medical advice. Zhang
et al. (2023f) fine-tune LLaMA-series models using 52k
diverse, machine-generated, medical instruction-following
data named MedInstruct-52k. This effort resulted in the
development of AlpaCare, a model demonstrating robust
medical proficiency and generalizability across both general
and medical-specific domain free-form instruction evalu-
ations. In a different vein, Wang et al. (2023a) propose
HuaTuo, a LLaMA-based model that undergoes supervised
fine-tuning with generated QA instances. This refinement
process enhances the model’s possession of more reliable
medical knowledge. Li et al. (2023i) introduce ChatDoctor,
which was first trained as a generic conversation model
based on LLaMA. It utilized 52K instruction-following data
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from Stanford University’s Alpaca project (Taori et al.,
2023). Subsequently, the conversation model underwent
fine-tuning on a dataset of 100K patient-physician conver-
sations collected from an online medical consultation web-
site. This two-step training process underscores the model’s
adaptability to diverse conversational contexts, particularly
those specific to patient-physician interactions.

Built upon existing datasets, MedAlpaca (Han et al.,
2023) proposes to reconstruct the data with GPT-3.5-Turbo,
which is then used to fine-tune LLMs for effective medical
applications. Furthermore, PMC-LLaMA (Wu et al., 2023f)
proposes a training framework (i.e., continual pre-training
and domain-specific multi-task supervised fine-tuning) to
adapt a general LLM to the medicine domain, where GPT-
4 is leveraged to write synonymous sentences for data
augmentation in the SFT. To adapt LLMs to real-world
medical consultation, DISC-MedLLM (Bao et al., 2023a)
leverages GPT-3.5 to 1) construct 50K QA pairs in a few-
shot manner and 2) re-generate the 420k dialogues based
on real cases, which are then used to train LLMs in a
supervised fine-tuning manner. More recently, HuatuoGPT-
II (Chen et al., 2023d) proposes a one-stage training with
instruction-formatting unification of domain data collection
for medical adaption upon LLMs, where GPT-4 is used to
formulate medical questions to fine-tuning instructions.

These diverse studies collectively contribute to the ad-
vancing field of the medical domain, facilitated by knowl-
edge distillation from advanced LLMs. Through the ex-
ploration of various methodologies, these approaches pro-
vide valuable insights into the challenges and potential
breakthroughs at the intersection of cutting-edge language
models and medical applications.

5.3 Finance

The application of LLMs to the finance domain (Xue et al.,
2023) significantly transforms how financial data is ana-
lyzed, decisions are made, and customer interactions are
managed. In finance, LLMs offer unprecedented capabil-
ities in understanding complex financial documents, pre-
dicting market trends, and automating risk assessment,
thus enabling more informed and faster decision-making
processes. By processing and analyzing vast amounts of
unstructured financial data, such as news articles, reports,
and real-time market feeds, LLMs can identify patterns
and insights that were previously inaccessible, leading to
more accurate forecasts and strategic financial planning.
Furthermore, LLMs enhance customer experiences through
personalized financial advice, automated customer service,
and sophisticated chatbots that can handle complex queries.
This level of automation and insight has the potential to
increase efficiency, reduce operational costs, and improve
compliance and risk management practices in financial
institutions, making LLMs a transformative force in the
finance sector. Knowledge distillation from a proprietary
LLM is still under-explored, and most existing works focus
on adapting LLMs to finance applications by continual pre-
training on finance-specific corpora (Wu et al., 2023g; Lu
et al., 2023) or fine-tuning in a supervised manner on multi-
task finance-specific instructions (Yang et al., 2023e; Xie
et al., 2023b; Wang et al., 2023k).

Specifically, XuanYuan (Zhang and Yang, 2023) lever-
ages self-instruct over seed data and self-QA over struc-
tured/unstructured data to generate instruction data in the
finance domain, which is used to train a finance LLM.

5.4 Science
The integration of LLMs into the science domain (Taylor
et al., 2022; Yin et al., 2023b) represents a paradigm shift
in research, knowledge discovery, and the dissemination
of scientific information. In science, LLMs are leveraged to
digest and synthesize vast amounts of literature, aiding in
the identification of new research opportunities and the ac-
celeration of scientific breakthroughs. They facilitate the un-
derstanding of complex scientific concepts by summarizing
research papers, generating hypotheses, and even drafting
research proposals and manuscripts, thus significantly re-
ducing the time researchers spend on literature review and
enabling them to focus more on experimental work. LLMs
also democratize access to scientific knowledge by pro-
viding layperson summaries of complex research findings,
making science more accessible to non-experts and fostering
a broader public understanding of scientific advancements.
By enhancing the efficiency of research workflows and
fostering interdisciplinary collaborations, LLMs are poised
to accelerate the pace of scientific discovery and innovation
across various fields. To distill knowledge from an LLM,
DARWIN Series (Xie et al., 2023a) utilizes a semi self-
instruct for instruction generation for science papers, which
is then used to fine-tune an LLM. SciGLM (Zhang et al.,
2024) proposes to train a scientific LLM, which prompts a
teacher LLM to generate detailed answers for unlabelled
scientific questions, as well as a self-reflective critic-and-
revise to improve data quality. Besides the above knowledge
distillation methods to adapt LLMs to science, we will also
delve into how the distillation happens in sub-domains, e.g.,
mathematics, astronautics, chemistry, etc.

Mathematics. The application of LLMs within the sub-
domain of mathematics heralds a transformative era in
mathematical research, education, and problem-solving
(Azerbayev et al., 2023; Yu et al., 2023b). LLMs in mathemat-
ics facilitate the exploration and understanding of complex
mathematical theories and problems by providing intuitive
explanations, proofs, and solutions that can bridge the
gap between advanced mathematical concepts and learn-
ers at various levels. These models have shown potential
in conjecturing new mathematical theorems and patterns,
thus opening new avenues for research and discovery that
might not have been readily accessible to humans alone.
In education, they serve as personalized tutors, offering
students step-by-step guidance through mathematical prob-
lems and adapting explanations to the learner’s level of un-
derstanding. This democratizes access to high-quality math-
ematical education and fosters a deeper appreciation and
understanding of mathematics among a broader audience.
By enhancing collaborative efforts through the generation
of new ideas and the simplification of complex concepts,
LLMs are poised to significantly advance the field of math-
ematics, making it more accessible, efficient, and innova-
tive. WizardMath (Luo et al., 2023b) enhances the mathe-
matical reasoning capabilities of Llama-2 by applying the
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novel Reinforcement Learning from Evol-Instruct Feedback
(RLEIF) method, significantly outperforming other open-
source LLMs on the GSM8k and MATH benchmarks, as
well as surpassing several closed-source LLMs including
ChatGPT-3.5 and Minerva. MAmmoTH (Yue et al., 2023a) is
a series of open-source LLMS specifically developed for gen-
eral math problem-solving, achieving superior performance
on nine mathematical reasoning datasets. Utilizing a novel
instruction tuning dataset called MathInstruct, which com-
bines chain-of-thought and program-of-thought rationales,
MAmmoTH models demonstrate substantial improvements
over existing models. TORA (Gou et al., 2024), a series of
Tool-integrated Reasoning Agents, significantly advances
mathematical problem-solving by combining natural lan-
guage reasoning with the use of external computational
tools. It markedly outperforms existing open-source models
on 10 mathematical reasoning datasets, showcasing notable
improvements over both rationale-based and program-
based approaches, and introduces innovative training tech-
niques such as output space shaping to enhance model rea-
soning capabilities. G-LLaVA (Gao et al., 2023c) introduces
a significant advancement in geometric problem-solving for
LLMs by leveraging a multimodal approach that combines
text and image data. This model, utilizing the Geo170K
dataset comprising over 170,000 geometric image-caption
and question-answer pairs, demonstrates remarkable im-
provements over GPT-4V on the MathVista benchmark.

Astronautics. The application of LLMs in astronau-
tics (Nguyen et al., 2023) propels the field forward.
AstroLLaMA-Chat (Perkowski et al., 2024) is an ad-
vancement of the AstroLLaMA model, leveraging a 7B-
parameter LLaMA-2 model and targeted continual pre-
training on a curated astronomy corpus to enhance per-
formance in astronomy-focused question-answering. This
model demonstrates significant improvements in special-
ized topic comprehension and introduces a chat-enabled
version for the astronomy community, highlighting the
effectiveness of domain-specific knowledge distillation in
achieving superior performance on specialized topics.

Chemistry and Materials Science. The integration of LLMs
into Chemistry and Materials Science has revolutionized
the way researchers approach the discovery and develop-
ment of new compounds and materials. By analyzing vast
datasets and scientific literature, LLMs can predict the prop-
erties and behaviors of substances, significantly accelerating
the innovation cycle.

GIMLET (Zhao et al., 2023f), Graph Instruction based
MolecuLe zEro-shoT learning, is a novel approach to
molecule property prediction that integrates graph and text
data within a single language model framework, aiming
to improve instruction-based zero-shot learning for molec-
ular tasks. By leveraging a transformer mechanism with
generalized position embedding and decoupled attention,
GIMLET significantly outperforms traditional molecule-text
baselines in zero-shot learning scenarios, demonstrating
the model’s effectiveness in generalizing from instructions
to a broad range of molecule-related tasks without prior
explicit task-specific training. LLM-Prop (Rubungo et al.,
2023), leveraging the T5 model, showcases how LLMs can
outperform SoTA graph neural networks in predicting the

physical and electronic properties of crystalline solids from
text descriptions. This approach underscores the potential of
text-based methods in materials science, offering significant
improvements in prediction accuracy while also contribut-
ing a benchmark dataset, TextEdge, to foster further re-
search in this emerging field. InstructMol (Cao et al., 2023a)
integrates multi-modal data, aligning molecular structures
with natural language instructions for drug discovery tasks.
Through a novel two-stage instruction-tuning approach,
it significantly enhances performance in molecule-related
tasks, establishing a reliable molecular assistant that outper-
forms existing LLMs and reduces the performance gap with
specialized models. This demonstrates the value of multi-
modal integration in developing versatile tools for complex
domains like drug discovery.

Biology. In the field of Biology, particularly in the study
of proteins, DNA, and RNA, LLMs are revolutionizing our
understanding of the fundamental molecules of life. By an-
alyzing vast datasets of biological sequences and structures,
LLMs can predict the three-dimensional shapes of proteins,
potential functions, and interactions at a scale and speed
beyond traditional computational methods. This capability
is critical for unraveling the complexities of biological sys-
tems, advancing drug discovery by identifying targets and
designing molecules with high precision, and understand-
ing genetic diseases through the interpretation of genomic
variations.

Prot2Text (Abdine et al., 2023) introduces a novel multi-
modal framework for generating protein function descrip-
tions in free text by combining GNNs and LLMs. This
approach, which integrates structural and sequential protein
information, highlights the transformative impact of knowl-
edge distillation through the fusion of GNNs and LLMs
for accurate protein function prediction, potentially revolu-
tionizing research in bioinformatics and biological sciences.
BioMedGPT (Luo et al., 2023e) introduces a multimodal
generative pre-trained transformer specifically designed for
the biomedicine domain, emphasizing the significance of
aligning molecular, protein, and natural language modal-
ities to enhance biomedical question-answering, molecule,
and protein QA tasks. This framework showcases the critical
role of knowledge distillation in bridging the gap between
complex biological data and human language, thereby fa-
cilitating groundbreaking advancements in drug discovery
and therapeutic target identification. xTrimoPGLM (Chen
et al., 2024e), a unified 100B-scale pre-trained transformer
model, addresses both protein understanding and genera-
tion tasks by integrating autoencoding and autoregressive
pre-training objectives. Its significant advancements over
existing models in 18 protein understanding benchmarks
and its capability in de novo protein sequence generation
highlight the model’s importance in advancing the field of
protein science through knowledge distillation.

Geography, Geology, and Environmental Science. The inte-
gration of LLMs into Geography, Geology, and Environmen-
tal Science is revolutionizing these fields by enhancing data
analysis, predictive modeling, and interdisciplinary research
(Roberts et al., 2023; Lin et al., 2023b; Wang et al., 2023l).

K2 (Deng et al., 2023), the first-ever LLM specialized in
the geoscience domain, demonstrates the significant impact
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of knowledge distillation in vertical domain specialization.
By adapting the general-domain LLaMA-7B model with a
5.5B token geoscience corpus and introducing the GeoSignal
instruction tuning dataset, K2 showcases enhanced perfor-
mance in geoscience knowledge understanding and uti-
lization. The model’s development highlights a novel ap-
proach to efficiently gather domain-specific data and align
model responses to specialized user queries. OceanGPT (Bi
et al., 2023), introduced as the first LLM for ocean sci-
ence tasks, underscores the vital role of knowledge distil-
lation in the vertical domain of oceanography. It leverages
DOINSTRUCT, a novel framework for generating domain-
specific instruction data through multi-agent collaboration,
and establishes OCEANBENCH, a benchmark for evaluat-
ing LLMs in the ocean domain. MarineGPT (Zheng et al.,
2023b) showcases the transformative potential of knowl-
edge distillation in the marine domain by leveraging a
novel vision-language model tailored for marine science.
Utilizing the Marine-5M dataset, which includes over 5
million marine image-text pairs, MarineGPT excels in pro-
viding detailed, accurate, and domain-specific responses.
GeoGalactica (Lin et al., 2024) represents a pioneering step
in specializing LLMs for geoscience, leveraging a 30 billion
parameter model pre-trained on a vast geoscience corpus.
This model is notable for being the largest of its kind within
the geoscience domain.

5.5 Miscellaneous
Knowledge distillation of LLMs has vast potential across
various verticals beyond the ones previously discussed,
highlighting their versatility and transformative impact
across different industries. For instance, in the education
sector, EduChat (Dan et al., 2023) exemplifies a chatbot
system that provides tailored support to teachers, students,
and parents. KD is central to its design, leveraging pre-
training on educational data followed by fine-tuning with
custom instructions to deliver capabilities such as essay
evaluation and emotional support. Similarly, Owl (Guo
et al., 2023b), an LLM designed for IT operations, boosts
operational efficiency using the Owl-Instruct dataset, which
is distilled from ChatGPT. By applying a mixture-of-adapter
strategy for domain-specific tuning, it enhances analysis and
performance in IT-related tasks.

6 OPEN PROBLEMS

Further Data Selection How much data is required for LLM
distillation and how to filter out the low-quality data remain
open-domain questions. In the field of instruction tuning,
one of the most commonly used methods for distillation,
Zhou et al. (2023a) propose that only 1000 human-curated
high-quality data is enough for the alignment of LLMs,
hypothesizing that LLMs have learned the required knowl-
edge from pretraining and only a small amount of data is
required for the alignment. Its finding further raises a new
question, how to automatically select the data for better
distillation? Chen et al. (2023e) directly apply ChatGPT to
rate each data sample together with explanations, and then
the data is selected based on the rating. Cao et al. (2023b)
split the existing instruction-tuning datasets and trains a

linear function to select the most effective data based on
their statistical properties. Li et al. (2023j) propose a data
selection pipeline similar to self-distillation, in which the
LLM firstly learns from a small subset of the data to get the
basic ability, and then further uses this learned model to rate
for the original dataset. Du et al. (2023b) propose to consider
three aspects including quality, coverage, and necessity for
the filtering process. Li et al. (2023k) select instruction data
by evaluating their one-shot improvement on a hold-out
set. Li et al. (2024f) recently propose Superfiltering, which is
able to utilize small language models like GPT2 to filter out
the high-quality subset from a given high-quality dataset.
Despite the emergence of these works working on data fil-
tering, How to efficiently select the optimal distillation data
for LLMs, and How much data is required for distillation
are still unsolved.

Reduce the Distillation Cost (Lightweight Methods) De-
spite the remarkable abilities of the latest LLMs, their sig-
nificant resource requirements underscore the urgent need
to find efficient solutions to overcome these challenges.
Common ways to further reduce the distillation cost include
Model Compression and Efficient Fine-Tuning. In the realm
of Model Compression, Quantization (Frantar et al., 2023;
Dettmers et al., 2022; Kim et al., 2023c; Tao et al., 2022b; Yao
et al., 2022; Xiao et al., 2023), Parameter Pruning (Ma et al.,
2023d; Zhang et al., 2023h; Frantar and Alistarh, 2023), and
Low-Rank Approximation (Xu et al., 2023g; Li et al., 2023l)
are commonly utilized. In the realm of Efficient Fine-Tuning,
Parameter Efficient Fine-Tuning (Hu et al., 2023b; Liu et al.,
2022c; Wang et al., 2022b; Hu et al., 2021; Li and Liang,
2021; Liu et al., 2022d), and Memory Efficient Fine-Tuning
(Dettmers et al., 2023; Kim et al., 2023d; Malladi et al., 2024)
are utilized. A detailed survey on Efficient Large Language
Models can be found here in Wan et al. (2024b). The problem
that remains is how can we further compress the model and
build effective distillation algorithms.

Multi-Teacher Distillation Most of the existing distilled
models are distilled from a single teacher model, how-
ever, it is widely accepted that models trained with dif-
ferent sources of data have various capabilities. Thus a
question arises: Is it possible to distill knowledge from
different teacher models into one student model? BabyL-
lama (Timiryasov and Tastet, 2023) proposes to distill the
knowledge from both the GPT2 and LLaMA into the small-
size student models. Ensemble-Instruct (Lee et al., 2023b)
tries to generate both instructions and responses ensembled
from several different LLMs with RougeL as the indicator.
FUSELLM (Wan et al., 2024a) externalizes the collective
knowledge and unique strengths by leveraging the genera-
tive distributions of different LLMs aiming to train a student
model beyond those of any individual source LLM. Despite
the recent progress in this topic, it still remains an under-
explored topic.

Explore Richer Knowledge from Teacher LLMs As indicated
in Table 3, the majority of teacher LLMs are closed-source
due to their advanced capabilities. Consequently, current
methodologies primarily focus on using the generations
from these models as hard labels, training student models
through simple supervised fine-tuning. However, beyond
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the straightforward imitation of output behaviors via hard
labels, there is a growing interest in harnessing richer
knowledge from teacher LLMs, including feedback and
feature knowledge, as well as exploring diverse combina-
tions of knowledge elicitation methods. As highlighted in
the Feedback section, teachers can provide various types of
feedback based on the student’s outputs (Lee et al., 2023a;
Jiang et al., 2023b; Chen et al., 2023a). Similarly, the Feature
section discusses how knowledge based on features, such
as logits serving as soft labels, can offer deeper, intrinsic
insights into the teacher model (Gu et al., 2024; Agarwal
et al., 2024). These explorations have demonstrated promis-
ing outcomes, suggesting that access to a broader spectrum
of knowledge can significantly enhance student model per-
formance beyond what is achievable through simple SFT
distillation alone. This highlights the critical need for further
research into varied knowledge extraction methods from
teacher LLMs to augment the effectiveness of KD processes.

Overcoming Catastrophic Forgetting During Distillation
Previous research has delved into the fine-tuning of LLMs
to acquire the ability to follow instructions or transfer
knowledge for forthcoming tasks, skills, or domains, lever-
aging advancements in LLM technology. Nevertheless, in-
vestigations have revealed that the continual fine-tuning of
LLMs on particular datasets (skills, domains) can lead to
a phenomenon known as catastrophic forgetting, wherein
previously acquired knowledge and problem-solving abil-
ities for earlier tasks are compromised (Chen et al., 2023f;
Kotha et al., 2023; Koloski et al., 2023; Wu et al., 2024;
Luo et al., 2023f). Earlier studies in machine learning and
deep learning have investigated various techniques to help
mitigate forgetting during the fine-tuning or continue learn-
ing process, such as rehearsal, which entails periodically
revisiting and training on past data (Kirkpatrick et al., 2017;
Rostami et al., 2019; Rolnick et al., 2019), as well as reg-
ularization methods like elastic weight consolidation (Lee
et al., 2017), or dynamic architecture methods (Mallya et al.,
2018; Wang et al., 2022c; Hu et al., 2023c; Chen et al., 2023f).
To address the challenges of catastrophic forgetting and to
enhance the diversity of generated instructions in knowl-
edge distillation for LLMs, Jiang et al. (2023b) randomly
sample an instruction from the easy instructions and also
prompt the generator to generate a new instruction that
belongs to the same domain as the sampled one. In a similar
vein, Li et al. (2023m) study the problem of instruction-
tuning in multi-modal LLMs knowledge distillation and
introduce a competitive distillation framework. The model
tries to produce new instructions that differ in content but
are similar in difficulty to the original pictures in the multi-
modal augmentation phase, so as to alleviate catastrophic
forgetting of the model and enhance the diversity of the
instruction tuning pool. Chen et al. (2023f) propose the
Lifelong-MoE (Mixture-of Experts) architecture based on
general language models, which dynamically adds model
capacity via adding experts with regularized pretraining.
Additionally, the model also introduces implicit regulariza-
tion via distillation of the knowledge from old experts and
gatings to effectively preserve old knowledge. Zeng et al.
(2023b) propose a new generative-based rehearsal method
as Dirichlet Continual Learning (DCL). This method com-

bines task distribution modeling and knowledge distillation
to mitigate catastrophic forgetting without requiring access
to the old data. To evaluate the effectiveness of instruction
tuning in the context of continuous learning tasks, Zhang
et al. (2023i) introduce a more challenging yet practical
problem called Continual Instruction Tuning (CIT) and also
establish a benchmark suite consisting of learning and eval-
uation protocols. Although current research has explored
some simple methods to alleviate knowledge forgetting dur-
ing model fine-tuning or knowledge distillation processes,
effectively avoiding catastrophic forgetting across domains
and skills remains a challenging issue. How to retain the
original model’s capabilities effectively during knowledge
distillation or transfer processes is still a challenging prob-
lem.

Trustworthy Knowledge Distillation Trustworthiness in
LLMs is paramount, encompassing attributes such as truth-
fulness, safety, fairness, robustness, privacy, and adherence
to machine ethics (Sun et al., 2024a). The rapid advancement
of LLMs brings to the forefront concerns regarding their
trustworthiness, stemming from their complex outputs, the
biases present in vast training datasets, and the potential
inclusion of private information. Current efforts in KD
of LLMs primarily focus on distilling various skills from
LLMs, with relatively little attention paid to trustworthiness
aspects. Existing studies tend to concentrate on a subset of
trustworthiness aspects, such as helpfulness, honesty, and
harmlessness (Bai et al., 2022a; Yang et al., 2024; Cui et al.,
2023a). Consequently, in the distillation process, student
models may inherit issues related to trustworthiness from
their teacher LLMs. As assessed in Sun et al. (2024a), smaller
open-source LLMs generally fall short of their proprietary
counterparts in trustworthiness metrics. Therefore, consid-
ering trustworthiness alongside the distillation of capabil-
ities into student models is crucial. It is imperative that
future research on KD not only enhances the capabilities
of student models but also ensures that broader aspects of
trustworthiness are meticulously addressed.

Weak-to-strong Distillation. The concept of “weak-to-
strong generalization” in LLMs (Burns et al., 2023) empha-
sizes the potential to leverage weak supervision to elicit
the advanced capabilities of more powerful models. This
approach challenges the traditional distillation paradigm by
suggesting that even with limited or imperfect supervision,
it is possible to enhance the performance of LLMs sig-
nificantly. This necessitates exploring innovative strategies
that enable weaker models to guide the learning process
of stronger ones effectively, highlighting the importance
of developing methods that can bridge the gap between
these models. Such research could unlock new avenues
for improving LLMs’ efficiency and effectiveness, making
the pursuit of “weak-to-strong distillation” a crucial area
for future investigations in this LLM era. Initially, Burns
et al. (2023) investigates whether weak model supervision
can unlock the full capabilities of much stronger models.
Through experiments with pre-trained language models in
the GPT-4 family across NLP, chess, and reward modeling
tasks, it finds that finetuning strong models on weak labels
leads to better performance than their weak supervisors,
demonstrating weak-to-strong generalization. Then, Li et al.
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(2024g) introduce Superfiltering, a method that employs
smaller, weaker models like GPT-2 to select high-quality
data for fine-tuning larger, more capable models such as
LLaMA2. This approach is rooted in discovering a strong
consistency in evaluating instruction tuning data difficulty
across models of varying sizes. More recently, Ji et al. (2024)
introduce Aligner, a novel approach for aligning LLMs with
human values and intentions by utilizing weak supervisory
signals from smaller models to improve the performance
of larger models. However, Burns et al. (2023) find that
achieving the full capabilities of strong models requires
more than naive finetuning, suggesting the need for further
research in this area. Therefore, open questions still remain
about 1) What are the theoretical and practical limits of
weak-to-strong distillation? Can weak supervision reliably
extract and enhance the full spectrum of capabilities in
stronger models across all domains, or are there inherent
limitations based on model architecture or task specificity?
2) How do we identify or design the optimal weak su-
pervisors for distilling knowledge into stronger models? Is
there a framework or criteria to predict which weak models
would be most effective in guiding the learning process of
more complex models for specific tasks? 3) To what extent
are weak-to-strong distillation techniques transferable and
scalable across different sizes and types of models? How
can these methods be adapted to ensure efficacy and ef-
ficiency in distilling knowledge from very large models to
significantly smaller ones, especially in resource-constrained
environments?

Self-Alignment. Aligning LLMs traditionally relies heavily
on human or teacher LLMs to supply extensive preference
data. Consequently, the alignment of the student model
is limited by the quantity of distilled preference data and
the teacher’s capabilities. Self-alignment offers a promising
alternative, aiming to enhance alignment beyond the con-
straints of teacher-provided preferences. In self-alignment,
the student model endeavors to autonomously improve
and align its responses with desired behaviors, including
generating model-written feedback, critiques, and explana-
tions. Several studies have explored utilizing the student
model’s inherent capabilities to generate knowledge for
alignment (Bai et al., 2022a; Sun et al., 2024b; Li et al., 2024c;
Yuan et al., 2024a). Beyond merely producing improved
responses (Bai et al., 2022a; Sun et al., 2024b), implemen-
tations of self-alignment include employing the student as
its reward model to offer feedback (Yuan et al., 2024a), a
strategy that merges Self-Knowledge with Feedback methods
of eliciting knowledge. We advocate for increasingly lever-
aging the student model itself to provide feedback, thereby
enhancing self-alignment capabilities. This approach not
only facilitates moving beyond traditional human/teacher
preference-based rewards but also opens avenues for con-
tinual self-improvement and alignment.

7 CONCLUSION AND DISCUSSION

This survey has explored the diverse landscape of knowl-
edge distillation for LLMs, highlighting key techniques,
applications, and challenges. KD plays a crucial role in
democratizing access to advanced LLM capabilities, pro-
viding cutting-edge advancements without the high costs

of training and deployment. Our review emphasizes vari-
ous KD approaches, from algorithmic innovations to skill
enhancement and vertical distillation. Notably, data aug-
mentation and synthesis within KD emerge as vital tools
for improving distillation, revealing the powerful synergy
between enriched training data and effective model distil-
lation. As the AI landscape evolves, rapid advancements
in model architectures and training methods present both
challenges and research opportunities for KD of LLMs.
Future innovation will need to focus on achieving efficiency,
transparency, and ethics while maintaining model trust-
worthiness. Furthermore, promising areas such as weak-
to-strong generalization, self-alignment, and multi-modal
LLMs offer the potential to enhance the capabilities of
distilled models. In conclusion, the KD of LLMs is set to play
a pivotal role in the future of AI research. As highlighted
in this survey, sustained research efforts will be critical in
developing accessible, efficient, and responsible AI for all.
Importantly, when conducting KD of LLMs like ChatGPT
or Llama, it’s essential to comply with the model providers’
terms4, such as the restrictions on developing competitive
products.
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T. Oberhauser, A. Löser, D. Truhn, and K. K.
Bressem, “Medalpaca - an open-source collection of
medical conversational AI models and training data,”
CoRR, vol. abs/2304.08247, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2304.08247

C. Wu, W. Lin, X. Zhang, Y. Zhang, Y. Wang, and W. Xie,
“Pmc-llama: Towards building open-source language
models for medicine,” arXiv preprint arXiv:2305.10415,
vol. 6, 2023.

Z. Bao, W. Chen, S. Xiao, K. Ren, J. Wu, C. Zhong,
J. Peng, X. Huang, and Z. Wei, “Disc-medllm: Bridging
general large language models and real-world medical
consultation,” CoRR, vol. abs/2308.14346, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2308.14346

Z. Gou, Z. Shao, Y. Gong, yelong shen, Y. Yang,
M. Huang, N. Duan, and W. Chen, “ToRA: A tool-
integrated reasoning agent for mathematical problem
solving,” in The Twelfth International Conference on
Learning Representations, 2024. [Online]. Available: https:
//openreview.net/forum?id=Ep0TtjVoap

E. Perkowski, R. Pan, T. D. Nguyen, Y. Ting, S. Kruk,
T. Zhang, C. O’Neill, M. Jablonska, Z. Sun, M. J.
Smith, H. Liu, K. Schawinski, K. Iyer, I. Ciuca,
and UniverseTBD, “Astrollama-chat: Scaling astrollama
with conversational and diverse datasets,” CoRR,
vol. abs/2401.01916, 2024. [Online]. Available: https:
//doi.org/10.48550/arXiv.2401.01916

J. Gao, R. Pi, J. Zhang, J. Ye, W. Zhong, Y. Wang, L. Hong,
J. Han, H. Xu, Z. Li, and L. Kong, “G-llava: Solving
geometric problem with multi-modal large language
model,” CoRR, vol. abs/2312.11370, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2312.11370

H. Zhao, S. Liu, C. Ma, H. Xu, J. Fu, Z.-H. Deng, L. Kong,
and Q. Liu, “GIMLET: A unified graph-text model
for instruction-based molecule zero-shot learning,” in
Thirty-seventh Conference on Neural Information Processing
Systems, 2023. [Online]. Available: https://openreview.
net/forum?id=Tt6DrRCgJV

A. N. Rubungo, C. Arnold, B. P. Rand, and A. B. Dieng,
“Llm-prop: Predicting physical and electronic properties
of crystalline solids from their text descriptions,”
CoRR, vol. abs/2310.14029, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2310.14029

H. Cao, Z. Liu, X. Lu, Y. Yao, and Y. Li, “Instructmol:
Multi-modal integration for building a versatile and
reliable molecular assistant in drug discovery,” CoRR,
vol. abs/2311.16208, 2023. [Online]. Available: https:
//doi.org/10.48550/arXiv.2311.16208

H. Abdine, M. Chatzianastasis, C. Bouyioukos, and
M. Vazirgiannis, “Prot2text: Multimodal protein’s
function generation with GNNs and transform-
ers,” in Deep Generative Models for Health
Workshop NeurIPS 2023, 2023. [Online]. Available:
https://openreview.net/forum?id=EJ7YNgWYFj

Y. Luo, J. Zhang, S. Fan, K. Yang, Y. Wu, M. Qiao,

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/W04-1013
https://doi.org/10.48550/arXiv.2308.14731
https://doi.org/10.48550/arXiv.2308.14731
https://doi.org/10.48550/arXiv.2312.15692
https://openreview.net/forum?id=H1aIuk-RW
https://api.semanticscholar.org/CorpusID:263218031
https://api.semanticscholar.org/CorpusID:263218031
https://github.com/irlab-sdu/fuzi.mingcha
https://github.com/irlab-sdu/fuzi.mingcha
https://doi.org/10.48550/arXiv.2304.08247
https://doi.org/10.48550/arXiv.2308.14346
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://doi.org/10.48550/arXiv.2401.01916
https://doi.org/10.48550/arXiv.2401.01916
https://doi.org/10.48550/arXiv.2312.11370
https://openreview.net/forum?id=Tt6DrRCgJV
https://openreview.net/forum?id=Tt6DrRCgJV
https://doi.org/10.48550/arXiv.2310.14029
https://doi.org/10.48550/arXiv.2311.16208
https://doi.org/10.48550/arXiv.2311.16208
https://openreview.net/forum?id=EJ7YNgWYFj


41

and Z. Nie, “Biomedgpt: Open multimodal generative
pre-trained transformer for biomedicine,” arXiv preprint
arXiv:2308.09442, 2023.

B. Chen, X. Cheng, P. Li, Y. Geng, J. Gong, S. Li, Z. Bei,
X. Tan, B. Wang, X. Zeng, C. Liu, A. Zeng, Y. Dong,
J. Tang, and L. Song, “xtrimopglm: Unified 100b-scale
pre-trained transformer for deciphering the language
of protein,” CoRR, vol. abs/2401.06199, 2024. [Online].
Available: https://doi.org/10.48550/arXiv.2401.06199

C. Deng, T. Zhang, Z. He, Y. Xu, Q. Chen, Y. Shi, L. Fu,
W. Zhang, X. Wang, C. Zhou, Z. Lin, and J. He, “K2:
A foundation language model for geoscience knowledge
understanding and utilization,” 2023.

Z. Bi, N. Zhang, Y. Xue, Y. Ou, D. Ji, G. Zheng, and
H. Chen, “Oceangpt: A large language model for ocean
science tasks,” CoRR, vol. abs/2310.02031, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2310.02031

Z. Zheng, J. Zhang, T. Vu, S. Diao, Y. H. W. Tim, and
S. Yeung, “Marinegpt: Unlocking secrets of ocean to
the public,” CoRR, vol. abs/2310.13596, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2310.13596

Z. Lin, C. Deng, L. Zhou, T. Zhang, Y. Xu, Y. Xu, Z. He,
Y. Shi, B. Dai, Y. Song, B. Zeng, Q. Chen, T. Shi,
T. Huang, Y. Xu, S. Wang, L. Fu, W. Zhang, J. He,
C. Ma, Y. Zhu, X. Wang, and C. Zhou, “Geogalactica:
A scientific large language model in geoscience,”
CoRR, vol. abs/2401.00434, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2401.00434

D. Zhang, A. Petrova, D. Trautmann, and F. Schilder, “Un-
leashing the power of large language models for legal
applications,” in Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, 2023,
pp. 5257–5258.

Z. Sun, “A short survey of viewing large language models
in legal aspect,” arXiv preprint arXiv:2303.09136, 2023.

J. Lai, W. Gan, J. Wu, Z. Qi, and P. S. Yu, “Large language
models in law: A survey,” arXiv preprint arXiv:2312.03718,
2023.

S. Yue, W. Chen, S. Wang, B. Li, C. Shen, S. Liu, Y. Zhou,
Y. Xiao, S. Yun, W. Lin et al., “Disc-lawllm: Fine-tuning
large language models for intelligent legal services,” arXiv
preprint arXiv:2309.11325, 2023.

H. Zhong, C. Xiao, C. Tu, T. Zhang, Z. Liu, and M. Sun,
“Jec-qa: a legal-domain question answering dataset,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 05, 2020, pp. 9701–9708.

K. Singhal, T. Tu, J. Gottweis, R. Sayres, E. Wulczyn,
L. Hou, K. Clark, S. Pfohl, H. Cole-Lewis, D. Neal,
M. Schaekermann, A. Wang, M. Amin, S. Lachgar, P. A.
Mansfield, S. Prakash, B. Green, E. Dominowska, B. A.
y Arcas, N. Tomasev, Y. Liu, R. Wong, C. Semturs,
S. S. Mahdavi, J. K. Barral, D. R. Webster, G. S.
Corrado, Y. Matias, S. Azizi, A. Karthikesalingam, and
V. Natarajan, “Towards expert-level medical question
answering with large language models,” CoRR, vol.
abs/2305.09617, 2023. [Online]. Available: https://doi.
org/10.48550/arXiv.2305.09617

W. Zhu, X. Wang, H. Zheng, M. Chen, and B. Tang,
“Promptcblue: A chinese prompt tuning benchmark for
the medical domain,” arXiv preprint arXiv:2310.14151,
2023.

C. Wu, X. Zhang, Y. Zhang, Y. Wang, and W. Xie, “Pmc-
llama: Further finetuning llama on medical papers,”
CoRR, vol. abs/2304.14454, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2304.14454

Z. Bao, W. Chen, S. Xiao, K. Ren, J. Wu, C. Zhong, J. Peng,
X. Huang, and Z. Wei, “Disc-medllm: Bridging general
large language models and real-world medical consulta-
tion,” arXiv preprint arXiv:2308.14346, 2023.

S. Xue, F. Zhou, Y. Xu, H. Zhao, S. Xie, Q. Dai,
C. Jiang, J. Zhang, J. Zhou, D. Xiu, and H. Mei,
“Weaverbird: Empowering financial decision-making
with large language model, knowledge base, and search
engine,” CoRR, vol. abs/2308.05361, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2308.05361

S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze,
S. Gehrmann, P. Kambadur, D. S. Rosenberg, and
G. Mann, “Bloomberggpt: A large language model
for finance,” CoRR, vol. abs/2303.17564, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2303.17564

D. Lu, H. Wu, J. Liang, Y. Xu, Q. He, Y. Geng, M. Han,
Y. Xin, and Y. Xiao, “Bbt-fin: Comprehensive construction
of chinese financial domain pre-trained language model,
corpus and benchmark,” CoRR, vol. abs/2302.09432, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2302.
09432

Y. Yang, Y. Tang, and K. Y. Tam, “Investlm: A large language
model for investment using financial domain instruction
tuning,” CoRR, vol. abs/2309.13064, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2309.13064

Q. Xie, W. Han, X. Zhang, Y. Lai, M. Peng, A. Lopez-
Lira, and J. Huang, “PIXIU: A large language model,
instruction data and evaluation benchmark for finance,”
CoRR, vol. abs/2306.05443, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2306.05443

N. Wang, H. Yang, and C. D. Wang, “Fingpt: Instruction
tuning benchmark for open-source large language models
in financial datasets,” CoRR, vol. abs/2310.04793, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2310.
04793

R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn,
E. Saravia, A. Poulton, V. Kerkez, and R. Stojnic,
“Galactica: A large language model for science,”
CoRR, vol. abs/2211.09085, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2211.09085

J. Yin, S. Dash, F. Wang, and M. Shankar, “FORGE:
pre-training open foundation models for science,”
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC 2023, Denver, CO, USA, November 12-17, 2023,
D. Arnold, R. M. Badia, and K. M. Mohror, Eds.
ACM, 2023, pp. 81:1–81:13. [Online]. Available: https:
//doi.org/10.1145/3581784.3613215

Z. Azerbayev, H. Schoelkopf, K. Paster, M. D. Santos,
S. McAleer, A. Q. Jiang, J. Deng, S. Biderman, and
S. Welleck, “Llemma: An open language model for
mathematics,” CoRR, vol. abs/2310.10631, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2310.10631

F. Yu, A. Gao, and B. Wang, “Outcome-supervised
verifiers for planning in mathematical reasoning,”
CoRR, vol. abs/2311.09724, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2311.09724

https://doi.org/10.48550/arXiv.2401.06199
https://doi.org/10.48550/arXiv.2310.02031
https://doi.org/10.48550/arXiv.2310.13596
https://doi.org/10.48550/arXiv.2401.00434
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.48550/arXiv.2305.09617
https://doi.org/10.48550/arXiv.2304.14454
https://doi.org/10.48550/arXiv.2308.05361
https://doi.org/10.48550/arXiv.2303.17564
https://doi.org/10.48550/arXiv.2302.09432
https://doi.org/10.48550/arXiv.2302.09432
https://doi.org/10.48550/arXiv.2309.13064
https://doi.org/10.48550/arXiv.2306.05443
https://doi.org/10.48550/arXiv.2310.04793
https://doi.org/10.48550/arXiv.2310.04793
https://doi.org/10.48550/arXiv.2211.09085
https://doi.org/10.1145/3581784.3613215
https://doi.org/10.1145/3581784.3613215
https://doi.org/10.48550/arXiv.2310.10631
https://doi.org/10.48550/arXiv.2311.09724


42

T. D. Nguyen, Y. Ting, I. Ciuca, C. O’Neill, Z. Sun,
M. Jablonska, S. Kruk, E. Perkowski, J. W. Miller,
J. Li, J. Peek, K. Iyer, T. Rózanski, P. Khetarpal,
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